28.12.2014 Views

Parameter Identification of Manning Roughness Coefficient Using ...

Parameter Identification of Manning Roughness Coefficient Using ...

Parameter Identification of Manning Roughness Coefficient Using ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Parameter</strong> <strong>Identification</strong> <strong>of</strong> <strong>Manning</strong> <strong>Roughness</strong> <strong>Coefficient</strong><br />

<strong>Using</strong> Analysis <strong>of</strong> Hydraulic Jump with Sediment Transport<br />

Akira ISHII<br />

E-mail: a-ki@kc.chuo-u.ac.jp<br />

Abstract<br />

This paper presents a parameter identification <strong>of</strong> <strong>Manning</strong> roughness coefficient using the analysis <strong>of</strong> hydraulic<br />

jump with the sediment transport. To calculate the water flow phenomenon, the shallow water<br />

equation is employed. The friction velocity is applied to the determination <strong>of</strong> the coefficient <strong>of</strong> kinematic<br />

eddy viscosity. To calculate the sediment transport, the continuity equation for sand based on the bed-load<br />

quantity is used. The Meyer-Peter Müller equation is used as an equation so as to express the bed-load<br />

quantity. The Crank-Nicolson method is applied to the temporal discretization. The quasi-linear approximation<br />

<strong>of</strong> advection velocityis given by the Adams-Bashforth formula which has second order accuracy.<br />

The improved bubble element method is applied to the spatial discretization. The Sakawa-Shindo method<br />

is employed for the minimization algorithm.<br />

Key Words : <strong>Parameter</strong> <strong>Identification</strong>, Improved Bubble Element, Sakawa-Shindo method<br />

1. Introduction<br />

At the coast <strong>of</strong> sandy beach including near the<br />

mouse <strong>of</strong> river,there are problems caused by the<br />

littoral drift in Japan. The littoral drift causes the<br />

deformation <strong>of</strong> coastal topography because <strong>of</strong> the<br />

coastal erosion and the sedimentaion. Three major<br />

causes are considered. The first is the decrease<br />

<strong>of</strong> sandy supply quantity from river because <strong>of</strong> the<br />

soil-erosion control works and the dams. The second<br />

is a difference in transfer littoral drift quantity<br />

at each place by the coastal flow. The third is an<br />

interception <strong>of</strong> route <strong>of</strong> littoral drift which is caused<br />

by building an actual structure. It is considered that<br />

the third case is the most effective against the deformation<br />

<strong>of</strong> sandy beach. Actually,there are many<br />

actual structures at the coast. And the shape <strong>of</strong><br />

actual structure has influence on the deformation <strong>of</strong><br />

coastal topography. Therefore,the optimal shape <strong>of</strong><br />

actual structure so as to minimize the deformation<br />

<strong>of</strong> coastal topography are considered.<br />

To consider the sediment transport,such as the littoral<br />

drift which causes the deformation <strong>of</strong> coastal<br />

topography,the continuity equation for sand based<br />

on the bed-load quantity is used. Before dealing<br />

with the optimal shape problem,the application <strong>of</strong><br />

parameter identification to the analysis <strong>of</strong> shallow<br />

water flow with the sediment transport have to been<br />

considered. This is the purpose <strong>of</strong> this study. Therefore,the<br />

parameter identification <strong>of</strong> <strong>Manning</strong> roughness<br />

coefficient using the analysis <strong>of</strong> hydraulic jump<br />

with the sediment transport is discussed. The hydraulic<br />

jump needs the effect <strong>of</strong> friction. The effect<br />

<strong>of</strong> friction has an influence on the depth <strong>of</strong> water<br />

and the river-bed. In this study,a value <strong>of</strong> <strong>Manning</strong><br />

