25.12.2014 Views

Stimulation of the cyanide-resistant alternative respiratory pathway ...

Stimulation of the cyanide-resistant alternative respiratory pathway ...

Stimulation of the cyanide-resistant alternative respiratory pathway ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

216<br />

<strong>Stimulation</strong> <strong>of</strong> <strong>the</strong> <strong>cyanide</strong>-<strong>resistant</strong> <strong>alternative</strong><br />

<strong>respiratory</strong> <strong>pathway</strong> by oxygen in Acremonium<br />

chrysogenum correlates with <strong>the</strong> size <strong>of</strong> <strong>the</strong><br />

intracellular peroxide pool<br />

Levente Karaffa, Erzsébet Sándor, Erzsébet Fekete, József Kozma,<br />

Attila Szentirmai, and István Pócsi<br />

Abstract: The relationship between oxygen input and activity <strong>of</strong> <strong>the</strong> <strong>cyanide</strong>-<strong>resistant</strong> <strong>alternative</strong> respiration <strong>of</strong> submerged<br />

cultures <strong>of</strong> Acremonium crysogenum was investigated. The volumetric oxygen transfer coefficient <strong>of</strong> <strong>the</strong> respective<br />

cultures correlated positively within almost two ranges <strong>of</strong> magnitude with <strong>the</strong> size <strong>of</strong> <strong>the</strong> intracellular peroxide<br />

pool, which in turn, correlated with <strong>the</strong> activity <strong>of</strong> <strong>the</strong> <strong>cyanide</strong>-<strong>resistant</strong> <strong>alternative</strong> <strong>respiratory</strong> <strong>pathway</strong>. Increased aeration<br />

also stimulated <strong>the</strong> glucose uptake rate but had no effect on <strong>the</strong> total respiration rate or <strong>the</strong> growth rate. Addition<br />

<strong>of</strong> <strong>the</strong> lipid peroxyl radical scavenger DL-α-tocopherol to A. chrysogenum cultures decreased <strong>the</strong> rate <strong>of</strong> intracellular<br />

peroxide production as well as glucose uptake. An increase in <strong>the</strong> <strong>cyanide</strong>-<strong>resistant</strong> fraction <strong>of</strong> total respiration was observed,<br />

while growth and <strong>the</strong> total <strong>respiratory</strong> activity remained unchanged. We conclude that intracellular peroxides<br />

may stimulate <strong>the</strong> <strong>alternative</strong> respiration in A. chrysogenum.<br />

Key words: Acremonium chrysogenum, <strong>alternative</strong> respiration, oxygen, peroxide, Kla.<br />

Résumé : Nous avons étudié le lien qui existe entre la consommation d’oxygène et l’activité Karaffarespiratoire et al. auxiliaire résistante<br />

au cyanure de cultures submergées de Acremonium crysogenum. Le coefficient de transfert volumétrique de<br />

l’oxygène des cultures respectives fut corrélé positivement sur près de deux ordres de grandeur avec la taille de la réserve<br />

de peroxydes intracellulaires, qui à son tour était corrélé avec l’activité de la voie respiratoire auxiliaire résistante<br />

au cyanure. Une augmentation de l’aération a également stimulé le taux d’absorption de l’oxygène, mais n’a eu aucun<br />

effet sur la vitesse respiratoire ou le taux de croissance. L’ajout de DL--tocopherol, un agent neutralisant les radicaux<br />

lipidiques peroxydés, aux cultures de A. crysogenum a réduit le taux de production de peroxydes intracellulaires de<br />

même que l’absorption de glucose. Nous avons observé une augmentation de la fraction de la respiration totale qui<br />

était résistante au cyanure, alors que la croissance et l’activité respiratoire totale demeuraient inchangées. Nous concluons<br />

que les peroxydes intracellulaires pourraient stimuler la respiration auxiliaire chez A. crysogenum.<br />

Mots clés : Acremonium crysogenum, respiration auxiliaire, oxygène, peroxyde, Kla.<br />

[Traduit par la Rédaction] 220<br />

Introduction<br />

Mitochondria <strong>of</strong> many fungi possess a <strong>cyanide</strong>-<strong>resistant</strong> <strong>alternative</strong><br />

<strong>respiratory</strong> <strong>pathway</strong> containing a characteristic<br />

