24.12.2014 Views

Bishop's qc-folding and wandering domains in Eremenko ... - ICMS

Bishop's qc-folding and wandering domains in Eremenko ... - ICMS

Bishop's qc-folding and wandering domains in Eremenko ... - ICMS

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Bishop’s <strong>qc</strong>-<strong>fold<strong>in</strong>g</strong> <strong>and</strong> w<strong>and</strong>er<strong>in</strong>g<br />

<strong>doma<strong>in</strong>s</strong> <strong>in</strong> <strong>Eremenko</strong>-Lyubich class<br />

—<br />

X. Jarque<br />

Universitat de Barcelona<br />

—<br />

<strong>ICMS</strong>, Ed<strong>in</strong>burgh, Scotl<strong>and</strong>, UK<br />

23 May, 2013<br />

W<strong>and</strong>er<strong>in</strong>g <strong>doma<strong>in</strong>s</strong> <strong>and</strong> Bishop’s <strong>fold<strong>in</strong>g</strong>


Background<br />

Def<strong>in</strong>ition: Let f be a rational or entire transcendental map. Let U<br />

be a Fatou doma<strong>in</strong> of f . If f l (U), l ≥ 0 is never eventually<br />

periodic then we say that U is w<strong>and</strong>er<strong>in</strong>g. In this case we have<br />

f n (U) ∩ f m (U) = ∅ ∀n < m ∈ Z.<br />

Theorem (Sullivan 1985): Let R : Ĉ → Ĉ be a rational map <strong>and</strong><br />

let U be a Fatou doma<strong>in</strong> of R. Then f l (U) is eventually periodic<br />

for some l ≥ 0. In other words, U cannot be a w<strong>and</strong>er<strong>in</strong>g doma<strong>in</strong>.<br />

W<strong>and</strong>er<strong>in</strong>g <strong>doma<strong>in</strong>s</strong> <strong>and</strong> Bishop’s <strong>fold<strong>in</strong>g</strong>


Background<br />

Def<strong>in</strong>ition: Let f be a rational or entire transcendental map. Let U<br />

be a Fatou doma<strong>in</strong> of f . If f l (U), l ≥ 0 is never eventually<br />

periodic then we say that U is w<strong>and</strong>er<strong>in</strong>g. In this case we have<br />

f n (U) ∩ f m (U) = ∅ ∀n < m ∈ Z.<br />

Theorem (Sullivan 1985): Let R : Ĉ → Ĉ be a rational map <strong>and</strong><br />

let U be a Fatou doma<strong>in</strong> of R. Then f l (U) is eventually periodic<br />

for some l ≥ 0. In other words, U cannot be a w<strong>and</strong>er<strong>in</strong>g doma<strong>in</strong>.<br />

Remark: In what follows f will be an entire transcendental map.<br />

W<strong>and</strong>er<strong>in</strong>g <strong>doma<strong>in</strong>s</strong> <strong>and</strong> Bishop’s <strong>fold<strong>in</strong>g</strong>


Multiply-connected w<strong>and</strong>er<strong>in</strong>g doma<strong>in</strong> (Baker 1976)<br />

∏<br />

∞<br />

Let g(z) = Cz<br />

(1 2 + z )<br />

where<br />

a n<br />

n=1<br />

1 < a 1 < a 2 < . . .,<br />

a j+1 < g(a j ) < 2a n+1 ,<br />

g(A j ) ⊂ A j+1 where<br />

A j = {z ∈ C | a 2 j < |z| < √ a j+1 }.<br />

Remark: If A j ⊂ U j then g(U j ) = U j+1 , hence g k (U j ) → ∞ as<br />

k → ∞ for all j.<br />

Theorem (Baker 1975, 1985): If U is a multiply-connected<br />

component of the Fatou set of f then U w<strong>and</strong>ers.<br />

W<strong>and</strong>er<strong>in</strong>g <strong>doma<strong>in</strong>s</strong> <strong>and</strong> Bishop’s <strong>fold<strong>in</strong>g</strong>


W<strong>and</strong>er<strong>in</strong>g doma<strong>in</strong> example II (Herman-Sullivan’s 80’s)<br />

