28.12.2014 Views

The SMART Reactor - SMR

The SMART Reactor - SMR

The SMART Reactor - SMR

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>The</strong> <strong>SMART</strong> <strong>Reactor</strong><br />

4 th Annual Asian-Pacific Nuclear Energy Forum<br />

2010. 6. 18-19<br />

Won Jae Lee (wjlee@kaeri.re.kr)


Contents<br />

I. Introduction<br />

II. <strong>SMART</strong> Design Features<br />

III. <strong>SMART</strong> Project<br />

IV. Summary & Conclusions<br />

<strong>SMART</strong><br />

System integrated Modular Advanced<br />

ReacTor<br />

1


I. Introduction<br />

Nuclear, a Resolution to Energy, Water & Environment<br />

Issues<br />

Renewables<br />

8%<br />

EIA (2007)<br />

Nuclear<br />

6%<br />

Coal<br />

26%<br />

Role of Nuclear<br />

Oil<br />

37%<br />

Richard Smalley ,<br />

Energy & Nanotechnology Conference,<br />

Rice University, Houston, May 3, 2003<br />

Natual Gas<br />

23%<br />

<strong>SMART</strong><br />

System integrated Modular Advanced<br />

ReacTor<br />

2


Small & Medium <strong>Reactor</strong>s can provide Flexible Resolution<br />

to Energy, Water & Environmental Issues<br />

Electricity to Countries with<br />

- Limited or Distributed Electricity Grid System<br />

- Limited Financial Resources for a Large Nuclear Power Plant<br />

Combined Electricity and Process Heat to<br />

- Industrial Complexes: High Pressure Steam<br />

- Arid Regions: Water Desalination<br />

- Freezing Regions: District Heating<br />

<strong>SMART</strong> (System-integrated Modular Advanced ReacTor)<br />

is being developed by KAERI<br />

<strong>SMART</strong><br />

System integrated Modular Advanced<br />

ReacTor<br />

3


II. <strong>SMART</strong> Design Features<br />

Loop Type PWR<br />

Innovative Design<br />

• Integrated Primary<br />

System<br />

• Inherent Safety<br />

Features<br />

• Advanced Digital Man-<br />

Machine Interface<br />

<strong>SMART</strong><br />

(System-integrated<br />

Modular Advance<br />

ReacTor)<br />

Pressurizer<br />

Canned<br />

Motor<br />

Pump<br />

X<br />

X<br />

X X X<br />

X<br />

Core<br />

Helical Steam<br />

Generator<br />

Enhanced <strong>Reactor</strong> Safety: No LBLOCA<br />

Flexible Applications: Electricity, Heat<br />

Early Deployment: Proven Technology<br />

<strong>SMART</strong><br />

System integrated Modular Advanced<br />

ReacTor<br />

4


<strong>SMART</strong> 330MW th Application<br />

330MW th Integral PWR<br />

Electricity Generation, Desalination and/or District Heating<br />

<strong>SMART</strong><br />

Plant Data<br />

Electricity<br />

Steam<br />

Transformer<br />

<br />

<br />

<br />

Power : 330 MW th<br />

Water : 40,000 t/day<br />

Electricity: 90 MW e<br />

Main Ejector<br />

Steam<br />

Potable water<br />

Scale Inhivitor<br />

Feed Water<br />

Flash<br />

Vent Ejector<br />

Steam Supply<br />

To Outfall<br />

Feed<br />

Seawater<br />

Seawater<br />

Condenser<br />

1st Effect 2nd Effect 3rd Effect Last Effect<br />

Final<br />

Condenser<br />

Condensate<br />

Pump<br />

Desalination Plant<br />

Brine Blowdown<br />

Pump<br />

Distillate<br />

Pump<br />

Intake<br />

Facilities<br />

Electricity and Fresh Water Supply to a City of 100,000 Population<br />

Suitable for Small Grid Size or Distributed Power System<br />

<strong>SMART</strong><br />

System integrated Modular Advanced<br />

ReacTor<br />

5


NSSS - RPV<br />

All Primary Components in<br />

a <strong>Reactor</strong> Pressure Vessel (RPV)<br />

RPV<br />

8 Helical Once-through SG’s<br />

4 Canned Motor Pumps<br />

Internal Steam Pressurizer<br />

25 Magnetic Jack type CRDM’s<br />

RPV Internals<br />

- Upper Guide Structure<br />

- Core Support Barrel<br />

6.5m (D) X 18.5m (H)<br />

Design Condition: 17MPa, 360 o C<br />

<strong>Reactor</strong> Life > 60 yrs<br />

Control Rod Drive<br />

Mechanism<br />

ICI Nozzles<br />

<strong>Reactor</strong> Closure<br />

Head<br />

<strong>Reactor</strong> Coolant<br />

Pump<br />

Steam Nozzle<br />

Feed Water<br />