roughness coefficient is used as the criteria which<br />

18<br />

expresses the effect <strong>of</strong> friction.<br />

The shallow water equation and the continuity<br />

equation for sand are reviewed in section 2. In order<br />

to express the bed-load quantity,the Meyer-Peter<br />

Müller equation is used. The spatial discretization<br />

is discussed in section 3. In section 4,the parameter<br />

identification is dealt with. To consider the minimization<br />

problem <strong>of</strong> performance function,the Lagrange<br />

multiplier method is introduced. The minimization<br />

technique is treated in section 5. The temporal<br />

discretization is discussed in section 6. The<br />

application <strong>of</strong> parameter identification to the analysis<br />

<strong>of</strong> shallow water flow with the sediment transport<br />

is verified in section 7. The conclusions are discussed<br />

in section 8.<br />

2. State Equation<br />

Y<br />

Z<br />

ξ<br />

η<br />

g<br />

Fig.1 XY-Coordinate System<br />

The shallow water equation and the continuity equation<br />

for sand are used to calculate the water flow<br />

and the sediment transport,respectively. The shallow<br />

water equation and the continuity equation for<br />

sand can be written as follows;<br />

u˙<br />

i + u j u i,j + g ( ξ + η ) ,i<br />

u i<br />

− ν ( u i, j + u j,i ) ,j + fu i = 0, (1)<br />

X


˙ ξ + ξ ,i u i + ξu i,i = 0, (2)<br />

˙η + Λu i,i =0, (3)<br />

where u i , g, ξ and η are the water velocity,the gravitational<br />

acceleration,the water elevation and the<br />

bed elevation,respectively. The coefficient <strong>of</strong> kinematic<br />

eddy viscosity ν,f and Λ are expressed as<br />

follows;<br />

ν = k l<br />

6 u ∗ ξ, f = u ∗<br />

ξ , Λ= q s<br />

(1 − e ) √ ,<br />

u k u k<br />

where k l , u ∗ , e and q s are the Kalman constant,the<br />

friction velocity,the porosity <strong>of</strong> sand and the bedload<br />

quantity,respectively. The friction velocity u ∗<br />

is expressed as follows;<br />

√<br />

u ∗ = gn2 uk u k<br />

,<br />

ξ 1/3<br />

where n is the <strong>Manning</strong> roughness coefficient.<br />

The bed-load quantity q s is determined by a relation<br />

between the tractive force and the limit tractive<br />

force. The tractive force τ 0 is caused by the water<br />

flow. The limit tractive force τ c is expressed as follows;<br />

τ c = σg( ρ s − ρ w ) d m ,<br />

where σ, ρ s , ρ w and d m are the shields parameter,the<br />

density <strong>of</strong> water,the density <strong>of</strong> sand and<br />

the sandy average particle size,respectively. The<br />

Meyer-Peter Müller equation is used as an equation<br />

so as to express the bed-load quantity.<br />

If τ 0 >τ c ,<br />

√<br />

1 1<br />

q s =8<br />

ρ w g ( ρ s − ρ w ) ( τ 0 − τ c ) 3 2 .<br />

If τ 0 ≤ τ c , q s =0.<br />

3. Spatial Discretization<br />

3.1 Bubble Function Element<br />

As for the spatial discretization,the interpolation <strong>of</strong><br />

bubble function element for the velocity,the water<br />

elevation and the bed elevation fields as shows in<br />

Fig.2 is used. The bubble function element is expressed<br />

as follows;<br />

u i = Φ 1 u i1 + Φ 2 u i2 + Φ 3 u i3 + Φ 4 ũ i4 ,<br />

ũ i4 = u i4 − 1 3 ( u i1 + u i2 + u i3 ),<br />

ξ = Φ 1 ξ 1 + Φ 2 ξ 2 + Φ 3 ξ 3 + Φ 4 ˜ξ4 ,<br />

˜ξ 4 = ξ 4 − 1 3 ( ξ 1 + ξ 2 + ξ 3 ),<br />

where φ e is the bubble function <strong>of</strong> C 0 continuous<br />

and Φ α ( α = 1 ∼ 4 ) is the bubble function element.<br />

3<br />

s<br />

1<br />

Fig.2<br />

4<br />

2<br />

Bubble Function<br />

Element<br />

r<br />

1.0<br />

s<br />