<strong>alternative</strong> oxidase, which bypasses <strong>the</strong> sites <strong>of</strong> energy conservation,<br />

leading to a decrease in <strong>the</strong> energy yield <strong>of</strong> cells<br />

(Sluse and Jarmuszkiewicz 1998). Fungal <strong>alternative</strong> oxidase<br />

Received 3 December 2002. Revision received 4 March 2003.<br />

Accepted 26 March 2003. Published on <strong>the</strong> NRC Research<br />

Press Web site at http://cjm.nrc.ca on 22 April 2003.<br />

L. Karaffa, 1 E. Sándor, E. Fekete, A. Szentirmai, and I.<br />

Pócsi. Department <strong>of</strong> Microbiology and Biotechnology,<br />

Faculty <strong>of</strong> Science, University <strong>of</strong> Debrecen, H-4010, P.O.<br />

Box 63, Debrecen, Hungary.<br />

J. Kozma. Chemical Works <strong>of</strong> Gedeon Richter Ltd., H-1103,<br />

Gyömri út 19–21, Budapest, Hungary.<br />

1 Corresponding author (e-mail: karaffal@tigris.klte.hu).<br />

activity is dependent on substrate availability (i.e.,<br />

ubiquinone concentration and its redox state in <strong>the</strong> membrane<br />

and O 2 concentration in <strong>the</strong> cell) and is regulated at<br />

<strong>the</strong> level <strong>of</strong> gene expression by post-translational modification<br />

and by allosteric activation (Umbach and Siedow 2000).<br />

The production <strong>of</strong> reactive oxygen species (ROS), such as<br />

O 2 – and H 2 O 2 , is an unavoidable consequence <strong>of</strong> aerobic metabolism.<br />

In fungal mycelia, as in o<strong>the</strong>r <strong>respiratory</strong> chains,<br />

oxidases <strong>of</strong> <strong>the</strong> mitochondrial electron transport chain are<br />

major sites <strong>of</strong> ROS production. Several studies to date have<br />

demonstrated <strong>the</strong> capacity <strong>of</strong> <strong>the</strong> <strong>alternative</strong> <strong>respiratory</strong> <strong>pathway</strong><br />

to prevent <strong>the</strong> production <strong>of</strong> ROS (Wagner 1995; Millar<br />

and Day 1996; Maxwell et al. 1999; Karaffa et al. 2001).<br />

We previously reported that <strong>the</strong> <strong>alternative</strong> <strong>respiratory</strong> activity<br />

<strong>of</strong> Acremonium chrysogenum is strongly dependent on<br />

<strong>the</strong> dissolved oxygen level (Kozma and Karaffa 1996a). We<br />

also showed that <strong>the</strong> activity <strong>of</strong> this <strong>pathway</strong> is responsive to<br />

changes in <strong>the</strong> intracellular peroxide (IP) levels (Karaffa et<br />

Can. J. Microbiol. 49: 216–220 (2003) doi: 10.1139/W03-029 © 2003 NRC Canada


Karaffa et al. 217<br />

al. 2001). In this study, we will demonstrate that <strong>the</strong> effect<br />

<strong>of</strong> oxygen on <strong>the</strong> <strong>cyanide</strong>-<strong>resistant</strong> <strong>alternative</strong> <strong>respiratory</strong><br />

<strong>pathway</strong> is mediated via changes in <strong>the</strong> size <strong>of</strong> <strong>the</strong> IP pool.<br />

Materials and methods<br />

Fungal strain and cultivation conditions<br />

Acremonium chrysogenum ATCC 46117 was grown at<br />

28°C in 500-mL Erlenmeyer flasks on a NBS orbital shaker<br />

(New Brunswick Scientific Co., Inc., Edison, N.J., U.S.A.)<br />

at 200 rpm (Karaffa et al. 1999). The complete growth medium<br />

was inoculated with a 10% (v/v) 3-day-old seed culture,<br />

as detailed earlier (Kozma and Karaffa 1996a).<br />

For replacement experiments, mycelia grown for 14 h in<br />

complete medium were harvested by filtration on a sintered<br />

glass funnel, washed with cold tap water, and <strong>the</strong>n transferred<br />

into a minimal medium (Karaffa et al. 1997) with<br />

glucose as <strong>the</strong> sole carbon source. DL-α-Tocopherol was supplied<br />

to <strong>the</strong> culture media 3 h after <strong>the</strong> transferring procedure,<br />

to yield a final concentration <strong>of</strong> 0.2 mM. Samples were taken<br />

after 4h<strong>of</strong>fur<strong>the</strong>r incubation — a period that was found to<br />

be sufficient to achieve maximal mycelial respiration, including<br />

<strong>the</strong> activity <strong>of</strong> <strong>the</strong> <strong>alternative</strong> <strong>respiratory</strong> <strong>pathway</strong>.<br />

