25.12.2014 Views

Control Engineering with a Transient Model of a Fuel Cell Coolant ...

Control Engineering with a Transient Model of a Fuel Cell Coolant ...

Control Engineering with a Transient Model of a Fuel Cell Coolant ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Control</strong> <strong>Engineering</strong><br />

<strong>with</strong> a <strong>Transient</strong> <strong>Model</strong> <strong>of</strong> a <strong>Fuel</strong> <strong>Cell</strong> <strong>Coolant</strong> Loop in GT-Suite<br />

R. Höß (<strong>Fuel</strong> <strong>Cell</strong> Cooling System, Daimler AG)<br />

R. Höß (<strong>Fuel</strong> <strong>Cell</strong> Cooling System, Daimler AG) | GT-Conference | 22.10.2012<br />

1


<strong>Control</strong> <strong>Engineering</strong><br />

<strong>with</strong> a <strong>Transient</strong> <strong>Model</strong> <strong>of</strong> a <strong>Fuel</strong> <strong>Cell</strong> <strong>Coolant</strong> Loop in GT-Suite<br />

Agenda<br />

1. Context - <strong>Fuel</strong> <strong>Cell</strong> Car-Development at Daimler<br />

2. Introduction - Cooling System for <strong>Fuel</strong> <strong>Cell</strong> Cars<br />

3. <strong>Model</strong>ling<br />

4. <strong>Model</strong> Verification<br />

5. 3 Concepts <strong>of</strong> a Main Fan <strong>Control</strong>ler<br />

6. Simulation and Results<br />

7. Conclusion and Achivements<br />

R. Höß (<strong>Fuel</strong> <strong>Cell</strong> Cooling System, Daimler AG) | GT-Conference | 22.10.2012 2


Context (1)<br />

<strong>Fuel</strong> <strong>Cell</strong> Car Development at Daimler in Nabern<br />

<strong>Fuel</strong> <strong>Cell</strong> Powertrain Development<br />

Kirchheim u.T. (Nabern)<br />

<strong>Fuel</strong> <strong>Cell</strong> System Development<br />

Kirchheim u.T. (Nabern)<br />

<strong>Fuel</strong> <strong>Cell</strong> Stack Development<br />

Vancouver, Canada<br />

R. Höß (<strong>Fuel</strong> <strong>Cell</strong> Cooling System, Daimler AG) | GT-Conference | 22.10.2012 3


Context (2)<br />

The Current Generation <strong>of</strong> <strong>Fuel</strong> <strong>Cell</strong> Vehicle<br />

Technical Data<br />

Vehicle Mercedes-Benz B-Class<br />

<strong>Fuel</strong> <strong>Cell</strong><br />

System<br />

Engine<br />

PEM, 90 kW (122 hp)<br />

Output (Cont./ Peak) 70kW / 100kW (136 hp)<br />

Max. Torque: 290 Nm<br />

<strong>Fuel</strong> Compressed hydrogen (70 MPa)<br />

Range 380 km (NEDC)<br />

Top Speed 170 km/h<br />

Li-Ion Battery<br />

Output (Cont./ Peak): 24 kW / 30 kW (40 hp)<br />

Capacity: 6.8 Ah, 1.4 kWh<br />

• Freeze Start Capability<br />

• Emissions-free (CO 2 )<br />

• Short refueling time and high range<br />

<strong>with</strong> 70 MPa hydrogen storage<br />

• Silent operation<br />

R. Höß (<strong>Fuel</strong> <strong>Cell</strong> Cooling System, Daimler AG) | GT-Conference | 22.10.2012 4


Context (3)<br />

B-Class F-CELL World Drive 2011<br />

• 125 days<br />

• 14 countries<br />

• approx 19000 miles<br />

• Route defined through<br />

Scouting<br />

• Convoy <strong>with</strong> 24 vehicles<br />

• over 50 people<br />

• 2 fueling Stops per day<br />

• 174/155 miles until fueling<br />

stop<br />

• First world tour <strong>with</strong> fuel cell electric vehicles<br />

• Demonstration <strong>of</strong> the technical maturity and performance <strong>of</strong> fuel cell technology<br />

• Demonstration <strong>of</strong> a daily use <strong>of</strong> the fuel cell technology in different climate zones<br />

• Appeal to all involved partners to push the development <strong>of</strong> H 2 -Infrastructure<br />

For future fuel cell vehicle generations, further drive system cost reduction is intended<br />

e. g. by simplification <strong>of</strong> the fuel cell system architecture<br />