ω 2<br />

ω 1<br />

ω 3<br />

r<br />

0.0<br />

1.0<br />

Fig.3 Subdivision <strong>of</strong><br />

Element<br />

The bubble function is defined by using the<br />

isoparametric coordinates ( r, s ) as shows in Fig.3.<br />

Three triangles ( ω 1 ∼ ω 3 ) is divided at the barycenter<br />

point. The bubble function <strong>of</strong>C 0 continuous can<br />

be considered on each sub-triangle as the following<br />

equation;<br />

⎧<br />

⎨ 3(1− r − s ) in ω 1<br />

φ e = 3 r in ω<br />

⎩<br />

2<br />

3 s in ω 3 .<br />

3.2 Improved Bubble Element<br />

The bubble function is capable <strong>of</strong> eliminating the<br />

barycenter point by using the static condensation.<br />

The discretized form derived from the bubble<br />

function element is equivalent to those from the<br />

SUPG[2]. Therefore,the stabilized parameter which<br />

is derived from the bubble function element is expressed<br />

as follows;<br />

〈 momentum equation for shallow water flow 〉<br />

τ eBui =<br />

〈φ e , 1〉 2 Ω e<br />

A −1<br />

e<br />

1<br />

∆t ‖ φ e ‖ 2 Ω e<br />

+ 1 2 [(ν +˜ν)2 ‖ φ e,j ‖ 2 Ω e<br />

−f ‖ φ e ‖ 2 Ω e<br />

] ,<br />

〈 continuity equations<br />

for shallow water flow and sand 〉<br />

〈φ e , 1〉 2 Ω<br />

τ eBη =<br />

e<br />

A −1<br />

e<br />

1<br />

∆t ‖ φ e ‖ 2 Ω e<br />

+ 1 2 [˜ν ‖ φ e,j ‖ 2 Ω e<br />

] ,<br />

where ˜ν is the stabilized control parameter. From<br />

the criteria for the stabilized parameter in the<br />

SUPG,an optimal parameter can be given as follows;<br />

〈 momentum equation for shallow water flow 〉<br />

η = Φ 1 η 1 + Φ 2 η 2 + Φ 3 η 3 + Φ 4 ˜η 4 ,<br />

˜η 4 = η 4 − 1 3 ( η 1 + η 2 + η 3 ),<br />

Φ 1 = 1 − r − s, Φ 2 = r, Φ 3 = s, Φ 4 = φ e ,<br />

19<br />

τ eBui =<br />

( 1<br />

2 τ −1<br />

es + α ∆t<br />

) −1<br />

,<br />

[ ( ) 2<br />

τes −1 2 | U i |<br />

=<br />

+<br />

h e<br />

( 4ν<br />

h 2 e<br />

) 2 ] 1<br />

2<br />

,


〈 continuity equations<br />

for shallow water flow and sand 〉<br />

where<br />

τ eBη =<br />

( 1<br />

2 τ −1<br />

es<br />

+ α ∆t<br />

) −1<br />

, τ −1<br />

es = 2 | U i |<br />

h e<br />

,<br />

equations. The extended performance function is<br />

expressed as follows;<br />

J ∗ =<br />

∫ tf {<br />

H − λ T ui M ˙u i<br />

t 0<br />

− λ T ξ M ξ ˙<br />

}<br />

− λ T η M ˙η dt, (8)<br />

α = A e ‖ φ e ‖ 2 Ω e<br />

〈φ e , 1〉 2 Ω e<br />

, h e = √ 2A e ,<br />

| U i |= √ u 2 + v 2 + gξ + gΛ,<br />

∫<br />

and Ω e is the element domain, 〈 u, v 〉 Ωe = uvdΩ ,<br />

∫<br />

Ω e<br />

‖ u i ‖ 2 Ω e<br />

= 〈 u, u 〉 Ωe , A e = dΩ . The integral <strong>of</strong><br />

Ω e<br />

bubble function is expressed as follows;<br />

〈 φ e , 1〉 Ωe = A e<br />

3 , ‖ φ e,j ‖ 2 Ω e<br />

=3A e g, ‖ φ e ‖ 2 Ω e<br />

= A e<br />

6 ,<br />

g = | Φ α,x | 2 + | Φ α,y | 2 , α =1∼ 3.<br />

4. <strong>Parameter</strong> <strong>Identification</strong><br />

4.1 Performance Function<br />

The parameter identification is defined as finding<br />

the optimal value so as to minimize the performance<br />

function. The performance function is expressed as<br />

follows;<br />

J = 1 2<br />

∫ tf<br />

t 0<br />

{<br />

( ξ − ξ obj ) T Q( ξ − ξ obj )<br />

+(η − η obj ) T R ( η − η obj )<br />

}<br />

dt, (4)<br />

where Q and R are the weighting diagonal matrix.<br />

ξ and η are the water and the bed elevation,respectively.<br />

ξ obj and η obj are the objective water and the<br />

objective bed elevation,respectively.<br />

4.2 Adjoint Equation<br />

The finite element equations <strong>of</strong> state equations<br />

(1),(2) and (3) can be expressed as follows;<br />

M ˙u + ū j S j u i + gS i ( ξ + η )<br />