The starting mycelial dry weight was approximately 4.0 g L –1<br />

in each replacement experiment.<br />

Creation <strong>of</strong> different oxygen input in shake flasks<br />

Although <strong>the</strong> technical means to modify <strong>the</strong> oxygen transfer<br />

rate in a series <strong>of</strong> 500-mL shake flasks are limited compared<br />

with what may be obtained within a fermenter, <strong>the</strong>re<br />

are still a few methods that could result in a gradient <strong>of</strong> oxygen<br />

input. For example, varying <strong>the</strong> ratio <strong>of</strong> flask volume to<br />

medium volume can change <strong>the</strong> volumetric oxygen transfer<br />

coefficient (Kla). High volumes within flasks lower <strong>the</strong> specific<br />

oxygen transfer rate. In addition, by putting a porous<br />

cotton cap onto <strong>the</strong> flask instead <strong>of</strong> a metal cap, aeration and<br />

Kla may be increased. Finally, <strong>the</strong> presence <strong>of</strong> baffles that<br />

serve to disrupt <strong>the</strong> vortex pattern result in <strong>the</strong> production <strong>of</strong><br />

a larger liquid–air interfacial surface. The resulting turbulent<br />

flow pattern is also beneficial with respect to increasing <strong>the</strong><br />

oxygen transfer rate. The aeration-related properties <strong>of</strong> <strong>the</strong><br />

shake-flask cultures used in this study are displayed at Table<br />

1.<br />

Analytical methods<br />

Kla values <strong>of</strong> <strong>the</strong> shake flasks (characterized in Table 1)<br />

were determined by <strong>the</strong> sulphite-oxidation method (Cooper<br />

et al. 1944).<br />

Fungal growth was monitored by recording dry cell<br />

weights (DCW; Sándor et al. 2001). Specific growth rates<br />

were calculated from <strong>the</strong> increased DCW over <strong>the</strong> duration<br />

<strong>of</strong> <strong>the</strong> experiment (Pirt 1975).<br />

Glucose consumption was monitored by HPLC on a H +<br />

exchange column (Bio-Rad Aminex HPX-H + , Hercules, Calif.),<br />

as described earlier (Sándor et al. 2001).<br />

The measurement <strong>of</strong> <strong>the</strong> mycelial respiration rates, including<br />

that <strong>of</strong> <strong>the</strong> <strong>alternative</strong> <strong>respiratory</strong> <strong>pathway</strong>, was performed<br />

in an oxygraphic cell (Bahr and Bonner 1973). A 1-<br />

mM concentration <strong>of</strong> KCN was used to inhibit cytochrome<br />

oxidase <strong>of</strong> <strong>the</strong> cytochrome-dependent <strong>pathway</strong>.<br />

Table 1. Physical properties related to aeration <strong>of</strong> <strong>the</strong> shake-flask<br />

cultures used in this study.<br />

Culture<br />

No.<br />

I<br />

II<br />

III<br />

IV<br />

V<br />

IP levels were calculated by <strong>the</strong> spectr<strong>of</strong>luorimetric determination<br />

<strong>of</strong> 2′,7′-dichlor<strong>of</strong>luorescein (2′,7′-DCF) production<br />

from 2′,7′-dichlor<strong>of</strong>luorescin diacetate, as described earlier<br />

(Royall and Ischiropoulos 1993; Karaffa et al. 2001). Specific<br />

IP values are related to milligrams <strong>of</strong> protein, which<br />

was determined by means <strong>of</strong> a modified Lowry method (Peterson<br />