R. Höß (<strong>Fuel</strong> <strong>Cell</strong> Cooling System, Daimler AG) | GT-Conference | 22.10.2012 5


Introduction<br />

Cost Reduction by Developing a New Main Fan <strong>Control</strong> Strategy Using GT-Suite<br />

Challenges<br />

▸ For a stable water management and efficient operation <strong>of</strong> the fuel cell stack, the coolant set temperature<br />

and coolant massflow on the fuel cell has to be controlled precisely.<br />

▸ The <strong>Control</strong>ler for the thermostatic control valve and the controller for the main-radiator fan use the same<br />

set point: FC-Stack coolant inlet temperature<br />

R. Höß (<strong>Fuel</strong> <strong>Cell</strong> Cooling System, Daimler AG) | GT-Conference | 22.10.2012 6


<strong>Model</strong>ling (1)<br />

Basic <strong>Model</strong> <strong>of</strong> the <strong>Coolant</strong> Hydraulics and Radiators Air Path<br />

High Temperature <strong>Coolant</strong> Loop<br />

Low Temperature <strong>Coolant</strong> Loop<br />

▸ Starting Point was a basic model <strong>of</strong> the coolant loops and air-paths used for hydraulic balancing and cooling performance<br />

evaluations.<br />

R. Höß (<strong>Fuel</strong> <strong>Cell</strong> Cooling System, Daimler AG) | GT-Conference | 22.10.2012 7


<strong>Model</strong>ling (2)<br />

Extension Step 1: <strong>Control</strong>ler Functions <strong>of</strong> the coolant loops and transient verification<br />

Temp. <strong>Control</strong> Valve<br />

(Switch Characteristics)<br />

Main Fan<br />

(Speed)<br />

Wheelhouse Fan<br />

(Speed)<br />

HT-<strong>Coolant</strong> Pump (Speed)<br />

LT-<strong>Coolant</strong> Pump (Speed)<br />

Off Valves<br />

(Speed)<br />

R. Höß (<strong>Fuel</strong> <strong>Cell</strong> Cooling System, Daimler AG) | GT-Conference | 22.10.2012 8


<strong>Model</strong>ling (3)<br />

Extension Step 2: <strong>Fuel</strong> <strong>Cell</strong> System, Powertrain & Vehicle Environment<br />

Cooling System<br />

Vehicle &<br />

Transmission<br />

Hybridisation Strategy &<br />

Battery<br />

<strong>Fuel</strong> <strong>Cell</strong> System<br />

Cooling <strong>Control</strong> Unit<br />

▸ By adding a simplified, map-based powertrain model a transient vehicle model is achieved .<br />

▸ Track pr<strong>of</strong>iles and cooling controller reactions can be calculated.<br />

R. Höß (<strong>Fuel</strong> <strong>Cell</strong> Cooling System, Daimler AG) | GT-Conference | 22.10.2012 9


<strong>Model</strong> Verification (1)<br />

Test-Drive (0-80km/h, trailer dynamometer): Stack-Performance<br />

▸ The simulation results show a good correlation to the vehicle measurements for the stack performance.<br />

R. Höß (<strong>Fuel</strong> <strong>Cell</strong> Cooling System, Daimler AG) | GT-Conference | 22.10.2012 10


<strong>Model</strong> Verification (2)<br />

Test-Drive (0-80km/h, trailer dynamometer): FC <strong>Coolant</strong> Inlet-Temp., Fan Speed<br />

▸ The simulation results show a good correlation to the vehicle measurements for the coolant set-point and the fan-speed.<br />

R. Höß (<strong>Fuel</strong> <strong>Cell</strong> Cooling System, Daimler AG) | GT-Conference | 22.10.2012 11


Main Fan <strong>Control</strong>ler Concept 1<br />

applied in todays <strong>Fuel</strong> <strong>Cell</strong> propulsed B-Class<br />

<br />

<br />

Map based pilot control <strong>of</strong> the temperature deviation.<br />

<br />

Temperaturedifference on the radiator as set point, representing the cooling performance<br />

on the radiator package.<br />

(+) Robust control concept<br />

(-) Two additional temperature sensors needed on the coolant-inlet and outlet <strong>of</strong> the radiators<br />

R. Höß (<strong>Fuel</strong> <strong>Cell</strong> Cooling System, Daimler AG) | GT-Conference | 22.10.2012 12


Main Fan <strong>Control</strong>ler Concept 2:<br />

PID-<strong>Control</strong>ler, Stack <strong>Coolant</strong> Inlet Temperature as Reference<br />

