01.12.2014 Views

Effects of offshore Wind Farms on Marine Mammals and Fish – The ...

Effects of offshore Wind Farms on Marine Mammals and Fish – The ...

Effects of offshore Wind Farms on Marine Mammals and Fish – The ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore <str<strong>on</strong>g>Wind</str<strong>on</strong>g> <str<strong>on</strong>g>Farms</str<strong>on</strong>g> <strong>on</strong> <strong>Marine</strong><br />

<strong>Mammals</strong> <strong>and</strong> <strong>Fish</strong> – <strong>The</strong> European Experience<br />

Andrew B. Gill<br />

Dept <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural Resources,<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Sciences,<br />

Cranfield University, U.K.<br />

Frank Thomsen<br />

Centre for Envir<strong>on</strong>ment,<br />

<strong>Fish</strong>eries <strong>and</strong> Aquaculture<br />

Science (CEFAS), Lowest<str<strong>on</strong>g>of</str<strong>on</strong>g>t,<br />

Suffolk, U.K.


(Adrian Judd, with permissi<strong>on</strong>)


Round 3


Spatial & Temporal c<strong>on</strong>siderati<strong>on</strong>s<br />

Extent <str<strong>on</strong>g>of</str<strong>on</strong>g> development<br />

• Multiple devices<br />

• Cable array<br />

• Sub-stati<strong>on</strong> & c<strong>on</strong>necti<strong>on</strong> to shore<br />

• Envir<strong>on</strong>mental footprint<br />

• Other wind farms & renewable opti<strong>on</strong>s<br />

Time scale <str<strong>on</strong>g>of</str<strong>on</strong>g> development<br />

Other uses <str<strong>on</strong>g>of</str<strong>on</strong>g> the coastal z<strong>on</strong>e<br />

•©Elsam A/S


Phases <str<strong>on</strong>g>of</str<strong>on</strong>g> impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> ecological relevance<br />

1. C<strong>on</strong>structi<strong>on</strong> (& survey)<br />

3. Decommissi<strong>on</strong><br />

2. Operati<strong>on</strong><br />

©GE wind energy


<str<strong>on</strong>g>Effects</str<strong>on</strong>g> & impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> ecological relevance<br />

ORED Activity<br />

C<strong>on</strong>structi<strong>on</strong><br />

-energy c<strong>on</strong>versi<strong>on</strong><br />

device<br />

- substati<strong>on</strong><br />

-cables<br />

Operati<strong>on</strong><br />

Decommissi<strong>on</strong><br />

ORED = Offshore renewable energy developments


<str<strong>on</strong>g>Effects</str<strong>on</strong>g> & impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> ecological relevance<br />

ORED Activity<br />

Effectors<br />

C<strong>on</strong>structi<strong>on</strong><br />

-energy c<strong>on</strong>versi<strong>on</strong><br />

device<br />

- substati<strong>on</strong><br />

-cables<br />

Operati<strong>on</strong><br />

Sediment – removal<br />

- disturbance<br />

Cable - laying<br />

- routing<br />

Structure - type<br />

-scale<br />

- pile driving<br />

Areal extent<br />

Timing <str<strong>on</strong>g>of</str<strong>on</strong>g> activity<br />

Cable - rating<br />

- array c<strong>on</strong>figurati<strong>on</strong><br />

Electricity - amount<br />

- frequency<br />

- variability<br />

Moving parts<br />

Structure – type<br />

- scale<br />

Decommissi<strong>on</strong><br />

Sediment disturbance<br />

Structure removal<br />

Cable removal<br />

Areal extent<br />

Timing <str<strong>on</strong>g>of</str<strong>on</strong>g> activity<br />

ORED = Offshore renewable energy developments


<str<strong>on</strong>g>Effects</str<strong>on</strong>g> & impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> ecological relevance<br />

ORED Activity Effectors <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <strong>on</strong> Coastal<br />