1983) using bovine serum albumin for calibration.<br />

Reproducibility<br />

All <strong>the</strong> data presented here are means <strong>of</strong> at least three independent<br />

experiments. The variations among experiments<br />

were estimated by standard deviations (SDs) for each procedure.<br />

The SD values were always less than 10% <strong>of</strong> <strong>the</strong><br />

means. The significance <strong>of</strong> changes as a function <strong>of</strong> Kla values<br />

was assessed using <strong>the</strong> Student’s t test, with p values<br />

cited in <strong>the</strong> text.<br />

Chemicals<br />

All chemicals were <strong>of</strong> analytical grade, and were purchased<br />

from Sigma-Aldrich Kft., Budapest, Hungary, with<br />

<strong>the</strong> exceptions <strong>of</strong> 2′,7′-dichlor<strong>of</strong>luorescin diacetate and 2′,7′-<br />

dichlor<strong>of</strong>luorescein, which were purchased from Eastport<br />

Kft., Budapest, Hungary.<br />

Results<br />

Aeration properties <strong>of</strong> <strong>the</strong><br />

500-mL shake-flask<br />

cultures<br />

30 mL <strong>of</strong> aliquots,<br />

baffled, cotton cap<br />

80 mL <strong>of</strong> aliquots,<br />

baffled, cotton cap<br />

80 mL <strong>of</strong> aliquots,<br />

unbaffled, cotton cap<br />

80 mL <strong>of</strong> aliquots,<br />

unbaffled, metal cap<br />

150 mL <strong>of</strong> aliquots,<br />

unbaffled, metal cap<br />

Volumetric oxygen<br />

transfer coefficient (Kla)<br />

value (min –1 )<br />

11.5<br />

Growth and glucose consumption<br />

Washed and transferred mycelia <strong>of</strong> A. chrysogenum<br />

quickly adapted to <strong>the</strong> new environment as indicated by <strong>the</strong><br />

glucose uptake and <strong>the</strong> subsequent biomass production rates.<br />

The growth rate <strong>of</strong> cultures with different Kla values was not<br />

significantly different (p < 0.1) during <strong>the</strong> examined period<br />

(Fig. 1A). On <strong>the</strong> contrary, glucose consumption was progressively<br />

more rapid (p < 0.1) with increasing oxygen<br />

transfer rate (Fig. 1A).<br />

Respiratory activity<br />

Despite <strong>the</strong> major differences in <strong>the</strong> respective oxygen<br />

transfer rates <strong>of</strong> cultures, <strong>the</strong> total <strong>respiratory</strong> activity<br />

seemed relatively unaffected (p < 1), very slightly decreasing<br />

with decreasing Kla values. The difference in total oxygen<br />

uptake among cultures with <strong>the</strong> highest and <strong>the</strong> lowest<br />

oxygen transfer rates was not more than 8% (Fig. 1B).<br />

7.8<br />

3.2<br />

1.0<br />

0.42<br />

© 2003 NRC Canada


218 Can. J. Microbiol. Vol. 49, 2003<br />

Fig. 1. Comparison <strong>of</strong> Acremonium chrysogenum shake-flask cultures<br />

with no DL-α-tocopherol supplementation. (A) Growth rate<br />

() and glucose uptake rate (). (B) Total <strong>respiratory</strong> activity<br />

() and <strong>cyanide</strong>-<strong>resistant</strong> fraction <strong>of</strong> <strong>the</strong> total respiration ().<br />

(C) Intracellular peroxide production (). DCW, dry cell weight;<br />

2′,7′-DCF, 2′,7′-dichlor<strong>of</strong>luorescein.<br />

Fig. 2. Comparison <strong>of</strong> Acremonium chrysogenum shake-flask cultures<br />

with 0.2 mM DL-α-tocopherol supplementation in all flasks.<br />

(A) Growth rate () and glucose uptake rate (). (B) Total <strong>respiratory</strong><br />

activity () and <strong>cyanide</strong>-<strong>resistant</strong> fraction <strong>of</strong> <strong>the</strong> total<br />

respiration (). (C) Intracellular peroxide production (). DCW,<br />

dry cell weight; 2′,7′-DCF, 2′,7′-dichlor<strong>of</strong>luorescein.<br />

In contrast, <strong>the</strong> <strong>cyanide</strong>-<strong>resistant</strong> fraction <strong>of</strong> <strong>the</strong> respiration<br />

significantly (p < 0.1) increased by increasing <strong>the</strong> oxygen<br />

transfer rate (Fig. 1B). At Kla = 11.5 min –1 , <strong>the</strong> <strong>cyanide</strong><strong>resistant</strong><br />

respiration comprised almost 40% <strong>of</strong> <strong>the</strong> total oxygen<br />