C<br />

⏐ ⏐↓<br />

e −z<br />

z−1+e −z +2πi<br />

−−−−−−−−−→<br />

C<br />

⏐ ⏐↓e<br />

−z<br />

(1)<br />

C \ {0}<br />

ewe −w<br />

−−−−→ C \ {0}<br />

Lemma: If f <strong>and</strong> g are entire, f <strong>and</strong> g commutes, <strong>and</strong> f = g + c<br />

for some constant c, then J(f ) = J(g).<br />

Application: f (z) = z − 1 + e −z <strong>and</strong> g(z) = f (z) + 2πi. So, the<br />

Fatou set of g has a w<strong>and</strong>er<strong>in</strong>g doma<strong>in</strong>.<br />

W<strong>and</strong>er<strong>in</strong>g <strong>doma<strong>in</strong>s</strong> <strong>and</strong> Bishop’s <strong>fold<strong>in</strong>g</strong>


W<strong>and</strong>er<strong>in</strong>g doma<strong>in</strong> example III<br />

Let g(z) = z + λ 0 s<strong>in</strong>(z) with λ 0 ≈ 6.36227.<br />

The (<strong>in</strong>f<strong>in</strong>itely many) critical po<strong>in</strong>ts: x = cos −1 (−1/λ 0 ).<br />

λ 0 is such that g(x) = x + 2πi for all c.p. x.<br />

Only two critical orbits, both belong<strong>in</strong>g to the Fatou set.<br />

The l<strong>in</strong>es {x = kπ} ⊂ J (g) for all k ∈ Z.<br />

x 6.36227 s<strong>in</strong>x<br />

30<br />

20<br />

10<br />

30 20 10 10 20 30<br />

x<br />

10<br />

20<br />

30<br />

W<strong>and</strong>er<strong>in</strong>g <strong>doma<strong>in</strong>s</strong> <strong>and</strong> Bishop’s <strong>fold<strong>in</strong>g</strong>


Critically f<strong>in</strong>ite entire transcendental functions<br />

We denote by S(f ) the set of (f<strong>in</strong>ite) s<strong>in</strong>gularities of f −1 (critical<br />

values, asymptotic values <strong>and</strong> limits of those values).<br />

Def<strong>in</strong>ition: We say that f is critically f<strong>in</strong>ite if S(f ) is f<strong>in</strong>ite.<br />

E λ (z) = λexp(z)<br />

Sn λ (z) = λ s<strong>in</strong>(z)<br />

Theorem (Baker 1984): If f (z) =<br />

∫ z<br />

0<br />

P(t)e Q(t) dt, P <strong>and</strong> Q<br />

polynomials, then f has no w<strong>and</strong>er<strong>in</strong>g <strong>doma<strong>in</strong>s</strong>. Indeed this follows<br />

from a more general statement.<br />

Theorem (<strong>Eremenko</strong>-Lyubich, Golberg-Keen 1986): If f is critically<br />

f<strong>in</strong>ite then f has no w<strong>and</strong>er<strong>in</strong>g <strong>doma<strong>in</strong>s</strong>.<br />

Remark: The proofs adapted Sullivan’s quasi-conformal strategy.<br />

W<strong>and</strong>er<strong>in</strong>g <strong>doma<strong>in</strong>s</strong> <strong>and</strong> Bishop’s <strong>fold<strong>in</strong>g</strong>


Constant limit functions<br />

Theorem (Fatou 1920): Let U a w<strong>and</strong>er<strong>in</strong>g doma<strong>in</strong> of f . All limit<br />

functions of {f n k<br />

| U } are constant (non constant limit functions<br />

correspond to eventually periodic Fatou components).<br />

{f n | U } → ∞ (uniformly tend<strong>in</strong>g to <strong>in</strong>f<strong>in</strong>ity)<br />

{f n k<br />

| U } → ∞ <strong>and</strong> {f m k<br />

| U } → a ∈ J (f ) ⊂ C (oscillat<strong>in</strong>g)<br />

There is no {n k } for which {f n k<br />

| U } → ∞ (bounded)<br />

Remark: All previous examples were of the first type.<br />

Example (<strong>Eremenko</strong>-Lyubich 1987): There exits a transcendental<br />

entire function f which has an oscillat<strong>in</strong>g w<strong>and</strong>er<strong>in</strong>g component U<br />

(with <strong>in</strong>f<strong>in</strong>itely many f<strong>in</strong>ite constant limit po<strong>in</strong>ts).<br />

Remark: As far as I know there are no examples of the third type.<br />

W<strong>and</strong>er<strong>in</strong>g <strong>doma<strong>in</strong>s</strong> <strong>and</strong> Bishop’s <strong>fold<strong>in</strong>g</strong>