Envir<strong>on</strong>ment<br />

C<strong>on</strong>structi<strong>on</strong><br />

-energy c<strong>on</strong>versi<strong>on</strong><br />

device<br />

- substati<strong>on</strong><br />

-cables<br />

Operati<strong>on</strong><br />

Sediment – removal<br />

- disturbance<br />

Cable - laying<br />

- routing<br />

Structure - type<br />

-scale<br />

- pile driving<br />

Areal extent<br />

Timing <str<strong>on</strong>g>of</str<strong>on</strong>g> activity<br />

Cable - rating<br />

- array c<strong>on</strong>figurati<strong>on</strong><br />

Electricity - amount<br />

- frequency<br />

- variability<br />

Moving parts<br />

Structure – type<br />

- scale<br />

Habitat removal<br />

Smothering - species<br />

- habitat<br />

Increased turbidity<br />

C<strong>on</strong>taminant remobilisati<strong>on</strong><br />

Increased Biol Oxygen Dem<strong>and</strong><br />

Increased noise & vibrati<strong>on</strong><br />

Noise & vibrati<strong>on</strong><br />

Electromagnetic field (EMF)<br />

- frequency<br />

- amplitude<br />

Collisi<strong>on</strong> - above water<br />

-below water<br />

Increased habitat heterogeneity<br />

- col<strong>on</strong>isati<strong>on</strong> opportunity<br />

Sediment transport<br />

Water movement characteristics<br />

Decommissi<strong>on</strong><br />

Sediment disturbance<br />

Structure removal<br />

Cable removal<br />

Areal extent<br />

Timing <str<strong>on</strong>g>of</str<strong>on</strong>g> activity<br />

Habitat removal<br />

Smothering - species<br />

- habitat<br />

Increased turbidity<br />

C<strong>on</strong>taminant remobilisati<strong>on</strong><br />

Increased Biol Oxygen Dem<strong>and</strong><br />

Decreased habitat heterogeneity<br />

New col<strong>on</strong>isati<strong>on</strong> opportunity<br />

Increased noise & vibrati<strong>on</strong><br />

ORED = Offshore renewable energy developments


<str<strong>on</strong>g>Effects</str<strong>on</strong>g> & impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> ecological relevance<br />

ORED Activity Effectors <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <strong>on</strong> Coastal<br />