+ νH jj u i + νH ji u j<br />

+ fMu i = 0, (5)<br />

M ˙ ξ + ū i S i ξ + ¯ξS i u i = 0, (6)<br />

M ˙η + ΛS i u i = 0. (7)<br />

The Lagrange multiplier method is suitable for<br />

the minimization problem <strong>of</strong> performance function.<br />

Therefore,the performance function is extended<br />

by the Lagrange multipliers and the finite element<br />

20<br />

where λ ui , λ ξ and λ η express the Lagrange multiplier<br />

for the water velocity,the water elevation and<br />

the bed elevation,respectively. And Hamiltonian H<br />

is defined as follows;<br />

H = 1 2 ( ξ − ξ obj ) T Q ( ξ − ξ obj )<br />

{<br />

T<br />

+λ ui − ū j S j u i − gS i ( ξ + η )<br />

}<br />

− νH jj u i − νH ji u j − fMu i<br />

{<br />

T<br />

+ λ ξ − ū i S i ξ − ¯ξS<br />

}<br />

i u i<br />

{<br />

T<br />

+ λ η − Λ S i u i <br />

}.<br />

To calculate a minimum value <strong>of</strong> extended performance<br />

function,the first variation <strong>of</strong> extended performance<br />

function is evaluated. The adjoint equations<br />

and the terminal conditions can be obtained<br />

by δJ ∗ = 0. The adjoint equations and the terminal<br />

conditions are expressed as follows;<br />

Mλ ui = − ∂H<br />

∂u i<br />

,<br />

M λ ξ = − ∂H<br />

∂ξ ,<br />

Mλ η = − ∂H<br />

∂η ,<br />

λ ui = λ ξ = λ η =0 at t = t f .<br />

5.Minimization Technique<br />

5.1 Sakawa-Shindomethod<br />

The Sakawa-Shindo method is applied to the minimization<br />

technique. In this method,the modified<br />

performance function is introduced as adding a<br />

penalty term to the extended performance function.<br />

The modified performance function is expressed as<br />

follows;<br />

K (l) = J ∗(l) + 1 2 ( n(l+1) − n (l) ) T c (l) ( n (l+1) − n (l) ),<br />

where l, n and c (l) are the iteration number for minimization,the<br />

<strong>Manning</strong> roughness coefficient and the<br />

weighting diagonal matrix,respectively. Applying<br />

to the stationary condition δK (l) = 0,the following<br />

equation can be obtained.<br />

n (l+1) = n (l) + c −(l) ∫ tf<br />

t 0<br />

( ∂H<br />

) (l)<br />

dt, (9)<br />

∂n


where<br />

∂H<br />

∂n =<br />

∂ {<br />

− λ T u<br />

∂n<br />

i<br />

νH jj u i<br />

− λ T u i<br />

νH ji u j − λ T u i<br />

fMu i<br />

}.<br />

The <strong>Manning</strong> roughness coefficient is renewed by<br />

the equation (9). The initial weighting diagonal matrix<br />

c (0) so that J (1) may be smaller than J (0) is<br />

determined.<br />

5.2 Algorithm<br />

The algorithm <strong>of</strong> Sakawa-Shindo method is shown<br />

as follows;<br />

1. Set l = 0 and assume the initial <strong>Manning</strong> roughness<br />

coefficient n (0) .<br />

2. Solve u (l)<br />

i<br />

, ξ (l) , η (l) by using the state equations.<br />

3. Compute the performance function J (l) .<br />

4. Solve the Lagrange multiplier u ∗(l)<br />

i<br />

, ξ ∗(l) , η ∗(l) by<br />

using the adjoint equations.<br />

5. Compute the <strong>Manning</strong> roughness coefficient<br />

n (l+1)<br />

6. Compute the error norm ɛ = ‖ n (l+1) − n (l) ‖,<br />

and if ɛ


Tab.1 <strong>Parameter</strong> Value<br />

∆t ( time increment ) 0.02 ( sec )<br />

N ( number <strong>of</strong> time step ) 3000<br />

k l ( Kalman constant ) 0.41<br />

σ ( shields parameter ) 0.047<br />

ρ s ( density <strong>of</strong> sand ) 2653 ( kg/m 3 )<br />

ρ w ( density <strong>of</strong> water ) 1020 ( kg/m 3 )<br />

e ( prosity <strong>of</strong> sand ) 0.3<br />

d m ( sandy average particle size ) 0.001 ( m )<br />

Tab.2 Coordinate<br />

x y<br />

a 3.0000 0.1000<br />

b 5.5000 0.1000<br />

c 9.0000 0.1000<br />