Composite entire functions <strong>and</strong> Carleman sets<br />

Theorem (Bergweiler-Wang 1998): Let f , g be entire maps. Then<br />

z ∈ J (f ◦ g) ⇐⇒ g(z) ∈ J (g ◦ f ).<br />

If U 0 ⊂ F(f ◦ g) <strong>and</strong> V 0 ⊂ F(g ◦ f ) with g(U 0 ) ⊂ V 0 then<br />

U 0 w<strong>and</strong>ers<br />

⇐⇒ V 0 w<strong>and</strong>ers<br />

Ma<strong>in</strong> tool: g semi-conjugates f ◦ g with g ◦ f .<br />

Theorem (S<strong>in</strong>gh 2003): There exists U ∈ C <strong>and</strong> f , g entire maps<br />

such that U is periodic for f , g <strong>and</strong> g ◦ f but it w<strong>and</strong>ers for f ◦ g.<br />

Remark: Carleman approximation theory.<br />

Problem: It is possible, <strong>in</strong> general, to relate the existence of<br />

w<strong>and</strong>er<strong>in</strong>g <strong>doma<strong>in</strong>s</strong> for f , g <strong>and</strong> f ◦ g<br />

W<strong>and</strong>er<strong>in</strong>g <strong>doma<strong>in</strong>s</strong> <strong>and</strong> Bishop’s <strong>fold<strong>in</strong>g</strong>


Constant limit functions<br />

Def<strong>in</strong>ition: We def<strong>in</strong>e<br />

E =<br />

⋃<br />

s∈S(f ) n≥0<br />

⋃<br />

f n (s)<br />

We denote by E ′ the derived set of E, that is, the set of f<strong>in</strong>ite limit<br />

po<strong>in</strong>ts of E. And we denote by E the closure of E.<br />

Theorem (Baker, 1976): Let U a Fatou component of f . Then all<br />

constant limit function of {f n k<br />

| U } belong to E ∪ ∞.<br />

Theorem (BHKMT, 1993): Let U a Fatou component of f . Then<br />

all constant limit function of {f n k<br />

| U } belong to E ′ ∪ ∞.<br />

Corollary: The maps (<strong>in</strong> class B) f (z) = e z , f (z) = s<strong>in</strong>(z) ,<br />

z<br />

f (z) =<br />

π2<br />

π 2 −z<br />

s<strong>in</strong>(z) has no w<strong>and</strong>er<strong>in</strong>g <strong>doma<strong>in</strong>s</strong>.<br />

2<br />

W<strong>and</strong>er<strong>in</strong>g <strong>doma<strong>in</strong>s</strong> <strong>and</strong> Bishop’s <strong>fold<strong>in</strong>g</strong>


<strong>Eremenko</strong>-Lyubich class <strong>and</strong> w<strong>and</strong>er<strong>in</strong>g <strong>doma<strong>in</strong>s</strong><br />

Def<strong>in</strong>ition: We say that f is <strong>in</strong> <strong>Eremenko</strong>-Lyubich class, f ∈ B, if<br />

S(f ) is bounded.<br />

Theorem (<strong>Eremenko</strong>-Lyubich 1985): If f ∈ B there are no Fatou<br />

components such that {f n | U } converges uniformly to <strong>in</strong>f<strong>in</strong>ity. No<br />

Baker <strong>doma<strong>in</strong>s</strong> <strong>and</strong> all w<strong>and</strong>er<strong>in</strong>g <strong>doma<strong>in</strong>s</strong> would be, if exist, either<br />

oscillat<strong>in</strong>g or bounded. Ma<strong>in</strong> result J (f ) = I(f ).<br />

Theorem (Mihaljević-Rempe 2012): If f ∈ B, all s<strong>in</strong>gular values<br />

escape uniformly to <strong>in</strong>f<strong>in</strong>ity <strong>and</strong> f satisfies condition A, then f has<br />

no w<strong>and</strong>er<strong>in</strong>g <strong>doma<strong>in</strong>s</strong>.<br />

Question: Is it possible to erase condition A from the statement<br />

Bishop’s example does not answer to this question s<strong>in</strong>ce not all<br />

s<strong>in</strong>gular values escape to <strong>in</strong>f<strong>in</strong>ity uniformly.<br />

W<strong>and</strong>er<strong>in</strong>g <strong>doma<strong>in</strong>s</strong> <strong>and</strong> Bishop’s <strong>fold<strong>in</strong>g</strong>