<br />

<br />

Map based pilot control <strong>of</strong> the temperature deviation.<br />

PID-<strong>Control</strong>ler (Stack <strong>Coolant</strong> Inlettemperature)<br />

(+) Standard <strong>Control</strong> Concept<br />

(-) Same control reference as the Thermostatic Valve – Interference expected.<br />

R. Höß (<strong>Fuel</strong> <strong>Cell</strong> Cooling System, Daimler AG) | GT-Conference | 22.10.2012 13


Main Fan <strong>Control</strong>ler Concept 3<br />

<strong>Model</strong> based <strong>Control</strong><br />

System Waste Heat <strong>Model</strong>:<br />

• Stack Current<br />

• Stack Voltage<br />

Cooling Performance <strong>Model</strong>:<br />

• Vehicle Speed<br />

• Ambient Temp.<br />

• AC Condensation Pressure<br />

• Pump Speed<br />

• LT-<strong>Coolant</strong>temp.<br />

• T-Set_KW1_STM<br />

• T_KW1_STM<br />

• T_KW2_STM<br />

<br />

<br />

Map based pilot control <strong>of</strong> the temperature deviation.<br />

<br />

<strong>Model</strong>based Fan <strong>Control</strong>, based on the calculation <strong>of</strong> the FCS-powertrain - and cooling<br />

performance.<br />

(+) Precise fan control on cooling requirement, similar to Concept 1.<br />

(-) Higer setup and programming effort, higher cpu and memory usage on control unit<br />

R. Höß (<strong>Fuel</strong> <strong>Cell</strong> Cooling System, Daimler AG) | GT-Conference | 22.10.2012 14


Simulation<br />

Comparison <strong>of</strong> the Main Fan <strong>Control</strong>ler Concepts<br />

Concept 1<br />

Predecessor Concept<br />

Concept 2<br />

PID-<strong>Control</strong>ler<br />

Concept 3<br />

<strong>Model</strong> Based <strong>Control</strong><br />

Temperature Overshoot<br />

(mean value <strong>of</strong> drive cycle)<br />

[K]<br />

Total Rejected Heat<br />

[MJ]<br />

Fan Power Consumption<br />

[kJ]<br />

Fan <strong>Control</strong>ler Efficiency<br />

(rejected heat per fans power<br />

consumption in drive cycle)<br />

[-]<br />

Concept 1 3.07923 31.797255 340.04145 93.5<br />

Concept 2 4.71665 30.188025 63.56364 474.9<br />

Concept 3 2.89629 31.902255 377.8782 84.4<br />

▸ The model-based controller concept shows the best potential to fullfill the requirements to precisely control the fuel cell<br />

temperature setpoint and to have a efficient cooling system and achive the cost potential <strong>of</strong> eleminating 2 temp-sensors.<br />

R. Höß (<strong>Fuel</strong> <strong>Cell</strong> Cooling System, Daimler AG) | GT-Conference | 22.10.2012 15


Conclusion and Achivements<br />

<strong>Control</strong> <strong>Engineering</strong> <strong>with</strong> GT-Suite<br />

<strong>Model</strong>ling and Simulation<br />

• Successful setup and simulation <strong>of</strong> a fastrunning fuel cell vehiclemodell <strong>with</strong>in GT-Suite.<br />

• Approved correlation <strong>of</strong> the simulation model even on vehicle-level <strong>with</strong> simulated drive-cycles.<br />

• But the verified transient behavior especially <strong>of</strong> the coolant loop is essential.<br />

<strong>Control</strong> <strong>Engineering</strong><br />

• Evaluation <strong>of</strong> controller concepts regarding effectivity and efficiency <strong>with</strong> this model.<br />

• <strong>Control</strong>ler response can be optimised in detail.<br />

• Maturity <strong>of</strong> control unit s<strong>of</strong>tware can be raised especially in early s<strong>of</strong>tware cycles.<br />

• Test drive efforts for s<strong>of</strong>tware development can be reduced.<br />

• Elemination <strong>of</strong> 2 temperature sensors seem to be achivable.<br />

R. Höß (<strong>Fuel</strong> <strong>Cell</strong> Cooling System, Daimler AG) | GT-Conference | 22.10.2012 16


Thanks for your attention!<br />

For further information please visit:<br />

www.daimler.com/technologie-und-innovation/antriebe/elektrische-antriebe/brennst<strong>of</strong>fzelle<br />

R. Höß (<strong>Fuel</strong> <strong>Cell</strong> Cooling System, Daimler AG) | GT-Confefence | 22.10.2012 17

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!