24.12.2014 Views

Structure and detection of Kelvin-Helmholtz vortices in the ... - GPSM

Structure and detection of Kelvin-Helmholtz vortices in the ... - GPSM

Structure and detection of Kelvin-Helmholtz vortices in the ... - GPSM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Structure</strong> <strong>and</strong> Detection <strong>of</strong><br />

Rolled-up <strong>Kelv<strong>in</strong></strong>-<strong>Helmholtz</strong> Vortices<br />

<strong>in</strong> <strong>the</strong> Tail Flank <strong>of</strong> <strong>the</strong> Magnetosphere<br />

H. Hasegawa, M. Fujimoto, T. K. M. Nakamura, K.<br />

Takagi (Tokyo Institute <strong>of</strong> Technology),<br />

T.-D. Phan (SSL, UCB), Y. Saito, T. Mukai<br />

(ISAS/JAXA), M. W. Dunlop (Ru<strong>the</strong>rford Appleton Lab.),<br />

<strong>and</strong> H. Reme (CESR)<br />

(Workshop <strong>in</strong> Romania, Sep. 6-10, 2005)


Introduction<br />

Observations show:<br />

The magnetopause boundary layer gets THICK at low latitudes,<br />

<strong>and</strong> <strong>the</strong> plasma sheet becomes COLD <strong>and</strong> DENSE, dur<strong>in</strong>g<br />

Northward <strong>in</strong>terplanetary magnetic field (IMF) periods.<br />

(e.g., Mitchell et al., 1987; Terasawa et al., 1997)<br />

These facts suggest significant transport <strong>of</strong> solar w<strong>in</strong>d<br />

plasmas <strong>in</strong>to <strong>the</strong> magnetosphere under northward IMF<br />

conditions.<br />

What is <strong>the</strong> transport mechanism<br />

□ Magnetic reconnection (e.g., Song & Russell, 1992)<br />

□ Transport through <strong>Kelv<strong>in</strong></strong>-<strong>Helmholtz</strong> <strong>in</strong>stability (KHI)<br />

(e.g., Fujimoto & Terasawa, 1994)<br />

□ Diffusion via wave-particle <strong>in</strong>teractions, such as via K<strong>in</strong>etic<br />

Alfven waves (e.g., Johnson & Cheng, 1997)


Introduction<br />

Observations show:<br />

The magnetopause boundary layer gets THICK at low latitudes,<br />

<strong>and</strong> <strong>the</strong> plasma sheet becomes COLD <strong>and</strong> DENSE, dur<strong>in</strong>g<br />

Northward <strong>in</strong>terplanetary magnetic field (IMF) periods.<br />

(e.g., Mitchell et al., 1987; Terasawa et al., 1997)<br />

These facts suggest significant transport <strong>of</strong> solar w<strong>in</strong>d<br />

plasmas <strong>in</strong>to <strong>the</strong> magnetosphere under northward IMF<br />

conditions.<br />

What is <strong>the</strong> transport mechanism<br />

□ Magnetic reconnection (e.g., Song & Russell, 1992)<br />

□ <strong>Kelv<strong>in</strong></strong>-<strong>Helmholtz</strong> <strong>in</strong>stability (KHI)<br />

(e.g., Fujimoto & Terasawa, 1994)<br />

□ Diffusion via wave-particle <strong>in</strong>teractions, such as via K<strong>in</strong>etic<br />

Alfven waves (e.g., Johnson & Cheng, 1997)


How can plasma transport be achieved <strong>in</strong> association<br />

with <strong>the</strong> KHI<br />

Reconnection with<strong>in</strong> a rolled-up KH vortex (e.g., Otto &<br />

Fairfield, 2000)<br />

Collapse <strong>of</strong> <strong>vortices</strong> mediated by electron <strong>in</strong>ertia effects<br />

(Nakamura et al., 2004)<br />

Rayleigh-Taylor <strong>in</strong>stability <strong>in</strong> <strong>vortices</strong> (Matsumoto & Hosh<strong>in</strong>o,<br />

2004)<br />

2-D simulations <strong>of</strong> KHI us<strong>in</strong>g<br />

Hall (2-fluid) MHD equations<br />

<strong>in</strong>clud<strong>in</strong>g f<strong>in</strong>ite electron <strong>in</strong>ertia


Numerical simulation studies <strong>in</strong>dicate that plasma transport can<br />

occur only when <strong>the</strong> KHI has grown to form “Rolled-up” <strong>vortices</strong>.<br />

Can <strong>the</strong> growth <strong>of</strong> KHI at <strong>the</strong> magnetopause lead to <strong>the</strong><br />

“rolled-up” <strong>vortices</strong> or just to ripples<br />

OR <br />

Plasma transport can occur.<br />

Transport is unlikely to occur.<br />

S<strong>in</strong>gle-spacecraft measurements (e.g., Kivelson & Chen, 1995)<br />

could not answer this question.<br />

Multipo<strong>in</strong>t measurements by <strong>the</strong> four Cluster spacecraft<br />

can answer.