Bishop’s QC-<strong>fold<strong>in</strong>g</strong> for entire maps (<strong>in</strong> class B)<br />

The follow<strong>in</strong>g slices expla<strong>in</strong> Christopher Bishop’s construction of a<br />

w<strong>and</strong>er<strong>in</strong>g doma<strong>in</strong> <strong>in</strong> class B.<br />

This corresponds to Section 17 on the paper Construct<strong>in</strong>g<br />

entire functions by quasiconformal <strong>fold<strong>in</strong>g</strong>.<br />

I want to thank him for patiently answer my questions while I<br />

was read<strong>in</strong>g the paper.<br />

Of course, possible mistakes or <strong>in</strong>accuracies on this exposition,<br />

if any, belongs to me.<br />

W<strong>and</strong>er<strong>in</strong>g <strong>doma<strong>in</strong>s</strong> <strong>and</strong> Bishop’s <strong>fold<strong>in</strong>g</strong>


Bishop’s QC-<strong>fold<strong>in</strong>g</strong> for entire maps (<strong>in</strong> class B)<br />

Assume f is entire with precisely two critical values: {−1, 1}.<br />

Let T = f −1 ([−1, 1]).<br />

Ω j<br />

H +<br />

τ<br />

σ = cosh<br />

C<br />

−1 1<br />

T<br />

C<br />

Then we may write f (z) = cosh (τ(z))<br />

W<strong>and</strong>er<strong>in</strong>g <strong>doma<strong>in</strong>s</strong> <strong>and</strong> Bishop’s <strong>fold<strong>in</strong>g</strong>


Bishop’s QC-<strong>fold<strong>in</strong>g</strong> for entire maps (<strong>in</strong> class B)<br />

Assume f is entire with precisely two critical values: {−1, 1}.<br />

Let T = f −1 ([−1, 1]).<br />

Ω j<br />

H +<br />

τ<br />

σ = cosh<br />

C<br />

−1 1<br />

T<br />

C<br />

f<br />

Ma<strong>in</strong> problem: Is it possible to start with an abstract tree T <strong>and</strong> a<br />

map τ so that f = στ is entire Answer: Formally no, but close to<br />

this.<br />

W<strong>and</strong>er<strong>in</strong>g <strong>doma<strong>in</strong>s</strong> <strong>and</strong> Bishop’s <strong>fold<strong>in</strong>g</strong>


Bishop’s QC-<strong>fold<strong>in</strong>g</strong> for entire maps (<strong>in</strong> class B)<br />

H +<br />

Ω 2<br />

η η = τ<br />

Ω 1<br />

C<br />

σ<br />

−1<br />

1<br />

C<br />

T (r 0 )<br />

η<br />

D<br />

Restriccions:<br />

T should be of uniformly - M - bounded geometry (smooth +<br />

relative size of edges + angle condition).<br />

No common edges for bounded components. Moreover τ<br />

sends vertices of bounded components to roots of unity.<br />

τ-sizes are ≥ π.<br />

The prize: ∃ f = g ◦ φ, g = σ ◦ η q.r <strong>and</strong> φ K-<strong>qc</strong> with K = K(M).<br />

Moreover f = σ ◦ τ ◦ φ off T (r 0 ).<br />

W<strong>and</strong>er<strong>in</strong>g <strong>doma<strong>in</strong>s</strong> <strong>and</strong> Bishop’s <strong>fold<strong>in</strong>g</strong>


Bishop’s QC-<strong>fold<strong>in</strong>g</strong> for entire maps <strong>in</strong> class B<br />

Theorem: There exist an entire function f ∈ B, a disc D 0 <strong>and</strong> an<br />

<strong>in</strong>creas<strong>in</strong>g sequence of <strong>in</strong>tegers {n k } ↗ ∞ so that if we set<br />

D n+1 = f (D n ), n ≥ 1, then<br />

(a) The diameter of D n tends to zero (not monotonically),<br />

(b) dist(0, D nk ) ↗ ∞, <strong>and</strong><br />

(c) dist(0, D nk +1) < 1.<br />

In particular, f has a w<strong>and</strong>er<strong>in</strong>g doma<strong>in</strong>.<br />

Proof:<br />

D 0 <strong>and</strong> all its images belong to the Fatou set. Set U 0 the<br />