Nozzle<br />

<strong>Reactor</strong> Vessel<br />

Support<br />

<strong>SMART</strong><br />

System integrated Modular Advanced<br />

ReacTor<br />

6


RPV <strong>The</strong>rmal-Hydraulics<br />

Major Flow Path to Minimize Cross Flow in the<br />

Upper Guide Structure (UGS)<br />

Flow Mixing Header Assembly (FMHA) provides<br />

<strong>The</strong>rmal Mixing in case of TH Asymmetry<br />

Major TH Parameters<br />

Parameter<br />

Value<br />

Pressure, MPa<br />

Core Average Mass Flux, kg/m 2 s<br />

Maximum Core Bypass, %<br />

Average Rod Heat Flux, kW/m 2<br />

Core Inlet Temperature, o C<br />

SG Inlet, o C<br />

Steam Superheating, o C<br />

Fuel <strong>The</strong>rmal Margin, %<br />

15<br />

1361<br />

4.0<br />

360<br />

295.7<br />

323<br />

30<br />

> 15<br />

FMHA<br />

UGS<br />

<strong>SMART</strong><br />

System integrated Modular Advanced<br />

ReacTor<br />

7


Fuel & Core<br />

Fuel<br />

Proven 17 x 17 LEU Fuel with Reduced Height<br />

A B C D E F G H J<br />

Core<br />

Peak Rod Burn-up > 60GWD/MTU<br />

57 Fuel Assemblies<br />

Fuel Cycle Length > 3 yrs<br />

Availability Factor > 95%<br />

Proven Reactivity Control<br />

External CRDM<br />

Soluble Boron<br />

Burnable Poison<br />

60 yrs of On-site Spent Fuel Storage<br />

180°<br />

180°<br />

4<br />

8<br />

4<br />

8<br />

20<br />

24<br />

20<br />

8<br />

90°<br />

4 8 4<br />

8 20 24 20 8<br />

20<br />

12 8 12<br />

12 8 12 8 12<br />

8 12 8 12 8<br />

12 8 12 8 12<br />

20<br />

8<br />

N<br />

N<br />

12 8 12<br />

20 24 20<br />

4 8 4<br />

270°<br />

20<br />

20<br />

2.82 w/o U-235 21 FA<br />

4.88 w/o U-235 36 FA<br />

A B C D E F G H J<br />

N indicates No. of UO2+Gd2O3<br />

S2<br />

8<br />

8<br />

20<br />

24<br />

20<br />

8<br />

fuel rods.<br />

S2 S1 S1 S2<br />

R1 R3 R1 R3 R1<br />

S2 S1 S1 S2<br />

R2 R3 R2<br />

S2<br />

90°<br />

R1<br />

R1<br />

S2<br />

R2 R3 R2<br />

270°<br />

S2<br />

4<br />

8<br />

4<br />

0°<br />

0°<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

R<br />

Regulating Bank<br />

S<br />

Shutdown Bank<br />

<strong>SMART</strong><br />

System integrated Modular Advanced<br />

ReacTor<br />

8


<strong>SMART</strong><br />

System integrated Modular Advanced<br />

ReacTor<br />

9<br />

Fluid Systems


Safety<br />

Core Damage Frequency < 10 -6 /RY<br />

Inherent Safety<br />

No Large Break: Vessel Penetration < 2” (None from RPV Bottom)<br />

Large Primary Coolant Inventory<br />

No Return-to-Power by Excessive Cooling<br />

Low Vessel Fluence<br />

Engineered Safety Features<br />

Passive Residual Heat Removal System (4 Train)<br />

- Natural Circulation Cooling of SG from Secondary Side<br />

Safety Injection System (4 Train)<br />

- Direct Vessel Injection from IRWST<br />

Containment Spray Systems (2 Train)<br />

Shutdown Cooling System (2 Train)<br />

<strong>SMART</strong><br />

System integrated Modular Advanced<br />

ReacTor<br />

10


Accident Analysis<br />

MDNBR<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

Main Steam Line Break<br />

Complete Loss of Flow<br />

DNBR Limit = 1.1<br />

0 5 10 15<br />

Time [sec]<br />

Core power fraction<br />

1.6<br />

1.2<br />

0.8<br />

0.4<br />

2400<br />

2100<br />

1800<br />

1500<br />

0.0<br />

1200<br />

0 2 4 6 8 10<br />

Time [sec]<br />

Rod Ejection<br />

Maximum fuel C/L temperature [K]<br />

20<br />

16<br />

160<br />

Pressurizer Pressure [MPa]<br />

18<br />

16<br />

14<br />

Pressure Limit = 18.7 MPa<br />

Feedwater Line Break<br />

CVCS Malfunction<br />

12<br />

0 500 1000 1500 2000<br />

Time [sec]<br />

<strong>SMART</strong><br />

System integrated Modular Advanced<br />

ReacTor<br />

11<br />

Level [m]<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

SBLOCA (2" SI Line Break)<br />

Hot side collapsed level<br />

0<br />

0<br />

0 1800 3600 5400 7200<br />

Time [sec]<br />

Break Flow<br />

SI Flow<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Flow Rate [kg/sec]