At first,an objective parameter value <strong>of</strong> <strong>Manning</strong><br />

roughness coefficient is decided. An objective parameter<br />

value is 0.015(s/m 1 3 ). The computational<br />

results which are calculated at this parameter value<br />

are shown from Fig.6 to Fig.9. Moreover,the objective<br />

water and the objective bed elevation are defined<br />

as the water and the bed elevation which are<br />

calculated at this parameter value. To get this objective<br />

parameter value,three objective points ( a,b,<br />

c ) are used as shows in Fig.4. Tab.2 shows x and y<br />

coordinate <strong>of</strong> three objective points. Next,an initial<br />

parameter value <strong>of</strong> <strong>Manning</strong> roughness coefficient<br />

is assumed. In this study,two cases are treated.<br />

As case1,an initial <strong>Manning</strong> roughness coefficient is<br />

0.030(s/m 1 3). Similarly as case2,an initial <strong>Manning</strong><br />

roughness coefficient is 0.013(s/m 1 3 ). According to<br />

the algorithm <strong>of</strong> Sakawa-Shindo method,the parameter<br />

value is calculated.<br />

Fig.10 and Fig.12 show the variation <strong>of</strong> performance<br />

function <strong>of</strong> case1 and case2,respectively.<br />

Fig.11 and Fig.13 show the variation <strong>of</strong> <strong>Manning</strong><br />

roughness coefficient <strong>of</strong> case1 and case2,respectively.<br />

When the performance function is almost<br />

decreased and converged both cases,the objective<br />

parameter value can be obtained.<br />

8.Conclusions<br />

The purpose <strong>of</strong> this study is to verify the application<br />

<strong>of</strong> parameter identification to the analysis <strong>of</strong> shallow<br />

water flow with the sediment transport. Therefore,<br />

the parameter identification <strong>of</strong> <strong>Manning</strong> roughness<br />

coefficient is discussed in this paper. To calculate<br />

the water flow and the sediment transport,the shallow<br />

water equation and the continuity equation for<br />

sand are employed,respectively. The Meyer-Peter<br />

Müller equation is used as an equation so as to express<br />

the bed-load quantity. The Crank-Nicolson<br />

method is applied to the temporal discretization.<br />

The Lagrange multiplier method is applied to the<br />

minimization problem <strong>of</strong> performance function. The<br />

22<br />

improved bubble element method is applied to the<br />

spatial discretization. The Sakawa-Shindo method<br />

is applied to the minimization technique. When the<br />

performance function is converged,the ob jective parameter<br />

value can be obtained. Thus,the purpose<br />

<strong>of</strong> this study is achieved. However,as for the parameter<br />

identification <strong>of</strong> <strong>Manning</strong> roughness coefficient,<br />

the <strong>Manning</strong> roughness coefficient can’t be identified<br />

when an initial <strong>Manning</strong> roughness coefficient<br />

is less than 0.013(s/m 1 3 ). In this study,the shockcapturing<br />

term is applied. When the Lagrange multipliers<br />

are calculated,the parameter <strong>of</strong> this term is<br />

not well-behaved. Therefore,this parameter is used<br />

as constant. As for the future works,it is necessary<br />

to consider how to treat the shock-capturing term<br />

and the development into the optimal shape problem.<br />

Reference<br />

[1] J. Matsumoto and M. Kawahara,Stable Shape<br />

<strong>Identification</strong> for Fluid-Structure Interaction<br />

Problem <strong>Using</strong> MINI Element,Journal <strong>of</strong> Applied<br />