consumption as opposed to a mere 16% at Kla =<br />

0.42 min –1 .<br />

Intracellular peroxide levels<br />

Figure 1C shows that <strong>the</strong> IP levels <strong>of</strong> cultures were increasing<br />

with increasing Kla (p < 1). At <strong>the</strong> two most extreme<br />

values, IP values in mycelia growing in a shake flask<br />

were about 50% higher at Kla = 11.5 min –1 than at Kla =<br />

0.42 min –1 .<br />

Effects <strong>of</strong> DL-α-tocopherol<br />

To provide a correlation between <strong>the</strong> intensity <strong>of</strong> <strong>the</strong> <strong>alternative</strong><br />

respiration and <strong>the</strong> IP levels, <strong>the</strong> free radical scavenger<br />

DL-α-tocopherol was employed. Comparison <strong>of</strong> Figs. 1A<br />

and 2A shows that <strong>the</strong> addition <strong>of</strong> DL-α-tocopherol in <strong>the</strong><br />

medium did not influence growth rate <strong>of</strong> any <strong>of</strong> <strong>the</strong> examined<br />

cultures (p < 0.1), but it decreased <strong>the</strong> glucose uptake<br />

rate by up to 18–25%. DL-α-Tocopherol also affected both<br />

<strong>the</strong> <strong>alternative</strong> respiration (compare Figs. 1B and 2B) and<br />

<strong>the</strong> IP levels (compare Figs. 1C and 2C), irrespective <strong>of</strong> <strong>the</strong><br />

actual aeration <strong>of</strong> <strong>the</strong> culture. DL-α-Tocopherol effectively<br />

(p < 0.1) decreased <strong>the</strong> IP concentration generated by <strong>the</strong><br />

oxygen input and also decreased <strong>the</strong> activity <strong>of</strong> <strong>the</strong> <strong>alternative</strong><br />

<strong>respiratory</strong> <strong>pathway</strong>. When DL-α-tocopherol was added<br />

to <strong>the</strong> culture with <strong>the</strong> lowest Kla value, IP levels declined<br />

until <strong>the</strong>y went down below <strong>the</strong> lower limit <strong>of</strong> sensitivity <strong>of</strong><br />

<strong>the</strong> 2′,7′-DCF method. At <strong>the</strong> same time, <strong>cyanide</strong>-<strong>resistant</strong><br />

respiration also decreased until almost to its detection limit.<br />

All <strong>the</strong>se data indicate that manipulation <strong>of</strong> <strong>the</strong> IP concentration<br />

modulates <strong>the</strong> activity <strong>of</strong> <strong>the</strong> <strong>alternative</strong> <strong>respiratory</strong><br />

<strong>pathway</strong>. Noteworthily, <strong>the</strong> total respiration rate <strong>of</strong> <strong>the</strong> cultures<br />

was not affected (p < 0.1) by <strong>the</strong> presence <strong>of</strong> DL-αtocopherol<br />

(Fig. 2B).<br />

Discussion<br />

The present study implies that <strong>the</strong> requirement <strong>of</strong> oxygen<br />

for growth or <strong>respiratory</strong> activity is not particularly high in<br />

© 2003 NRC Canada


Karaffa et al. 219<br />

A. chrysogenum — in <strong>the</strong> range <strong>of</strong> <strong>the</strong> oxygen transfer rates<br />

studied (defined by <strong>the</strong> Kla value <strong>of</strong> <strong>the</strong> respective shake<br />

flasks), growth was not limited by <strong>the</strong> oxygen. Roughly<br />

similar specific growth rates were measured in each <strong>of</strong> <strong>the</strong><br />

cultures, including Culture No. I with Kla = 11.5 min –1 , corresponding<br />

to ca. 30% <strong>of</strong> saturation <strong>of</strong> dissolved oxygen<br />

(Kozma and Karaffa 1996b). A constant rate <strong>of</strong> biomass production<br />

was sustained by a practically unchanged total <strong>respiratory</strong><br />

activity, rendering all <strong>the</strong> five cultures apparently similar.<br />

However, several o<strong>the</strong>r parameters <strong>of</strong> <strong>the</strong> cultures were Kla<br />

dependent. Glucose consumption increased with increased<br />

aeration. This could well be explained by <strong>the</strong> enhanced activity<br />

<strong>of</strong> <strong>the</strong> nonphosphorylating <strong>alternative</strong> <strong>respiratory</strong> <strong>pathway</strong>,<br />

which is able to sink significant amounts <strong>of</strong> carbon without<br />

