28.12.2014 Views

Full-scale measurements and numeric simulations of driving rain on ...

Full-scale measurements and numeric simulations of driving rain on ...

Full-scale measurements and numeric simulations of driving rain on ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

To be presented in the 10th Internati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong> Wind Engineering, København, 21-24 June 1999<br />

<str<strong>on</strong>g>Full</str<strong>on</strong>g>-<str<strong>on</strong>g>scale</str<strong>on</strong>g> <str<strong>on</strong>g>measurements</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>numeric</str<strong>on</strong>g> <str<strong>on</strong>g>simulati<strong>on</strong>s</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>driving</str<strong>on</strong>g> <str<strong>on</strong>g>rain</str<strong>on</strong>g><br />

<strong>on</strong> a building<br />

Fabien J.R. van Mook<br />

Building Physics group (FAGO), Eindhoven University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology (TUE),<br />

Postbus 513, 5600 MB Eindhoven, the Netherl<str<strong>on</strong>g>and</str<strong>on</strong>g>s, e-mail: famo@fago.bwk.tue.nl<br />

ABSTRACT: Results <str<strong>on</strong>g>of</str<strong>on</strong>g> full-<str<strong>on</strong>g>scale</str<strong>on</strong>g> <str<strong>on</strong>g>measurements</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> c.f.d. <str<strong>on</strong>g>simulati<strong>on</strong>s</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>driving</str<strong>on</strong>g> <str<strong>on</strong>g>rain</str<strong>on</strong>g> <strong>on</strong> a building facade <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> wind at <strong>on</strong>e positi<strong>on</strong> at 0.5 m from the facade surface, al<strong>on</strong>g with reference <str<strong>on</strong>g>measurements</str<strong>on</strong>g>, are presented.<br />

The wind is simulated by a st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard K-ε model, <str<strong>on</strong>g>and</str<strong>on</strong>g> the results are compared with <str<strong>on</strong>g>measurements</str<strong>on</strong>g> quantitatively<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> qualitatively. The applied model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>driving</str<strong>on</strong>g> <str<strong>on</strong>g>rain</str<strong>on</strong>g> takes drop trajectories <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>rain</str<strong>on</strong>g>drop spectra into account.<br />

The simulated <str<strong>on</strong>g>driving</str<strong>on</strong>g> <str<strong>on</strong>g>rain</str<strong>on</strong>g> is compared with 10-min <str<strong>on</strong>g>measurements</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>driving</str<strong>on</strong>g> <str<strong>on</strong>g>rain</str<strong>on</strong>g>.<br />

1 INTRODUCTION<br />

Many factors determine the deteriorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> building<br />

envelopes. Heat <str<strong>on</strong>g>and</str<strong>on</strong>g> moisture transfer, dry <str<strong>on</strong>g>and</str<strong>on</strong>g> wet<br />

depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical substances, design deficiency<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> imperfecti<strong>on</strong>s affect the performance <str<strong>on</strong>g>and</str<strong>on</strong>g> durability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> facades, <str<strong>on</strong>g>and</str<strong>on</strong>g> the costs <str<strong>on</strong>g>of</str<strong>on</strong>g> maintenance. To design<br />

good buildings with regard to durable envelopes,<br />

knowlegde <str<strong>on</strong>g>of</str<strong>on</strong>g> the exposure to the local outdoor climate<br />

is primordial. One <str<strong>on</strong>g>of</str<strong>on</strong>g> the parameters is <str<strong>on</strong>g>driving</str<strong>on</strong>g><br />

<str<strong>on</strong>g>rain</str<strong>on</strong>g>, defined as <str<strong>on</strong>g>rain</str<strong>on</strong>g> that is carried by wind <str<strong>on</strong>g>and</str<strong>on</strong>g> driven<br />

<strong>on</strong>to the building envelope.<br />

A st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard method for building designers to estimate<br />

<str<strong>on</strong>g>driving</str<strong>on</strong>g>-<str<strong>on</strong>g>rain</str<strong>on</strong>g> quantities (BSI 1992) is available<br />

<strong>on</strong>ly in the UK. There are few other tools <str<strong>on</strong>g>and</str<strong>on</strong>g> data<br />

available, useful for the estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>driving</str<strong>on</strong>g> <str<strong>on</strong>g>rain</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

for laboratory tests <str<strong>on</strong>g>of</str<strong>on</strong>g> building materials <str<strong>on</strong>g>and</str<strong>on</strong>g> structures.<br />