Mechanics,vol.3, 263-274 (2000).<br />

[2] J. Matsumoto,T. Umetsu and M. Kawahara,<br />

Incompressible Viscous Flow Analysis and Adaptive<br />

Finite Element Method <strong>Using</strong> Linear Bubble<br />

Function,Journal <strong>of</strong> Applied Mechanics,vol.2,<br />

223-232 (1999).<br />

[3] Y. Shimizu,M. Fujita and M. Hirano,Calculation<br />

<strong>of</strong> Flow and Bed Deformation in Compound<br />

Channel with a Series <strong>of</strong> Verical Drop Spilways,<br />

J. <strong>of</strong> Hydroscience and Hydraulic Eng.,43,79-84<br />

(1999).<br />

[4] J. Matsumoto,T. Umetsu and M. Kawahara,<br />

Shallow Water and Sediment Transport Analysis<br />

by Implicit FEM,Journal <strong>of</strong> Applied Mechanics,<br />

vol.1,263-272, (1998).


(m)<br />

2.16<br />

2.14<br />

2.12<br />

2.1<br />

2.08<br />

2.06<br />

2.04<br />

2.02<br />

2<br />

initial bed line<br />

bed line<br />

water elevation<br />

1.98<br />

(m)<br />

0 1 2 3 4 5 6 7 8 9 10<br />

(m)<br />

2.16<br />

2.14<br />

2.12<br />

2.1<br />

2.08<br />

2.06<br />

2.04<br />

2.02<br />

2<br />

Fig.6<br />

t = 6.0(sec)<br />

initial bed line<br />

bed line<br />

water elevation<br />

1.98<br />

(m)<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Fig.8<br />

t = 20.0(sec)<br />

(m)<br />

2.16<br />

2.14<br />

2.12<br />

2.1<br />

2.08<br />

2.06<br />

2.04<br />

2.02<br />

2<br />

initial bed line<br />

bed line<br />

water elevation<br />

1.98<br />

(m)<br />

0 1 2 3 4 5 6 7 8 9 10<br />

(m)<br />

2.16<br />

2.14<br />

2.12<br />

2.1<br />

2.08<br />

2.06<br />

2.04<br />

2.02<br />

2<br />

Fig.7<br />

t = 40.0(sec)<br />

initial bed line<br />

bed line<br />

water elevation<br />

1.98<br />

(m)<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Fig.9<br />

t = 60.0(sec)<br />

Performance Function<br />

Performance Function<br />

9<br />

Performance Function<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 5 10 15 20 25 30 35 40 45<br />

Iteration Count<br />

Fig.10<br />

Performance Function<br />

1.4<br />

Performance Function<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0 2 4 6 8 10 12<br />

Iteration Count<br />

Fig.12<br />

Performance Function<br />

Case1<br />

Case2<br />

<strong>Manning</strong> roughness coefficient<br />

<strong>Manning</strong> roughness coefficient<br />

0.0325<br />

<strong>Manning</strong> roughness coefficient<br />

0.030<br />

0.0275<br />

0.025<br />

0.0225<br />

0.020<br />

0.0175<br />

0.015<br />

0.0125<br />

0 5 10 15 20 25 30 35 40 45<br />

Iteration Count<br />

Fig.11<br />

0.015<br />

0.0148<br />

0.0146<br />

0.0144<br />

0.0142<br />

0.014<br />

0.0138<br />

0.0136<br />

0.0134<br />

<strong>Manning</strong> <strong>Roughness</strong> <strong>Coefficient</strong><br />

0.0132<br />

<strong>Manning</strong> roughness coefficient<br />

0.013<br />

0 2 4 6 8 10 12<br />

Iteration Count<br />

Fig.13<br />

<strong>Manning</strong> <strong>Roughness</strong> <strong>Coefficient</strong><br />

23

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!