ATP production (Lambers 1982). The high oxygen requirement<br />

(ca. 30% <strong>of</strong> saturation) <strong>of</strong> <strong>the</strong> fungal <strong>alternative</strong> <strong>respiratory</strong><br />

<strong>pathway</strong> compared with <strong>the</strong> cytochrome-dependent route<br />

is well documented (Kubicek et al. 1980; Kozma and Karaffa<br />

1996a). As a consequence <strong>of</strong> <strong>the</strong> enhanced <strong>alternative</strong> <strong>respiratory</strong><br />

activity, more glucose had to be catabolized to restore <strong>the</strong><br />

necessary ATP yield.<br />

Glucose uptake data are in good agreement with those obtained<br />

by <strong>the</strong> addition <strong>of</strong> exogenous H 2 O 2 to A. chrysogenum<br />

cultures, <strong>the</strong>reby, stimulating <strong>the</strong> <strong>alternative</strong> <strong>respiratory</strong> route<br />

(Karaffa et al. 2001). None<strong>the</strong>less, biomass production <strong>of</strong><br />

<strong>the</strong> cultures was not steady in those experiments, but transiently<br />

decreased when H 2 O 2 concentration was above<br />

100 mM. An explanation for this contradiction might be that<br />

<strong>the</strong> presence <strong>of</strong> H 2 O 2 in such high concentrations increased<br />

<strong>the</strong> <strong>alternative</strong> <strong>respiratory</strong> activity beyond <strong>the</strong> level that<br />

could still be balanced by <strong>the</strong> cytochrome-dependent, ATPgenerating,<br />

and <strong>the</strong>refore, growth-supporting <strong>respiratory</strong> <strong>pathway</strong>.<br />

In this study, that limit was obviously not reached. Indeed,<br />

<strong>the</strong> highest level <strong>of</strong> <strong>the</strong> <strong>cyanide</strong>-<strong>resistant</strong> <strong>respiratory</strong><br />

activity achieved by <strong>the</strong> increased oxygen transfer rates was<br />

less than 40% <strong>of</strong> <strong>the</strong> total respiration, in contrast to <strong>the</strong> effect<br />

<strong>of</strong> 200 mM H 2 O 2 , which resulted in a <strong>cyanide</strong>-<strong>resistant</strong><br />

fraction comprising more than 70% <strong>of</strong> <strong>the</strong> total respiration<br />

(Karaffa et al. 2001).<br />

The IP level <strong>of</strong> mycelia proved to be yet ano<strong>the</strong>r responsive<br />

parameter to aeration, even if its increase caused by <strong>the</strong><br />

higher oxygen input could be counteracted by <strong>the</strong> presence<br />

<strong>of</strong> <strong>the</strong> lipid peroxyl radical scavenger DL-α-tocopherol and<br />

vice versa (Kanno et al. 1996). As obvious as this relationship<br />

may seem, no such correlation has ever been previously<br />

reported. In turn, <strong>the</strong> activity <strong>of</strong> <strong>the</strong> <strong>alternative</strong> <strong>respiratory</strong><br />

<strong>pathway</strong> correlated with <strong>the</strong> IP concentrations under all cultivation<br />

conditions.<br />

Since a lipid peroxyl radical scavenger could effectively<br />

hinder <strong>the</strong> IP production, an overwhelming majority <strong>of</strong> <strong>the</strong><br />

molecules measured by <strong>the</strong> 2′,7′-DCF method should be <strong>of</strong><br />

lipophylic character. Since <strong>the</strong> primarily produced ROS are<br />

water-soluble, this can be only explained by a secondary,<br />

tertiary, etc., production <strong>of</strong> peroxides due to <strong>the</strong> propagation<br />

<strong>of</strong> lipid peroxidation by peroxyl radicals (Halliwell and<br />

Gutteridge 1998; Karaffa et al. 2001).<br />

It has widely been suggested by several authors that <strong>the</strong><br />

noncoupled <strong>alternative</strong> <strong>respiratory</strong> <strong>pathway</strong> contributes to<br />

<strong>the</strong> prevention <strong>of</strong> <strong>the</strong> generation <strong>of</strong> ROS (Wagner 1995;<br />