In the last decade computati<strong>on</strong>al fluid dynamics<br />

(c.f.d.) became available. To our knowledge, <strong>on</strong>ly<br />

a single attempt has been made to compare <str<strong>on</strong>g>driving</str<strong>on</strong>g><str<strong>on</strong>g>rain</str<strong>on</strong>g><br />

c.f.d. <str<strong>on</strong>g>simulati<strong>on</strong>s</str<strong>on</strong>g> with wind tunnel experiments<br />

(Hangan <str<strong>on</strong>g>and</str<strong>on</strong>g> Surry 1998).<br />

Since December 1997 full-<str<strong>on</strong>g>scale</str<strong>on</strong>g> <str<strong>on</strong>g>measurements</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

wind <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>driving</str<strong>on</strong>g> <str<strong>on</strong>g>rain</str<strong>on</strong>g> <strong>on</strong> the west facade <str<strong>on</strong>g>of</str<strong>on</strong>g> the Main<br />

Building <str<strong>on</strong>g>of</str<strong>on</strong>g> the Eindhoven University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

(TUE) are carried out, al<strong>on</strong>g with reference measurents<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> wind <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>rain</str<strong>on</strong>g>. The aim is to determine the<br />

functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>driving</str<strong>on</strong>g>-<str<strong>on</strong>g>rain</str<strong>on</strong>g> quantities as functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reference<br />

wind <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>rain</str<strong>on</strong>g> parameters. In this paper, results <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the full-<str<strong>on</strong>g>scale</str<strong>on</strong>g> <str<strong>on</strong>g>measurements</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> c.f.d. <str<strong>on</strong>g>simulati<strong>on</strong>s</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> wind <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>driving</str<strong>on</strong>g> <str<strong>on</strong>g>rain</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the same situati<strong>on</strong><br />

are presented.<br />

2 DRIVING RAIN<br />

The general model <strong>on</strong> <str<strong>on</strong>g>driving</str<strong>on</strong>g> <str<strong>on</strong>g>rain</str<strong>on</strong>g> used in this study,<br />

has been described in van Mook et al. (1997). Such an<br />

approach is also used in e.g. Bookelmann <str<strong>on</strong>g>and</str<strong>on</strong>g> Wisse<br />

(1992), Choi (1993), Sankaran <str<strong>on</strong>g>and</str<strong>on</strong>g> Paters<strong>on</strong> (1995)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Hangan <str<strong>on</strong>g>and</str<strong>on</strong>g> Surry (1998). A brief summary defining<br />

the quantities <str<strong>on</strong>g>and</str<strong>on</strong>g> symbols used in this paper is<br />

provided here.<br />

The horiz<strong>on</strong>tal <str<strong>on</strong>g>rain</str<strong>on</strong>g> intensity R h [mm/s] is the rate<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>rain</str<strong>on</strong>g> water falling through a horiz<strong>on</strong>tal plane during<br />

a certain period in the undisturbed wind flow, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

equals to the summati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the masses <str<strong>on</strong>g>of</str<strong>on</strong>g> all the drops<br />

falling through that plane:<br />

∞<br />

R h <br />

0<br />

φ h´DµdD (1)<br />

with φ h´Dµ = horiz<strong>on</strong>tal drop mass spectrum<br />

[kg m 2 s 1 m<br />

1 ], i.e. the total mass <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>rain</str<strong>on</strong>g>drops<br />

with diameters D [m] falling <strong>on</strong> a horiz<strong>on</strong>tal plane in<br />

the undisturbed wind flow.<br />

The horiz<strong>on</strong>tal drop mass spectrum can be calculated<br />

from the drop number spectrum n h´Dµ [m 3<br />

m 1 ]:<br />

φ h´Dµ n π h´Dµv fall´Dµρ<br />

6 D3 (2)<br />

with v fall´Dµ = terminal velocity [m s<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> ρ = density [kg m<br />

3 ] <str<strong>on</strong>g>of</str<strong>on</strong>g> water.<br />

1 ] <str<strong>on</strong>g>of</str<strong>on</strong>g> a drop,<br />

1


westfacade <str<strong>on</strong>g>of</str<strong>on</strong>g> Main Building<br />

view from north<br />

plan<br />

Figure 1: Test site, measurement positi<strong>on</strong>s Ƚ-È <str<strong>on</strong>g>and</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> x-y-z directi<strong>on</strong>s.<br />