Fatou component where D 0 lies.<br />

U 0 cannot be (pre)periodic because of (b).<br />

W<strong>and</strong>er<strong>in</strong>g <strong>doma<strong>in</strong>s</strong> <strong>and</strong> Bishop’s <strong>fold<strong>in</strong>g</strong>


Bishop’s QC-<strong>fold<strong>in</strong>g</strong> for entire maps <strong>in</strong> class B<br />

C<br />

π<br />

S k<br />

zk<br />

D k<br />

1<br />

π<br />

2<br />

0 R<br />

1<br />

2<br />

S +<br />

Remark: Symmetry (real <strong>and</strong> imag<strong>in</strong>ary axis) of the construction.<br />

f (z) = f (z) <strong>and</strong> f (−z) = −f (z)<br />

W<strong>and</strong>er<strong>in</strong>g <strong>doma<strong>in</strong>s</strong> <strong>and</strong> Bishop’s <strong>fold<strong>in</strong>g</strong>


Bishop’s QC-<strong>fold<strong>in</strong>g</strong> for entire maps <strong>in</strong> class B<br />

π<br />

π<br />

2<br />

C<br />

S k<br />

D k<br />

0 R<br />

1<br />

2<br />

S +<br />

z k<br />

1<br />

τ = λ s<strong>in</strong>h<br />

η = τ<br />

H +<br />

Remark: The blue <strong>and</strong> red po<strong>in</strong>ts correspond to πiZ.<br />

W<strong>and</strong>er<strong>in</strong>g <strong>doma<strong>in</strong>s</strong> <strong>and</strong> Bishop’s <strong>fold<strong>in</strong>g</strong>


Bishop’s QC-<strong>fold<strong>in</strong>g</strong> for entire maps <strong>in</strong> class B<br />

π<br />

C<br />

S k<br />

z D k k<br />

π<br />

2<br />

0 R<br />

1<br />

2 S +<br />

1<br />

τ λ s<strong>in</strong>h<br />

η = τ<br />

σ(z) = cosh(z)<br />

H +<br />

C<br />

W<strong>and</strong>er<strong>in</strong>g <strong>doma<strong>in</strong>s</strong> <strong>and</strong> Bishop’s <strong>fold<strong>in</strong>g</strong>


Bishop’s QC-<strong>fold<strong>in</strong>g</strong> for entire maps <strong>in</strong> class B<br />

π<br />

π<br />

2<br />

C<br />

S k<br />

z D k k<br />

0 R<br />

1<br />

2 S +<br />

1<br />

τ λ s<strong>in</strong>h<br />

η = τ<br />

σ(z) = cosh(z)<br />

τ = z − z k<br />

η = τ<br />

d k -th roots of unity<br />

D<br />

H +<br />

σ(z) = ρ(τ(z) d k )<br />

ρ(0) = 1 2 , ρ| ∂D = Id<br />

ρ <strong>qc</strong><br />

ρ conformal <strong>in</strong> D(0, 3/4)<br />

C<br />

W<strong>and</strong>er<strong>in</strong>g <strong>doma<strong>in</strong>s</strong> <strong>and</strong> Bishop’s <strong>fold<strong>in</strong>g</strong>


Bishop’s QC-<strong>fold<strong>in</strong>g</strong> for entire maps <strong>in</strong> class B<br />

σ = cosh<br />

σ = exp<br />

H +<br />

η<br />

π<br />

C<br />

z D k k<br />

π<br />

2<br />

0 R<br />

1<br />

2 S<br />

τ λ s<strong>in</strong>h<br />

η = τ<br />

S k<br />

g = ση<br />

f = gφ<br />

1<br />

τ = z − z k<br />

η = τ<br />

D<br />

H +<br />

σ σ(z) = ρ(τ d k )<br />

ρ(0) = 1 2 , ρ| ∂D = Id<br />

C<br />

W<strong>and</strong>er<strong>in</strong>g <strong>doma<strong>in</strong>s</strong> <strong>and</strong> Bishop’s <strong>fold<strong>in</strong>g</strong>


Bishop’s QC-<strong>fold<strong>in</strong>g</strong> for entire maps <strong>in</strong> class B<br />

Important remarks about φ:<br />

φ is conformal on S + <strong>and</strong> 1 4 D k’s.<br />

W<strong>and</strong>er<strong>in</strong>g <strong>doma<strong>in</strong>s</strong> <strong>and</strong> Bishop’s <strong>fold<strong>in</strong>g</strong>