Envir<strong>on</strong>ment<br />

Potential Ecological<br />

Resp<strong>on</strong>se<br />

C<strong>on</strong>structi<strong>on</strong><br />

-energy c<strong>on</strong>versi<strong>on</strong><br />

device<br />

-substati<strong>on</strong><br />

-cables<br />

Sediment – removal<br />

- disturbance<br />

Cable - laying<br />

- routing<br />

Structure - type<br />

-scale<br />

- pile driving<br />

Areal extent<br />

Timing <str<strong>on</strong>g>of</str<strong>on</strong>g> activity<br />

Habitat removal<br />

Smothering - species<br />

- habitat<br />

Increased turbidity<br />

C<strong>on</strong>taminant remobilisati<strong>on</strong><br />

Increased Biol Oxygen.Dem<strong>and</strong><br />

Increased noise & vibrati<strong>on</strong><br />

Sedentary species:<br />

Reduced diversity<br />

Increase in opportunist<br />

abundance<br />

Mobile species:<br />

Temporary displacement<br />

L<strong>on</strong>g-term displacement<br />

Hearing loss<br />

Indirect effects<br />

Operati<strong>on</strong><br />

Cable - rating<br />

- array c<strong>on</strong>figurati<strong>on</strong><br />

Electricity - amount<br />

- frequency<br />

- variability<br />

Moving parts<br />

Structure – type<br />

- scale<br />

Noise & vibrati<strong>on</strong><br />

Electromagnetic field (EMF)<br />

- frequency<br />

- amplitude<br />

Collisi<strong>on</strong> - above water<br />

-below water<br />

Increased habitat heterogeneity<br />

- col<strong>on</strong>isati<strong>on</strong> opportunity<br />

Sediment transport<br />

Water movement characteristics<br />

Acoustic species:<br />

Individual disturbance<br />

Populati<strong>on</strong> disturbance<br />

EMF sensitive species:<br />

Individual attracti<strong>on</strong>/avoidance<br />

Populati<strong>on</strong> attracti<strong>on</strong>/avoidance<br />

Altered migrati<strong>on</strong> - temporary<br />

- l<strong>on</strong>g term<br />

Injury/fatality <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals<br />

Changes to - diversity<br />

- abundance<br />

-biomass<br />

- c<strong>on</strong>nectivity<br />

- community structure<br />

Indirect effects<br />

Decommissi<strong>on</strong><br />

Sediment disturbance<br />

Structure removal<br />

Cable removal<br />

Areal extent<br />

Timing <str<strong>on</strong>g>of</str<strong>on</strong>g> activity<br />

Habitat removal<br />

Smothering - species<br />

- habitat<br />

Increased turbidity<br />

C<strong>on</strong>taminant remobilisati<strong>on</strong><br />

Increased Biol Oxygen Dem<strong>and</strong><br />

Decreased habitat heterogeneity<br />

New col<strong>on</strong>isati<strong>on</strong> opportunity<br />

Increased noise & vibrati<strong>on</strong><br />

Sedentary species:<br />

Reduced diversity<br />

Increase in opportunist<br />

abundance<br />

Mobile species:<br />

Temporary displacement<br />

L<strong>on</strong>g-term displacement<br />

Reducti<strong>on</strong> in biomass<br />

Indirect effects<br />

ORED = Offshore renewable energy developments<br />

Source: Gill (2005) Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology 42, p605-615<br />

615


Investigating potential interacti<strong>on</strong>s between<br />

marine organisms <strong>and</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore wind energy<br />

Baseline underst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> the organisms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

interest<br />

C<strong>on</strong>sider the different phases<br />

• Installati<strong>on</strong><br />

• Operati<strong>on</strong><br />

• Decommissi<strong>on</strong>ing<br />

Appropriate spatial scale<br />

Appropriate temporal scale<br />

Policy driven (eg. EIA & MSFD)<br />

Relevance to <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore industry, regulators,<br />

other stakeholders


COWRIE studies<br />

- taking the lab out into the field<br />

• Set out the research questi<strong>on</strong> to answer (e.g.)<br />

Q. Do electromagnetic sensitive fish resp<strong>on</strong>d to EMF emitted by <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore<br />

wind farm cables?<br />

Q. Does pile driving affect the behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> marine fish<br />

• Mesocosm (large fish pen) based study<br />

• Focus <strong>on</strong> semi-realism<br />

but study c<strong>on</strong>trol<br />

• Remote coastal site away from background EMF & noise<br />

• Relevant species with different attributes<br />

• Behavioural study with remote methods<br />

Photo: Rachel Ball<br />

www.ices.dk/marineworld/jaws.asp


Navigati<strong>on</strong><br />

marker buoys<br />

COWRIE Mesocosm Studies<br />

Sea surface<br />

Floating<br />

polyethylene<br />

collar<br />

Buoyancy<br />

Zip access<br />

10-15m<br />

5m<br />

40m<br />

Bridle mooring<br />

to mesocosm 2<br />

Sinkable<br />

polyethylene<br />

collar<br />

v<br />

Anchors/mooring<br />

Flat, s<strong>and</strong>y<br />

sea bed


A large-scale experiment to<br />

determine the resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

electrosensitive fish to<br />

electromagnetic fields (EMF)<br />

generated by <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore<br />

windfarms<br />

Andrew B. Gill 1 *, Ian Gloyne-Phillips 3 , Yi Huang 4 , Julian<br />

Metcalfe 2 , Andrew Pate 4 , Joe Spencer 4 , Vicky Quayle 2 &<br />

Victoria Wearmouth 1<br />

1 – Cranfield University; 2 – Centre for <strong>Fish</strong>eries, Envir<strong>on</strong>ment <strong>and</strong><br />

Aquaculture Science (CEFAS), 3 - CMACS Ltd, 4 – Centre for<br />

Intelligent M<strong>on</strong>itoring Systems (CIMS), University <str<strong>on</strong>g>of</str<strong>on</strong>g> Liverpool


Electromagnetic field (EMF)<br />

emissi<strong>on</strong>s from wind farm cables<br />

X-secti<strong>on</strong> cable (internal) –<br />

magnetic field<br />

X-secti<strong>on</strong> cable (external)<br />

-magnetic field


Magnetic fields<br />

<strong>Fish</strong> (comm<strong>on</strong> eels & salm<strong>on</strong>ids)<br />