Digital MMIS<br />

Fully Digitalized I&C System: DSP Platform<br />

4 Channel Safety/Protection System and Communication<br />

2 Channel Non-Safety System<br />

Advanced Human-Interface Control Room<br />

Ecological Interface Design<br />

Alarm Reduction<br />

Elastic Tile Alarm<br />

AIS<br />

: Alarm and Indication System<br />

CEDM<br />

: Control Element Drive Mechanism<br />

ERF<br />

: Emergency Response Facility<br />

ICCMS<br />

: Inadequate Core Cooling Monitoring System<br />

IPS<br />

: Information Processing System<br />

MCC<br />

: Motor Control Center<br />

MCP<br />

: Main Coolant Pump<br />

MCR<br />

: Main Control Room<br />

NIS<br />

: Nuclear Instrumentation System<br />

NSGSC<br />

: Non -Safety Grade Soft Controller<br />

PAM -D<br />

: PAM Display<br />

RSR RCR TSC ERF<br />

PIS<br />

: Process Instrumentation System<br />

POCS<br />

: POwer Control System<br />

PPS<br />

: Plant Protection System<br />

PRCS<br />

: PRocess Control System<br />

RCR<br />

: Rad waste Control Room<br />

RSR<br />

: Remote Shutdown Room<br />

SCOPS<br />

: <strong>SMART</strong> COre Protection System<br />

SDCS<br />

: SeconDary Control System<br />

SGCS<br />

: Safety Grade Control System<br />

SGSC<br />

: Safety Grade Soft Controller<br />

LDP<br />

SMS<br />

: Specific Monitoring System<br />

SS<br />

: Sub -network Switch<br />

TSC<br />

: Technical Support Center<br />

PAM-D<br />

NSGSC<br />

Safety<br />

Shutdown<br />

Control<br />

Panel<br />

Display such as Information (IPS),<br />

Indication (AIS) and Alarm (AIS)<br />

Non-Safety<br />

Backbone Network<br />

SGSC<br />

Main Control Panel<br />

NSGSC<br />

NSGSC<br />

SGSC<br />

NSGSC<br />

Auxiliary Control Panel<br />

Safety<br />

Interface Network<br />

ISO<br />

Non-safety<br />

Interface Network<br />

CEDM<br />

Field Sensors Field Sensors Ex-Core Detectors MCC NIMS Sensors Ex-Core Detector Field Sensors<br />