Popov et al. 1997; Maxwell et al. 1999; Umbach and Siedow<br />

2000) and that it can be considered as an integral part <strong>of</strong> <strong>the</strong><br />

antioxidant defense system in eucaryotes, including fungi.<br />

ROS are formed when <strong>the</strong> cytochrome path is impaired and<br />

(or) <strong>the</strong> intracellular oxygen is in excess. In case <strong>the</strong> available<br />

capacity <strong>of</strong> <strong>the</strong> <strong>alternative</strong> <strong>respiratory</strong> <strong>pathway</strong> is not<br />

sufficient, ROS induce <strong>the</strong> expression <strong>of</strong> <strong>the</strong> <strong>alternative</strong><br />

oxidase protein, which is similar to <strong>the</strong> H 2 O 2 -mediated expression<br />

<strong>of</strong> <strong>the</strong> plant-pathogenesis-related proteins (Chen et<br />

al. 1993).<br />

In summary, our data are in compliance with <strong>the</strong> current<br />

understanding <strong>of</strong> <strong>the</strong> nature <strong>of</strong> <strong>the</strong> <strong>cyanide</strong>-<strong>resistant</strong> <strong>alternative</strong><br />

oxidase. Moreover, a well-known feature <strong>of</strong> this route,<br />

e.g., its high oxygen requirement, was also integrated into<br />

<strong>the</strong> most accepted model <strong>of</strong> its regulation.<br />

Acknowledgements<br />

We thank Pr<strong>of</strong>essor Christian P. Kubicek (Section Microbial<br />

Biochemistry and Gene Technology, Institute <strong>of</strong> Chemical<br />

Engineering, TU Wien, Austria) for critically reading <strong>the</strong><br />

manuscript. The project was aided by grants from <strong>the</strong> Hungarian<br />

Scientific Research Fund (OTKA F 031985 and F<br />

042602) and from <strong>the</strong> Fund for Research and Development<br />

in Higher Education (FKFP 0009/2001). Erzsébet Sándor is<br />

a recipient <strong>of</strong> an OTKA Postdoctoral Fellowship (D 37975).<br />

References<br />

Bahr, J.T., and Bonner, W.D., Jr. 1973. Cyanide-insensitive respiration<br />

II. Control <strong>of</strong> <strong>the</strong> alternate <strong>pathway</strong>. J. Biol. Chem. 248:<br />

3446–3450.<br />

Chen, Z., Silva, H., and Klessig, D.F. 1993. Active oxygen species<br />

in <strong>the</strong> induction <strong>of</strong> plant systemic acquired resistance by salicylic<br />

acid. Science (Washington, D.C.), 262: 1883–1886.<br />

Cooper, C.M., Fenström, G.A., and Miller, S.A. 1944. Performance<br />

<strong>of</strong> agitated gas–liquid contractors. Ind. Eng. Chem. 36: 504–<br />

509.<br />

Halliwell, B., and Gutteridge, J.M.C. 1998. Free radicals in biology<br />

and medicine. 3rd ed. Oxford Science Publications, Oxford,<br />

U.K.<br />

Kanno, T., Utsumi, T., Takehara, Y., Ide, A., Akiyama, J., Yoshioka,<br />

T., Horton, A.A., and Utsumi, K. 1996. Inhibition <strong>of</strong> neutrophilsuperoxide<br />

generation by α-tocopherol and coenzyme Q. Free<br />

Radical Res. 24: 281–289.<br />

Karaffa, L., Sándor, E., Kozma, J., and Szentirmai, A. 1997.<br />

Methionine enhances sugar consumption, fragmentation, vacuolation<br />

and cephalosporin C production in Acremonium chrysogenum.<br />

Process Biochem. 32: 495–499.<br />

Karaffa, L., Sándor, E., Kozma, J., Kubicek, C.P., and Szentirmai,<br />

A. 1999. The role <strong>of</strong> <strong>the</strong> <strong>alternative</strong> <strong>respiratory</strong> <strong>pathway</strong> in <strong>the</strong><br />

stimulation <strong>of</strong> cephalosporin C formation by soybean oil in<br />