• Focus - migrati<strong>on</strong> behaviour<br />

- behaviour in relati<strong>on</strong><br />

to the cable trace<br />

Chel<strong>on</strong>ians (turtles)<br />

Cetaceans (whales & dolphins)<br />

Pinnipeds (seals)<br />

Crustaceans (crabs & lobsters)


Elasmobranchs (sharks, skates <strong>and</strong> rays) –<br />

Electro- & Magneto-recepti<strong>on</strong><br />

Elasmobranchs (sharks, skates <strong>and</strong> rays) – key predators in<br />

coastal ecosystems <strong>and</strong> increasing c<strong>on</strong>servati<strong>on</strong> c<strong>on</strong>cern


Density distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Thornback Ray, functi<strong>on</strong>al<br />

benthic habitat & <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore wind farm sites


EMF emissi<strong>on</strong>s from AC windfarm<br />

cables<br />

Magnetic field<br />

Induced electric field<br />

• Approximates to E field <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.9μV/cm (50 Hz)<br />

at surface <str<strong>on</strong>g>of</str<strong>on</strong>g> seabed


Measured electric <strong>and</strong> magnetic field <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

operati<strong>on</strong>al wind farm cable


Resp<strong>on</strong>se to E-field<br />

Elasmobranchs E field detecti<strong>on</strong> range: 10μV/cm – 5nV/cm<br />

(variable low frequencies)


Potential effects?<br />

-working hypothesis<br />

Al<strong>on</strong>g/over the cable trace<br />

Within the cable array


Movement tracking<br />

(Figure © by Vemco)


Fine scale movement <str<strong>on</strong>g>of</str<strong>on</strong>g> ray<br />

during 3 hour event<br />

Variables<br />

-Near Distance<br />

-Step length


Mean Step length (+/-95%C.L.) <str<strong>on</strong>g>of</str<strong>on</strong>g> individual rays<br />

2.50<br />

Live<br />

*<br />

2.00<br />

*<br />

Mean Step length (m)<br />

1.50<br />

1.00<br />

*<br />

0<br />

1<br />

2<br />

0.50<br />

0.00<br />

8353RcT3 8355RcT3 8353RcT2 8356RcT1<br />

<strong>Fish</strong> individual <strong>and</strong> Trial


EMF at wind farms-<br />

• Both electric <strong>and</strong> magnetic<br />

fields are emitted by OWF<br />

cables<br />

EMF C<strong>on</strong>clusi<strong>on</strong>s<br />

Individual effects-<br />

• EM sensitive fish can detect<br />

EMF from subsea AC cables<br />

• Variable resp<strong>on</strong>se by individuals<br />

• Attracted to emissi<strong>on</strong> at lower end <str<strong>on</strong>g>of</str<strong>on</strong>g> range<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> sensitivity<br />

Populati<strong>on</strong> effects-<br />

• Need to determine if this<br />

attracti<strong>on</strong> is repetitive<br />

• Does avoidance occurs at<br />

higher emissi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> EMF


Underwater sound<br />

• Four times faster than air<br />

• Less attenuati<strong>on</strong><br />

• Very l<strong>on</strong>g ranges (SOFAR<br />

channel = > 1,000 km)


Sound <strong>and</strong> marine life


Functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> sound for marine life<br />

Communicati<strong>on</strong><br />

Finding food<br />

Stunning prey<br />

Eavesdropping<br />

Navigati<strong>on</strong>


<strong>The</strong>oretical z<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> noise influence<br />

Detecti<strong>on</strong><br />

Masking<br />

Resp<strong>on</strong>se<br />

Hearing loss,<br />

discomfort,<br />

injury<br />

‣TTS = Temporary<br />

threshold shift<br />

‣PTS = Permanent<br />

threshold shift<br />

(Richards<strong>on</strong> et al. 1995)


Important units<br />

‣ Sound c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> pressure fluctuati<strong>on</strong>s (compressi<strong>on</strong>s <strong>and</strong> rarefacti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> molecules)<br />

‣ Pressure fluctuati<strong>on</strong>s propagate through medium<br />

‣ Sound c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

- pressure comp<strong>on</strong>ent<br />

- particle moti<strong>on</strong> comp<strong>on</strong>ent<br />

Acoustic pressure: SPL (dB) = 20 log 10 (P/P 0 )<br />

P 0 underwater = 1µPa; P 0 air = 20 µPa<br />

Pitch: Hz = cycles / s (pitch)