Cluster <strong>detection</strong> <strong>of</strong> rolled-up KH <strong>vortices</strong><br />

Cluster<br />

Dusk MP<br />

South <strong>of</strong><br />

equator<br />

・ Northward IMF<br />

・ Quasi-periodic<br />

plasma & magnetic<br />

field perturbations<br />

with a period <strong>of</strong> 2-4<br />

m<strong>in</strong>.


M’sphere<br />

Sheath<br />

Spacecraft separation ~ 2000 km<br />

Key features:<br />

□ Higher density on <strong>the</strong><br />

most magnetospheric side<br />

(at C1)<br />

□ Vortical flow pattern


Evidence <strong>of</strong> plasma transport across <strong>the</strong> magnetopause<br />

Low energy ions <strong>of</strong><br />

sheath orig<strong>in</strong><br />

detected throughout<br />

Ion distribution<br />

<strong>in</strong> BL<br />

Ion distribution <strong>in</strong> sheath<br />

The observation is consistent with transport via KHI!


1-SC <strong>detection</strong> <strong>of</strong> “Rolled-up” <strong>vortices</strong> possible<br />

Difference between Rolled-up & Not rolled-up <strong>vortices</strong><br />

9<br />

8<br />

0 9D 15D<br />

Vx<br />

N<br />

Sheath Vx<br />

M’sphere Sheath M’sphere Sheath<br />

Flow speed higher than <strong>in</strong> sheath! Low density


Vx vs N seen <strong>in</strong> simulated data<br />

Vx<br />

High<br />

speed<br />

Low<br />

density<br />

N<br />

Sheath Vx


Comparison with <strong>vortices</strong> observation<br />

MHD simulation<br />

Cluster observations <strong>of</strong><br />

rolled-up <strong>vortices</strong><br />

Vx<br />

Low-density & High-speed flows<br />

are found <strong>in</strong> real data as well!<br />

N<br />

Applicable to<br />

s<strong>in</strong>gle-spacecraft<br />

observations!


Application to Geotail data<br />

Flank MP event on 1995-03-24<br />

(Fujimoto et al., 1998, Fairfield et<br />

al., 2000)<br />

(X, Y, Z)~(-14, 20, 4) Re (GSM)<br />

Geotail E-T<br />

spectrogram<br />

Signature <strong>of</strong> “Rolled-up”<br />

<strong>vortices</strong> found <strong>in</strong> 1-SC data


Signatures <strong>of</strong> KHI at <strong>the</strong> flank MP<br />

Signatures seen ONLY WHEN a KH vortex is “Rolled-up”:<br />

□ Sheath plasma penetrat<strong>in</strong>g <strong>in</strong>to <strong>the</strong> magnetosphere <strong>and</strong><br />

sitt<strong>in</strong>g on <strong>the</strong> magnetospheric side <strong>of</strong> <strong>the</strong> low-density plasma.<br />

□ Low-density plasma flow<strong>in</strong>g with an anti-sunward velocity<br />

higher than <strong>the</strong> magnetosheath plasma.<br />

O<strong>the</strong>r signatures seen also when a KH vortex is not rolled-up:<br />

□ Quasi-periodic plasma/field perturbations with an period <strong>of</strong> a<br />

few m<strong>in</strong>utes.<br />

□ Vortical plasma flow pattern.<br />

□ Magnetic field perturbation pattern under 3D KHI effect.<br />

Yellow: detectable only by multi-SC measurements<br />

White: detectable even with s<strong>in</strong>gle-SC measurements


When <strong>the</strong> SC separation <strong>of</strong> Cluster is small,<br />

・ Detection <strong>of</strong> a parent rolled-up vortex can be made by ei<strong>the</strong>r<br />

<strong>of</strong> <strong>the</strong> four spacecraft, by identify<strong>in</strong>g Low-density & High-speed<br />

flows.<br />

Then,<br />

・ Small-scale waves excited, or th<strong>in</strong> current sheet structures<br />

formed, <strong>in</strong> <strong>the</strong> vortex can be studied <strong>in</strong> detail with <strong>the</strong> help <strong>of</strong><br />

multi-po<strong>in</strong>t measurements.<br />

Connections between<br />

macro-scale KH<br />

<strong>vortices</strong> <strong>and</strong> microscale<br />

phenomena/structures<br />

can be studied.