Acremonium chrysogenum. Appl. Microbiol. Biotechnol. 51:<br />

633–638.<br />

Karaffa, L., Váczy, K., Sándor, E., Biró, S., Szentirmai, A., and<br />

Pócsi, I. 2001. Cyanide-<strong>resistant</strong> <strong>alternative</strong> respiration is strictly<br />

correlated to intracellular peroxide levels in Acremonium<br />

chrysogenum. Free Radical Res. 34: 405–416.<br />

Kozma, J., and Karaffa, L. 1996a. Effect <strong>of</strong> oxygen on <strong>the</strong> <strong>respiratory</strong><br />

system and cephalosporin C production in Acremonium<br />

chrysogenum. J. Biotechnol. 48: 59–66.<br />

Kozma, J., and Karaffa, L. 1996b. Estimation <strong>of</strong> dissolved oxygen<br />

in shake-flask. Hung. J. Ind. Chem. 24: 225–227.<br />

Kubicek, C.P., Zehentgruber, O., El-Kalak, H., and Röhr, M. 1980.<br />

Regulation <strong>of</strong> citric acid production by oxygen: effects <strong>of</strong> dis-<br />

© 2003 NRC Canada


220 Can. J. Microbiol. Vol. 49, 2003<br />

solved oxygen tension on adenylate levels and respiration in<br />

Aspergillus niger. Eur. J. Appl. Microbiol. Biotechnol. 9: 101–<br />

116.<br />

Lambers, H. 1982. Cyanide-<strong>resistant</strong> respiration: a non-phosphorylating<br />

electron transport <strong>pathway</strong> acting as an energy overflow. Physiol.<br />

Plant. 55: 478–485.<br />

Maxwell, D.P., Wang, Y., and McIntosh, L. 1999. The <strong>alternative</strong><br />

oxidase lowers mitochondrial reactive oxygen production in<br />

plant cells. Proc. Natl. Acad. Sci. U.S.A. 96: 8271–8276.<br />

Millar, A.H., and Day, D.A. 1996. Nitric oxide inhibits <strong>the</strong><br />

cytochrome oxidase but not <strong>the</strong> <strong>alternative</strong> oxidase <strong>of</strong> plant mitochondria.<br />

FEBS Lett. 398: 155–158.<br />

Peterson, G.L. 1983. Determination <strong>of</strong> total protein. Methods<br />

Enzymol. 91: 86–105.<br />

Pirt, S.J. 1975. Principles <strong>of</strong> microbe and cell cultivation.<br />

Blackwell Scientific Publications, Oxford, U.K. pp. 156–170.<br />

Popov, V.N., Simonian, R.A., Skulachev, V.P., and Starkov, A.A.<br />

1997. Inhibition <strong>of</strong> <strong>the</strong> <strong>alternative</strong> oxidase stimulates H 2 O 2 production<br />

in plant mitochondria. FEBS Lett. 415: 87–90.<br />

Royall, J.A., and Ischiropoulos, H. 1993. Evaluation <strong>of</strong> 2,7-<br />

dichlor<strong>of</strong>luorescin and dihydrorhodamine 123 as fluorescent<br />

probes for intracellular H 2 O 2 in cultured endo<strong>the</strong>lial cells. Arch.<br />

Biochem. Biophys. 302: 348–355.<br />

Sándor, E., Szentirmai, A., Paul, G.C., Thomas, C.R., Pócsi, I., and<br />

Karaffa, L. 2001. Analysis <strong>of</strong> <strong>the</strong> relationship between growth,<br />

cephalosporin C production and fragmentation in Acremonium<br />

chrysogenum. Can. J. Microbiol. 47: 801–806.<br />

Sluse, F.E., and Jarmuszkiewicz, W. 1998. Alternative oxidase in<br />

<strong>the</strong> branched mitochondrial <strong>respiratory</strong> network: an overview on<br />

structure, function, regulation and role. Braz. J. Med. Biol. Res.<br />

31: 733–747.<br />

Umbach, A.L., and Siedow, J.N. 2000. The <strong>cyanide</strong>-<strong>resistant</strong> <strong>alternative</strong><br />

oxidase from <strong>the</strong> fungi Pichia stipitis and Neurospora<br />

crassa are monomeric and lack regulatory features <strong>of</strong> <strong>the</strong> plant<br />

enzyme. Arch. Biochem. Biophys. 378: 234–245.<br />

Wagner, A. 1995. A role for active oxygen species as second messengers<br />

in <strong>the</strong> induction <strong>of</strong> <strong>alternative</strong> oxidase gene expression<br />

in Petunia hybrida cells. FEBS Lett. 368: 339–342.<br />

© 2003 NRC Canada

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!