Hearing in cetaceans<br />

160<br />

140<br />

SPL (dB re 1 µPa)<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0.01 0.1 1 10 100<br />

Frequency (kHz)<br />

Bottlenose dolphin (Johns<strong>on</strong> 1967)<br />

Risso's dolphin (Nachtigall et al. 1995)<br />

Striped dolphin (Kastelein et al. 2003)<br />

Killer whale (Szymanski et al. 1999; Behaviour)<br />

Killer whale (Szymanski et al. 1999; ABR)<br />

Harbour porpoise (Kastelein et al. 2002)


Hearing in fish<br />

160<br />

150<br />

140<br />

130<br />

SPL (dB re 1 µPa)<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

10 100 1000<br />

Bass (Nedwell et al. 2004)<br />

Cod (Offut 1974)<br />

Cod (Hawkins & Myrberg 1983)<br />

Dab (Hawkins & Myrberg 1983))<br />

Bass (Nedwell et al. 2004)<br />

Herring (Enger 1967)<br />

Pollack (Chapman 1973)<br />

Pollack (Chapman & Hawkins 1969)<br />

Atlantic Salm<strong>on</strong> (Hawkins & Johnst<strong>on</strong>e 1978)<br />

Little Skate (Casper et al. 2003)


Background<br />

C<strong>on</strong>structi<strong>on</strong> noise<br />

• Impact pile driving with very high<br />

sound pressure levels<br />

• 228 dB re 1µPa peak – 257 dB re<br />

1µPa peak to peak (1m)<br />

4<br />

3<br />

2<br />

Spitzenschalldruck ca. 3400 Pa<br />

• Several hundred strikes per pile<br />

Schlalldruck in kPa<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

• Main energy at lower frequencies<br />

< 1kHz<br />

-4<br />

0.00 0.05 0.10 0.15 0.20<br />

Zeit in Sekunden<br />

(ITAP 2005; Thomsen et al. 2006; Nedwell et al. 2007; review in OSPAR 2009)


260<br />

1 m<br />

Detecti<strong>on</strong><br />

(Thomsen et al. 2006)<br />

200<br />

dB re 1µPa<br />

80 km<br />

100<br />

20<br />

100<br />

1,000 10,000 100,000<br />

Frequency [Hz]


Resp<strong>on</strong>se<br />

Age<br />

C<strong>on</strong>diti<strong>on</strong><br />

Source<br />

Channel<br />

Sex<br />

Social state<br />

Properties<br />

-durati<strong>on</strong><br />

-transient /<br />

c<strong>on</strong>tinuous<br />

Behavioural state<br />

Seas<strong>on</strong>


Resp<strong>on</strong>se: harbour porpoises<br />

‣ Reduced sightings during impact pile driving<br />

‣ Decreased clicking rate<br />

‣ 15-20 km from source<br />

‣ Short-term effect at Horns Reef<br />

‣ L<strong>on</strong>g term effect at Nysted<br />

(Tougaard et al. 2003, 2005,<br />

2007 Carstensen 2006)


Possible c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> disturbance<br />

Displacement from spawning <strong>and</strong> / or<br />

fishing grounds<br />

• Reduced reproducti<strong>on</strong> <strong>and</strong> survival<br />

• Reduced catches<br />

(Herring; map from Coull et al. 1998 currently updated by Cefas; see Engas et<br />

al. 1996)


<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> pile driving sound <strong>on</strong> the behaviour<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> marine fish<br />

Frank Thomsen 1 , Christina Mueller-Blenkle 1 , Andrew Gill 2 , Julian Metcalfe 1 ,<br />

Peter McGregor 3 , Victoria Bendall 1 , Daniel Wood 1 , Mathias Anderss<strong>on</strong> 4 , Peter Sigray 4<br />

1) Cefas, 2) Cranfield University Cranfield, 3) Cornwall College Newquay, 4) Stockholm University


Objectives<br />

Experimental study <strong>on</strong> the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> pile-driving sound <strong>on</strong> cod<br />