MCP<br />

MCC<br />

MCC<br />

<strong>SMART</strong><br />

System integrated Modular Advanced<br />

ReacTor<br />

12


Construction<br />

Footprint<br />

300 x 300m for<br />

Electricity System<br />

200 x 300m for<br />

Desalination System<br />

Construction Period<br />

3 yrs<br />

Economics (as of ’07)<br />

Construction Cost:<br />

$5000/kWe<br />

O&M Cost: ~ 6.1¢/kWh<br />

(Lower than Hydro Power)<br />

<strong>SMART</strong><br />

System integrated Modular Advanced<br />

ReacTor<br />

13


III. <strong>SMART</strong> Project<br />

Standard Design Approval (SDA) by 2011<br />

(256 th & 257 th Atomic Energy Commission)<br />

2009 2010 2011 2012<br />

Technology<br />

Validation<br />

Safety/Performance SET<br />

SBLOCA IET (VISTA)<br />

Design Tools & Methods<br />

Licensing Support<br />

& Additional Tests<br />

Key Technologies Validation<br />

Standard<br />

Design<br />

Standard Design<br />

SDA Application<br />

Licensing Support<br />

Licensing<br />

Pre-Safety Review<br />

Licensing Review<br />

Standard Design<br />

Approval<br />

Domestic<br />

Construction<br />

<strong>SMART</strong>-ITL Construction and Startup Tests<br />

Constructability<br />

Integral System<br />

Validation Tests<br />

Construction Project<br />

<strong>SMART</strong><br />

System integrated Modular Advanced<br />

ReacTor<br />

14<br />

Decision for Construction


Project Organization<br />

Government<br />

KAERI<br />

KEPCO Consortium<br />

Project Manage.<br />

Technology Validation<br />

Standard Design<br />

NSSS<br />

Design<br />

Fuel<br />

Design<br />

BOP<br />

Design<br />

Comp.<br />

Design<br />

Technology Validation Project: $58M from Government<br />

Standard Design Project: $83M from KEPCO Consortium<br />

<strong>SMART</strong><br />

System integrated Modular Advanced<br />

ReacTor<br />

15


<strong>SMART</strong> Consortium<br />

KEPCO Consortium was officially Inaugurated on June<br />

14, 2010<br />

KAERI<br />

KEPCO<br />

Consortium<br />

<strong>SMART</strong><br />

System integrated Modular Advanced<br />

ReacTor<br />

16


Technology Validation Project<br />

Safety Tests<br />

Technology Validation<br />

Tools & Methods<br />

Performance Tests<br />

Standard<br />

Design<br />

Core SET<br />

• Freon CHF<br />

• Water CHF<br />

Safety SET<br />

• Safety Injection<br />

• Helical SG Heat Transfer<br />

• Condensation HX Heat<br />

Transfer<br />

Integral Effect Tests<br />

• VISTA SBLOCA<br />

• <strong>SMART</strong>-ITL<br />

Digital MMIS MMIS Safety System<br />

• Control Unit Platform<br />

• Communication Switch<br />

• Integral Safety System<br />

Code Devel/V&V<br />

• Safety: TASS/<strong>SMR</strong>-S<br />

• Core TH: MATRA-S<br />

• Core Protec./Monitor.<br />

Design Methodology<br />

• DNBR Analysis<br />

• Accident Analysis<br />

(SBLOCA, LOFA, …)<br />

• Integral Rx Dynamics<br />

V&V<br />

Technical Reports<br />

Fuel Assembly<br />

• Out-of-Pile Mech./Hydr.<br />

RPV TH<br />

• RPV Flow Distribution<br />

• Flow Mixing Header Ass.<br />

• Integral Steam PZR<br />

• PZR Level Measurement<br />

Components<br />

• RCP Hydrodynamics<br />

• RPV Internals Dynamics<br />

• SG Tube Irradiation<br />

• Helical SG ISI<br />

• In-core Instrumentation<br />

Digital MMIS MMIS Control Room<br />

• MMI Human Interface<br />

• Control Room FSDM<br />

Design Data<br />

Standard<br />

SAR<br />

Standard Design Approval<br />

<strong>SMART</strong><br />

System integrated Modular Advanced<br />

ReacTor<br />

17


Standard Design Project<br />

NSSS Design<br />

Current Stage<br />

Next Stage<br />

Licensing Review<br />

Component Design<br />

Fuel<br />

BOP Design<br />

Construction<br />

<strong>SMART</strong><br />

System integrated Modular Advanced<br />

ReacTor<br />

18


Future Plans<br />

Licensing<br />

Licensing Authority: MEST technically supported by KINS<br />

Under Pre-Safety Review by KINS in 2010<br />

Standard Design Approval Application by the End of 2010<br />

Standard Design Approval by the End of 2011<br />

Domestic Construction<br />

KEPCO is setting up a Plan for Domestic Construction of a FOAK<br />

<strong>SMART</strong> by the End of 2010<br />

Decision for Domestic Construction by Government is expected<br />

in 2011, then, Conventional Two-step Licensing will follow<br />

<strong>SMART</strong><br />

System integrated Modular Advanced<br />

ReacTor<br />

19


IV. Summary & Conclusions<br />

<strong>SMART</strong> is a Viable Option for Early Deployment in Small<br />

& Medium <strong>Reactor</strong> Market<br />

Enhanced Safety & Operability by Advanced Design Features<br />

Economic Feasibility<br />

Flexible Applications for both Electricity and Heat<br />

Low Risk by Proven & Fully Validated Technologies<br />

KEPCO Consortium strengthens the <strong>SMART</strong> Viability<br />

Certified <strong>SMART</strong> Design will be available for Commercial<br />

Use in 2012 after the <strong>SMART</strong> Standard Design Approval<br />

<strong>SMART</strong><br />

System integrated Modular Advanced<br />

ReacTor<br />

20


KAERI + KOPEC +<br />

KNF + DOOSAN<br />

World-Class Technology<br />

Provider<br />

KEPCO Consortium<br />

Project Management<br />

Marketing<br />

Financing<br />

Brand Power<br />

<strong>SMART</strong> Team will make it <strong>SMART</strong><br />

<strong>SMART</strong><br />

System integrated Modular Advanced<br />

ReacTor<br />

21


Thank you<br />

for your attention !<br />

<strong>SMART</strong><br />

System integrated Modular Advanced<br />

ReacTor<br />

22

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!