08.11.2012 Views

E906/SeaQuest Drell-Yan Experiment - Brookhaven National ...

E906/SeaQuest Drell-Yan Experiment - Brookhaven National ...

E906/SeaQuest Drell-Yan Experiment - Brookhaven National ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>E906</strong>/<strong>SeaQuest</strong><br />

<strong>Drell</strong>-<strong>Yan</strong> <strong>Experiment</strong><br />

Kazutaka Nakahara<br />

University of Maryland College Park<br />

for the<br />

<strong>E906</strong> Collaboration<br />

June 8 th , RHIC/AGS User’s Meeting


Nucleon Structure<br />

• Light sea quark<br />

• Gottfried Sum Rule:<br />

S G = 1/3 if u = d<br />

S<br />

=<br />

1<br />

1<br />

3<br />

1<br />

3<br />

[ ]<br />

p n<br />

−<br />

G 2 2<br />

x<br />

Charge Symmetry<br />

0<br />

=<br />

=<br />

∫<br />

F<br />

+<br />

1<br />

∫<br />

0<br />

2<br />

3<br />

F<br />

dx<br />

[ u − d ]<br />

dx<br />

u =<br />

d


NMC Measurement<br />

0.004 < x < 0.8<br />

S G = 0.235 +/- 0.026<br />

New Muon Collaboration<br />

(NMC), Phys. Rev. D50<br />

(1994) R1<br />

Extrapolate results<br />

over all x (0 < x < 1)<br />

Nuclear shadowing (double scattering of virtual photon from both<br />

nucleons in deuteron) ~ 4-10% effect on Gottfried sum �<br />

disagreement with naive calculation of GSR remains


Reconciling the Disconnect<br />

Three assumptions:<br />

NMC:<br />

1. Extrapolation of NMC measurement to<br />

lower x?<br />

GSR:<br />

1. Charge symmetry?<br />

2. u = d ?<br />

E665 experiment measured to<br />

lower x<br />

No signs of charge symmetry<br />

breaking<br />

Directly measure through <strong>Drell</strong>-<strong>Yan</strong><br />

Knowledge is data-driven


Target<br />

Beam x1, q<br />

σ<br />

2σ<br />

pd<br />

pp<br />

|<br />

x<br />

1<br />

>><br />

x<br />

2<br />

First Direct Measurement<br />

≈<br />

x2, q<br />

⎛ 1<br />

⎜1+<br />

1 ⎝ 4<br />

2 ⎛ 1<br />

⎜<br />

1+<br />

d<br />

⎝ 4 u<br />

d<br />

1 ⎛ d(<br />

⎞<br />

⎜<br />

x2)<br />

≈<br />

⎟<br />

⎜<br />

1+<br />

2 ⎟<br />

⎝ u(<br />

x2)<br />

⎠<br />

γ*<br />

( )<br />

u ( x1)<br />

( x1)<br />

d(<br />

( ) u(<br />

x<br />

1<br />

x<br />

1<br />

µ -<br />

µ +<br />

⎞<br />

⎟<br />

⎠ ⎛ d(<br />

⎞<br />

⎜<br />

x2)<br />

⎟<br />

⎜<br />

1+<br />

⎞ ⎟<br />

x2)<br />

⎟ ⎝ u(<br />

x2)<br />

⎠<br />

) ⎟<br />

x2<br />

⎠<br />

• NA51 (<strong>Drell</strong>-<strong>Yan</strong>)<br />

shows u < d


Target<br />

x2, q<br />

Beam x1, q<br />

σ<br />

2σ<br />

pd<br />

pp<br />

|<br />

x<br />

1<br />

>><br />

x<br />

2<br />

≈<br />

≈<br />

E866 <strong>Drell</strong>-<strong>Yan</strong><br />

γ*<br />

⎛ 1<br />

⎜1+<br />

1 ⎝ 4<br />

2 ⎛ 1<br />

⎜<br />

1+<br />

d<br />

⎝ 4 u<br />

1 ⎛ d(<br />

⎜<br />

x<br />

⎜<br />

1+<br />

2 ⎝ u(<br />

x<br />

2<br />

2<br />

d<br />

µ -<br />

µ +<br />

( )<br />

u ( x1)<br />

( x1)<br />

d(<br />

( ) u(<br />

x<br />

1<br />

) ⎞<br />

⎟<br />

) ⎟<br />

⎠<br />

x<br />

1<br />

⎞<br />

⎟<br />

⎠ ⎛ d(<br />

⎜<br />

x<br />

⎜<br />

1+<br />

x ⎞ 2)<br />

⎟ ⎝ u(<br />

x<br />

) ⎟<br />

x2<br />

⎠<br />

2<br />

2<br />

) ⎞<br />

⎟<br />

) ⎟<br />


• Fermilab Meson East Building<br />

• 800 GeV proton beam<br />

• 0.04 < x < 0.35<br />