Summary<br />

□ Rolled-up KH <strong>vortices</strong> were detected from Cluster multi-po<strong>in</strong>t<br />

observations at <strong>the</strong> flank magnetopause dur<strong>in</strong>g northward IMF.<br />

Fur<strong>the</strong>rmore, evidence for plasma transport was found <strong>in</strong> <strong>the</strong><br />

rolled-up <strong>vortices</strong>.<br />

These suggest that <strong>the</strong> KHI plays a significant role <strong>in</strong> <strong>the</strong><br />

plasma transport (formation <strong>of</strong> <strong>the</strong> flank boundary layer)<br />

under northward IMF.<br />

□ “Rolled-up” <strong>vortices</strong> can be detected even with s<strong>in</strong>glespacecraft<br />

measurements <strong>of</strong> <strong>the</strong> bulk plasma parameters.<br />

・ Coupl<strong>in</strong>g between large-scale <strong>vortices</strong> <strong>and</strong> small-scale<br />

phenomena/structures can now be studied with Cluster data.<br />

・ Statistical survey <strong>of</strong> KH <strong>vortices</strong> is also possible with<br />

conventional 1-SC data.


How can <strong>the</strong> secondary velocity shear be<br />

produced<br />

v<br />

1<br />

2<br />

1<br />

M<br />

1v<br />

r<br />

⎧<br />

⎪v1<br />

=<br />

⎪<br />

⎨<br />

⎪<br />

⎪<br />

v2<br />

=<br />

⎩<br />

∴<br />

− v<br />

2<br />

M<br />

2v2<br />

= = ≅<br />

a r<br />

M<br />

M<br />

2<br />

1<br />

a r<br />

2<br />

r<br />

= a r<br />

a<br />

1<br />

M<br />

1<br />

leads to,<br />

1<br />

−<br />

M<br />

2<br />

r<br />

=<br />

M1<br />

a r<br />

M<br />

1<br />

v2<br />

M2<br />

v1<br />

1−<br />

M<br />

M<br />

1<br />

2<br />

⎛ ∆ VSEC<br />

∝ rSEC<br />

⎜1<br />

− 1<br />

⎝ N<br />

RATIO<br />

r SEC = curvature radius <strong>of</strong> <strong>the</strong><br />

2nd velocity shear layer<br />

⎞<br />

⎟<br />

⎠<br />

At a certa<strong>in</strong> radial distance from <strong>the</strong> vortex center, <strong>the</strong> centrifugal<br />

force exert<strong>in</strong>g on <strong>the</strong> lighter <strong>and</strong> heavier fluids must be equal.<br />

↓<br />

Then, <strong>the</strong> shear velocity depends on <strong>the</strong> mass ratio <strong>and</strong> on <strong>the</strong><br />

curvature radius <strong>of</strong> <strong>the</strong> shear layer.


Hall (two-fluid) MHD equations <strong>in</strong>clud<strong>in</strong>g electron <strong>in</strong>ertia effects<br />

∂n<br />

<br />

+ ∇ ⋅( nV i<br />

) = 0<br />

∂t<br />

Cont<strong>in</strong>uity equation for mass<br />

<br />

dV <br />

i<br />

n = − ∇P<br />

+ J × B<br />

dt<br />

Momentum equation<br />

d<br />

dt<br />

∂<br />

∂t<br />

⎛<br />

⎜<br />

⎝<br />

P<br />

γ<br />

n<br />

⎞<br />

⎟<br />

⎠<br />

⎛ 1<br />

⎜1−<br />

⎝ M<br />

= 0<br />

Equation <strong>of</strong> state<br />

⎞ ⎡ ⎛ 1<br />

∆⎟<br />

B = ∇ × ⎢Ve<br />

× ⎜1−<br />

⎠ ⎣ ⎝ M<br />

⎞ ⎤<br />

∆⎟<br />

B⎥<br />

⎠ ⎦<br />

λ<br />

e<br />

= 1<br />

M =<br />

Induction equation <strong>in</strong>clud<strong>in</strong>g f<strong>in</strong>ite electron <strong>in</strong>ertia<br />

<br />

Ve<br />

= Vi<br />

− J n<br />

<br />

J = ∇ × B<br />

m<br />

e<br />

m<br />

i


Simulation sett<strong>in</strong>gs for 3-D<br />

KHI<br />

z<br />

2D<br />

V0(y)<br />

B<br />

2H<br />

x<br />

M’sphere<br />

A C<br />

B<br />

Magnetosheath<br />

B0<br />

y<br />

Condition for <strong>the</strong> growth <strong>of</strong><br />

KHI (Miura & Pritchett, 1982)<br />

・ V 0 ⊥B 0 case<br />

M<br />

f<br />

・ V 0 || B 0 case<br />

2 2<br />

= V0 Cs<br />

+ VA<br />

<<br />

2<br />

M A<br />

M s<br />

> 2<br />

< 2


Measurements for an earlier <strong>in</strong>terval <strong>of</strong> <strong>the</strong> day<br />

Walen plot<br />

D-shaped ion<br />

distribution<br />

The result suggests that<br />

reconnection occurred near Cluster.<br />

This reconnection might have been<br />

associated with <strong>the</strong> KHI growth.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!