<strong>and</strong> sole


COWRIE Mesocosm Studies<br />

Navigati<strong>on</strong> marker<br />

buoys<br />

Sea surface<br />

Floating<br />

polyethylene collar<br />

Buoyancy<br />

Zip access<br />

10-15m<br />

5m<br />

40m<br />

Bridle mooring to<br />

mesocosm 2<br />

Sinkable<br />

polyethylene collar<br />

v<br />

Anchors/mooring<br />

Flat, s<strong>and</strong>y<br />

sea bed


Playback <strong>and</strong> recording<br />

(Pictures ©Christina Mueller, Mathias Anderss<strong>on</strong>)


Movement tracking<br />

(Figure © by Vemco)


Playback Group 1, trial 1


Playback Group 1, trial 2....c<strong>on</strong>t’d<br />

• Trial with 4 fish each (2 M1 2 M2), 62 trials, 50 Individuals<br />

• Recordings <str<strong>on</strong>g>of</str<strong>on</strong>g> positi<strong>on</strong>, speed <strong>and</strong> directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> movement <str<strong>on</strong>g>of</str<strong>on</strong>g> fish<br />

• Over 4,000 positi<strong>on</strong>al data points


Movement resp<strong>on</strong>se<br />

Before<br />

During<br />

After


Swimming speed increase in sole<br />

0.6<br />

Sole mean speed<br />

2-5 exposure (n=14,8)<br />

Wilcox<strong>on</strong> test<br />

near mesocosm p = 0.03<br />

far mesocosm not significant<br />

0.5<br />

body lengths per sec<strong>on</strong>d<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

before during after<br />

playback<br />

near<br />

far<br />

(RL = 144 – 156 dB re 1µPa Peak 6.5 x10 -3 to 8.6 x10 -4 m/s 2 peak<br />

in near mesocosm)


Freezing resp<strong>on</strong>se in cod<br />

Near mesocosm<br />

Far mesocosm<br />

0.12<br />

0.12<br />

0.09<br />

0.09<br />

0.06<br />

0.06<br />

Mean +- 1 SE<br />

0.03<br />

0.00<br />

Mean +- 1 SE<br />

0.03<br />

0.00<br />

-0.03<br />

-0.03<br />

-0.06<br />

-0.06<br />

-0.09<br />

-0.09<br />

BtoTrans TranstoD DtoTrans2 Trans2toA<br />

BtoTrans TranstoD DtoTrans2 Trans2toA<br />

(n<strong>on</strong>-parametric repeated measures 1-way ANOVA; H = 13.98, df = 3, P =<br />

0.0029; RL = 140 – 161 dB re 1µPa Peak; 6.5 x10 -3 to 8.6 x10 -4 m/s 2 peak)


Directi<strong>on</strong>al resp<strong>on</strong>se (sole)<br />

Before<br />

During<br />

0<br />

0<br />

270<br />

90<br />

270<br />

90<br />

180<br />

180


C<strong>on</strong>clusi<strong>on</strong>s<br />

C<strong>on</strong>clusi<strong>on</strong>s<br />

Objective<br />

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> pile-driving sound sources<br />

<strong>on</strong> the behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> marine fish<br />

Threshold for behavioural resp<strong>on</strong>se<br />

Characteristics, scale <strong>and</strong> durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

resp<strong>on</strong>ses<br />

C<strong>on</strong>clusi<strong>on</strong>s<br />

First field relevant experimental data that piledriving<br />

sound affects the behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> cod <strong>and</strong><br />

sole<br />

No single threshold but range over which<br />

behavioural resp<strong>on</strong>se occurs<br />

Variety <str<strong>on</strong>g>of</str<strong>on</strong>g> resp<strong>on</strong>ses (swimming speed,<br />

freezing, directi<strong>on</strong>al movement), differences<br />

between individuals <strong>and</strong> species; some<br />

indicati<strong>on</strong>s for habituati<strong>on</strong> (for discussi<strong>on</strong>)


Coastal envir<strong>on</strong>ment WILL be affected by<br />

Offshore <str<strong>on</strong>g>Wind</str<strong>on</strong>g>farms<br />

- including effects <strong>on</strong> the behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> marine life


Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> the effects essential <strong>and</strong> needs<br />

to have wide scope<br />

Relevant data <strong>and</strong> research required to address<br />

specific informati<strong>on</strong> gaps


Envir<strong>on</strong>mental management <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore wind<br />

farms needs to be updated based <strong>on</strong> science

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!