• Uncertainties dominated by<br />

statistics (~1% systematic<br />

uncertainties in cross section<br />

ratio)<br />

σ<br />

2σ<br />

pd<br />

pp<br />

|<br />

x<br />

1<br />

>><br />

x<br />

2<br />

≈<br />

≈<br />

E866 <strong>Drell</strong>-<strong>Yan</strong><br />

⎛ 1<br />

⎜1+<br />

d<br />

1 ⎝ 4<br />

2 ⎛ 1<br />

⎜<br />

1+<br />

d<br />

⎝ 4 u x<br />

1 ⎛ d(<br />

) ⎞<br />

⎜<br />

x2<br />

⎟<br />

⎜<br />

1+<br />

2 ⎟<br />

⎝ u(<br />

x2)<br />

⎠<br />

( )<br />

u ( x1)<br />

( x1)<br />

d(<br />

( ) u(<br />

1<br />

x<br />

1<br />

⎞<br />

⎟<br />

⎠ ⎛ d(<br />

⎜<br />

x<br />

⎜<br />

1+<br />

x ⎞ 2)<br />

⎟ ⎝ u(<br />

x<br />

) ⎟<br />

x2<br />

⎠<br />

2<br />

2<br />

) ⎞<br />

⎟<br />

) ⎟<br />


Main Injector 120 GeV<br />

Tevatron 800 GeV


Abilene Christian University<br />

Obiageli Akinbule<br />

Brandon Bowen<br />

Mandi Crowder<br />

Tyler Hague<br />

Donald Isenhower<br />

Ben Miller<br />

Rusty Towell<br />

Marissa Walker<br />

Shon Watson<br />

Ryan Wright<br />

Academia Sinica<br />

Wen-Chen Chang<br />

Yen-Chu Chen<br />

Shiu Shiuan-Hal<br />

Da-Shung Su<br />

Argonne <strong>National</strong> Laboratory<br />

John Arrington<br />

Don Geesaman*<br />

Kawtar Hafidi<br />

Roy Holt<br />

Harold Jackson<br />

David Potterveld<br />

Paul E. Reimer*<br />

Josh Rubin<br />

University of Colorado<br />

Joshua Braverman<br />

Ed Kinney<br />

Po-Ju Lin<br />

Colin West<br />

E-906/<strong>SeaQuest</strong> Collaboration<br />

Fermi <strong>National</strong> Accelerator Laboratory<br />

Chuck Brown<br />

David Christian<br />

University of Illinois<br />

Bryan Dannowitz<br />

Dan Jumper<br />

Bryan Kerns<br />

Naomi C.R Makins<br />

Jen-Chieh Peng<br />

KEK<br />

Shin'ya Sawada<br />

Kyoto University<br />

KenIchi Imai<br />

Tomo Nagae<br />

Ling-Tung University<br />

Ting-Hua Chang<br />

Los Alamos <strong>National</strong> Laboratory<br />

Gerry Garvey<br />

Mike Leitch<br />

Han Liu<br />

Ming Xiong Liu<br />

Pat McGaughey<br />

University of Maryland<br />

Betsy Beise<br />

Kaz Nakahara<br />

University of Michigan<br />

Chiranjib Dutta<br />

Wolfgang Lorenzon<br />

Richard Raymond<br />

<strong>National</strong> Kaohsiung Normal University<br />

Rurngsheng Guo<br />

Su-Yin Wang<br />

University of New Mexico<br />

Imran Younus<br />

RIKEN<br />

Yuji Goto<br />

Atsushi Taketani<br />

Yoshinori Fukao<br />

Manabu Togawa<br />

Rutgers University<br />

Lamiaa El Fassi<br />

Ron Gilman<br />

Ron Ransome<br />

Elaine Schulte<br />

Brian Tice<br />

Ryan Thorpe<br />

Yawei Zhang<br />

Texas A & M University<br />

Carl Gagliardi<br />

Robert Tribble<br />

Thomas Jefferson <strong>National</strong> Accelerator Facility<br />

Dave Gaskell<br />

Patricia Solvignon<br />

Tokyo Institute of Technology<br />

Toshi-Aki Shibata<br />

Ken-ichi Nakano<br />

Yamagata University<br />

Yoshiyuki Miyachi<br />

*Co-Spokespersons


• 120 GeV proton beam<br />

(E866: 800 GeV)<br />

– cross section scales as 1/s:<br />

7x statistics<br />

– background scales as s:<br />

7x luminosity<br />

�50x statistics<br />

• Systematic uncertainties<br />

~1%<br />

<strong>E906</strong> <strong>Drell</strong>-<strong>Yan</strong><br />

What happens at high x?