Bishop’s QC-<strong>fold<strong>in</strong>g</strong> for entire maps <strong>in</strong> class B<br />

Important remarks about φ:<br />

φ is conformal on S + <strong>and</strong> 1 4 D k’s.<br />

φ is uniformly K-quasiconformal for all the values of λ <strong>and</strong><br />

d k ’s.<br />

W<strong>and</strong>er<strong>in</strong>g <strong>doma<strong>in</strong>s</strong> <strong>and</strong> Bishop’s <strong>fold<strong>in</strong>g</strong>


Bishop’s QC-<strong>fold<strong>in</strong>g</strong> for entire maps <strong>in</strong> class B<br />

Important remarks about φ:<br />

φ is conformal on S + <strong>and</strong> 1 4 D k’s.<br />

φ is uniformly K-quasiconformal for all the values of λ <strong>and</strong><br />

d k ’s.<br />

The dilatation of φ is supported <strong>in</strong>side T (r 0 ) <strong>and</strong> this<br />

neighborhood decays exponentially <strong>in</strong> |z|.<br />

W<strong>and</strong>er<strong>in</strong>g <strong>doma<strong>in</strong>s</strong> <strong>and</strong> Bishop’s <strong>fold<strong>in</strong>g</strong>


Bishop’s QC-<strong>fold<strong>in</strong>g</strong> for entire maps <strong>in</strong> class B<br />

Important remarks about φ:<br />

φ is conformal on S + <strong>and</strong> 1 4 D k’s.<br />

φ is uniformly K-quasiconformal for all the values of λ <strong>and</strong><br />

d k ’s.<br />

The dilatation of φ is supported <strong>in</strong>side T (r 0 ) <strong>and</strong> this<br />

neighborhood decays exponentially <strong>in</strong> |z|.<br />

Moreover φ is symmetric (1-to-1 on R), φ(0) = 0, φ(∞) = ∞<br />

<strong>and</strong><br />

φ(z) = z + a z + O ( |z −2 | )<br />

for some |z| > R (Dyn’k<strong>in</strong>’s Theorem).<br />

W<strong>and</strong>er<strong>in</strong>g <strong>doma<strong>in</strong>s</strong> <strong>and</strong> Bishop’s <strong>fold<strong>in</strong>g</strong>


Bishop’s QC-<strong>fold<strong>in</strong>g</strong> for entire maps <strong>in</strong> class B<br />

Important remarks about φ:<br />

φ is conformal on S + <strong>and</strong> 1 4 D k’s.<br />

φ is uniformly K-quasiconformal for all the values of λ <strong>and</strong><br />

d k ’s.<br />

The dilatation of φ is supported <strong>in</strong>side T (r 0 ) <strong>and</strong> this<br />

neighborhood decays exponentially <strong>in</strong> |z|.<br />

Moreover φ is symmetric (1-to-1 on R), φ(0) = 0, φ(∞) = ∞<br />

<strong>and</strong><br />

φ(z) = z + a z + O ( |z −2 | )<br />

for some |z| > R (Dyn’k<strong>in</strong>’s Theorem).<br />

φ ′ should be bounded by below from 0.<br />

Estimates get better when <strong>in</strong>creas<strong>in</strong>g the parameters.<br />

W<strong>and</strong>er<strong>in</strong>g <strong>doma<strong>in</strong>s</strong> <strong>and</strong> Bishop’s <strong>fold<strong>in</strong>g</strong>


Bishop’s QC-<strong>fold<strong>in</strong>g</strong> for entire maps <strong>in</strong> class B<br />

C<br />

S k<br />

D k<br />

π<br />

z k<br />

π<br />

2<br />

0 R<br />

1<br />

2<br />

S +<br />

Consequently: f ′ (x) = d dx<br />

cosh (λ s<strong>in</strong>h(φ(x))) ≥ 16x for λ large<br />

enough. Hence we may choose λ so that x n = f n ( 1<br />

2)<br />

tends to<br />

<strong>in</strong>f<strong>in</strong>ity (exponential speed) as n does.<br />

W<strong>and</strong>er<strong>in</strong>g <strong>doma<strong>in</strong>s</strong> <strong>and</strong> Bishop’s <strong>fold<strong>in</strong>g</strong>


Bishop’s QC-<strong>fold<strong>in</strong>g</strong> for entire maps <strong>in</strong> class B<br />