Other Physics to be Probed with <strong>Drell</strong>-<strong>Yan</strong><br />

Partonic energy loss in nuclei<br />

• Beam quark lose energy as it penetrates nucleus<br />

� shift in observed parton momentum fraction<br />

�measure energy loss by using different size nuclei<br />

� establish a baseline for energy loss expected in heavy<br />

ion collision


<strong>Drell</strong>-<strong>Yan</strong> Spectrometer for E-906<br />

Liquid H 2, d 2, and<br />

solid targets<br />

Hadron Absorber


• Statistics are better, but some issues to keep in mind:<br />

• Lower particle energy � increased muonic decay of hadronic<br />

background<br />

• Lower energy muons multiple scatter more readily in the hadron<br />

absorber


Magnet Installation<br />

• Focusing magnet (FMAG) installed<br />

• Momentum measuring magnet (KMAG) installed<br />

• Hadron absorber<br />

• Beam dump (watch muons from J/ψ)


<strong>E906</strong> Beam<br />

• 53 MHz beam repetition frequency (18.9ns)<br />

• 5 seconds every minute: 2 ×10 12 protons/sec<br />

(4 kW beam, 5 W deposited on target,1 ×10 13 protons/min)<br />

• at least 5.2 ×10 18 total protons for experiment<br />

18.9 ns RF buckets<br />

6 trains of 81 RF buckets<br />

5 seconds<br />

. . .


<strong>E906</strong> Target<br />

• 2 liter LH 2 and LD 2 target flasks<br />

• Empty target for target systematics<br />

• Solid targets (C, W, Ca, ??)<br />

• Targets on movable table: change<br />

targets between pulses (each min)<br />

• Closed circuit GM cryocoolers cools a<br />

condenser<br />

• H 2/D 2 liquifies in condenser � drips<br />

(fills) into target flask


Detectors<br />

• Station 1: MWPC (Multi-Wire Proportional Chamber)<br />

• Station 2: E866 Station 2<br />

• Station 3: Two halves<br />

– Lower half: E866 Drift Chamber<br />

– Upper half: Newly designed and constructed<br />

• Station 4: Muon Prop. Tubes<br />

• Hodoscope scintillators to trigger info. For all four stations


Schedule<br />

• First commissioning beam in July (?) 2010 depending on<br />

machine schedule.<br />

• <strong>Experiment</strong> with H2/D2 to begin late 2010.<br />

• Run with full beam ~2 years<br />

• Prospects for further <strong>Drell</strong>-<strong>Yan</strong> experiments at J-PARC (50<br />

GeV) or Fermilab Main Injector (60 GeV)<br />

Proposed<br />

Jan. 2007<br />

Expt.<br />

Funded<br />

Magnet Design <strong>Experiment</strong><br />

And construction Construction<br />

2008<br />

2009<br />

2010<br />

<strong>Experiment</strong><br />

Runs<br />

2011<br />

2012<br />

J-PARC<br />

Publications


• <strong>E906</strong> experiment will extend the measurement of light antiquark<br />

asymmetries<br />

– to higher x<br />

– with greater statistics<br />

• Absolute pp, pd cross sections<br />

• Partonic energy loss<br />

• Structure of nucleonic matter<br />

• Commissioning to start in July<br />

• Data-taking to start late 2010


20<br />

u =<br />

Is in the proton?<br />

Gottfried Sum Rule<br />

1<br />

S = [( F ( x) − F ( x)) / x] dx<br />

G<br />

d<br />

∫<br />

0<br />

=<br />

p n<br />

2 2<br />

1 2 1<br />

= + ∫ ( u ( ) ( ))<br />

3 3 0<br />

p x − dp<br />

x dx<br />

1<br />

= ( ifup<br />

= dp)<br />

3


<strong>Drell</strong>-<strong>Yan</strong> fixed target experiments at Fermilab<br />

• What is the structure of the<br />

nucleon?<br />

➡ What is d / u?<br />

➡ What is the origin of the<br />

sea quarks?<br />

➡ What is the high x<br />

structure of the proton?<br />

• What is the structure of nucleonic matter?<br />

➡ Where are the nuclear pions?<br />

➡ Is anti-shadowing a valence effect?<br />

• Do colored partons lose energy in cold nuclear<br />

matter?<br />

• <strong>SeaQuest</strong>: 2010 - 2012<br />

➡ significant increase in physics reach<br />

• Beyond <strong>SeaQuest</strong><br />

➡ Polarized <strong>Drell</strong>-<strong>Yan</strong><br />

21 ➡ Pionic <strong>Drell</strong>-<strong>Yan</strong>


Other Physics to be Probed with <strong>Drell</strong>-<strong>Yan</strong><br />

• EMC effect<br />

� parton distributions of bound vs free nucleons<br />

• What can the sea parton distributions tell us about nuclear<br />

binding?<br />

• <strong>E906</strong>: Measure nuclear effects precisely

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!