1/4 ˜D n<br />

U n<br />

· · ·<br />

f n<br />

5<br />

x 0<br />

x n<br />

f n<br />

The nth preimage. The disc U n (1/4 Koebe’s Theorem) has radius<br />

comparable to<br />

( ( )) d 1 −1<br />

r n =<br />

dx f n .<br />

2<br />

W<strong>and</strong>er<strong>in</strong>g <strong>doma<strong>in</strong>s</strong> <strong>and</strong> Bishop’s <strong>fold<strong>in</strong>g</strong>


Bishop’s QC-<strong>fold<strong>in</strong>g</strong> for entire maps <strong>in</strong> class B<br />

D ( x 0 , ( 1 2 )dn )<br />

1/4 ˜D n<br />

1/2 ˜D n<br />

· · ·<br />

x 0<br />

x n<br />

The image by f = g ◦ φ of 1/4 ˜D n .<br />

The map φ sends 1/4 ˜D n <strong>in</strong>side 1/2 ˜D n (Dyn’k<strong>in</strong>’s estimates<br />

for n large enough).<br />

The map g(z) = ρ ( (z − ˜z n ) dn) sends D(x 0 , ( 1 2 )dn ).<br />

W<strong>and</strong>er<strong>in</strong>g <strong>doma<strong>in</strong>s</strong> <strong>and</strong> Bishop’s <strong>fold<strong>in</strong>g</strong>


Bishop’s QC-<strong>fold<strong>in</strong>g</strong> for entire maps <strong>in</strong> class B<br />

1/4 ˜D n<br />

f n f<br />

U n<br />

U n+1<br />

D ( x 0 , ( 1 2 )dn )<br />

We want ( 1<br />

2) dn<br />


Bishop’s QC-<strong>fold<strong>in</strong>g</strong> for entire maps <strong>in</strong> class B<br />

f n ∞<br />

1/4 ˜D n<br />

U n<br />

U n+1<br />

f ∞<br />

D ( x 0 , ( 1 2 )dn )<br />

We want ( 1<br />

2) dn<br />


Bishop’s QC-<strong>fold<strong>in</strong>g</strong> for entire maps <strong>in</strong> class B<br />

f n ∞<br />

1/4 ˜D n<br />

U n<br />

˜ f ∞<br />

U n+1<br />

f ∞<br />

x 0 = 1 2<br />

We want ( 1<br />

2) dn<br />


Bishop’s QC-<strong>fold<strong>in</strong>g</strong> for entire maps <strong>in</strong> class B<br />

U n<br />

U n+1<br />

1/4 ˜D n 1/4D ˜ n+1<br />

f ∞ ˜ n<br />

· · ·<br />

f ∞ ˜<br />

f ∞ ˜ n+1<br />

f ∞ ˜<br />

U n+2<br />

x 0 = 1 2 x n x n+1<br />

How he manage to do so...<br />

W<strong>and</strong>er<strong>in</strong>g <strong>doma<strong>in</strong>s</strong> <strong>and</strong> Bishop’s <strong>fold<strong>in</strong>g</strong>


Bishop’s QC-<strong>fold<strong>in</strong>g</strong> for entire maps <strong>in</strong> class B<br />

We change g <strong>in</strong> the D n ’s to be g = ρ n ρ(τ dn ) so that<br />

ρ n (1/2) = w n+1 the center of U n+1 .<br />

The new dilatation is O(r n+1 ) <strong>and</strong> it is supported <strong>in</strong><br />

O((d n ) −1 ) around the ∂ ˜D n . Notice that the distance from<br />

1/2 to w n+1 is governed by r n+1 .<br />

The correction on φ is close to the identity <strong>in</strong> the whole plane<br />

but we only need to do so <strong>in</strong> unit discs centered at the po<strong>in</strong>ts<br />

{x 0 , . . . x n } so that U n+1 still is mapped to ˜D n+1 (if necessary,<br />

we <strong>in</strong>crease d n ).<br />

We do these slightly modifications to be summable over n.<br />

W<strong>and</strong>er<strong>in</strong>g <strong>doma<strong>in</strong>s</strong> <strong>and</strong> Bishop’s <strong>fold<strong>in</strong>g</strong>


The end!!<br />

Thank you!!<br />

W<strong>and</strong>er<strong>in</strong>g <strong>doma<strong>in</strong>s</strong> <strong>and</strong> Bishop’s <strong>fold<strong>in</strong>g</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!