Before a <str<strong>on</strong>g>rain</str<strong>on</strong>g>drop impinges <strong>on</strong> a building facade,<br />

it has travelled from the clouds downwards, <str<strong>on</strong>g>and</str<strong>on</strong>g> its<br />

trajectory has been determined by the wind field, the<br />

gravitati<strong>on</strong>al force <str<strong>on</strong>g>and</str<strong>on</strong>g> drag forces. A fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

drops <str<strong>on</strong>g>of</str<strong>on</strong>g> a certain size D will impinge <strong>on</strong> a particular<br />

positi<strong>on</strong> <strong>on</strong> the facade:<br />

φ dr´Dµ<br />

η´Dµ <br />

φ (3)<br />

h´Dµ<br />

with η´Dµ = catch ratio [-] per drop size, φ dr´Dµ =<br />

drop mass spectrum [kg m 2 s 1 m 1 ], impinging <strong>on</strong><br />

the building envelope.<br />

Thus, the actual <str<strong>on</strong>g>driving</str<strong>on</strong>g>-<str<strong>on</strong>g>rain</str<strong>on</strong>g> intensity R dr <strong>on</strong> the<br />

building is:<br />

∞<br />

R dr <br />

0<br />

η´Dµφ h´DµdD (4)<br />

Unfortunately, <strong>on</strong>e can not measure the drop mass<br />

spectrum φ dr´Dµ <strong>on</strong> the building envelope. Therefore,<br />

a <str<strong>on</strong>g>driving</str<strong>on</strong>g>-<str<strong>on</strong>g>rain</str<strong>on</strong>g> ratio k is defined as:<br />

k R dr<br />

(5)<br />

R h<br />

In Lacy (1965) <str<strong>on</strong>g>and</str<strong>on</strong>g> BS 8104 (BSI 1992) the following<br />

relati<strong>on</strong>ship between the <str<strong>on</strong>g>driving</str<strong>on</strong>g>-<str<strong>on</strong>g>rain</str<strong>on</strong>g> intensity<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the reference wind speed U [m s 1 ] is assumed:<br />

R dr<br />

R b καU (6)<br />

h<br />

with κ = obstructi<strong>on</strong> factor [-] depending <strong>on</strong><br />

building geometry, α = free <str<strong>on</strong>g>driving</str<strong>on</strong>g>-<str<strong>on</strong>g>rain</str<strong>on</strong>g> ratio<br />

[s m 1 mm b h b ], with a c<strong>on</strong>stant value <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.22 (Lacy<br />

1965), <str<strong>on</strong>g>and</str<strong>on</strong>g> b = a c<strong>on</strong>stant, which according to Lacy<br />

(1965) equals to 0.88, here we assume b 1.<br />

3 SITE AND MEASUREMENT SET-UP<br />

<str<strong>on</strong>g>Full</str<strong>on</strong>g>-<str<strong>on</strong>g>scale</str<strong>on</strong>g> experiments have been carried out at the<br />

Main Building <strong>on</strong> the campus <str<strong>on</strong>g>of</str<strong>on</strong>g> the TUE. The dimensi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the Main Building are: (height) 44.5 m,<br />

(width) 167 m <str<strong>on</strong>g>and</str<strong>on</strong>g> (depth) 20 m. Figure 1 shows the<br />

west facade <str<strong>on</strong>g>of</str<strong>on</strong>g> the Main Building: <str<strong>on</strong>g>driving</str<strong>on</strong>g> <str<strong>on</strong>g>rain</str<strong>on</strong>g> is measured<br />

at two positi<strong>on</strong>s, È <str<strong>on</strong>g>and</str<strong>on</strong>g> È, <str<strong>on</strong>g>and</str<strong>on</strong>g> wind velocity<br />

is measured near the facade at positi<strong>on</strong> È.<br />

The site is suited because the prevailing directi<strong>on</strong><br />

for wind <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>rain</str<strong>on</strong>g> is between south <str<strong>on</strong>g>and</str<strong>on</strong>g> west. There<br />

are no large obstacles in south-west to west directi<strong>on</strong>.<br />

The fetch in this directi<strong>on</strong> is rough (roughness length<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 1 ¦ 0.4 m, with a displacement height <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 m<br />

(Geurts 1997)), <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>sists mainly <str<strong>on</strong>g>of</str<strong>on</strong>g> trees over a<br />

distance <str<strong>on</strong>g>of</str<strong>on</strong>g> 400 m. The nearest high-rise building in<br />

this directi<strong>on</strong> is 500 m away. The wind characteristics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the site have been presented in Geurts (1997).<br />

The reference wind velocity is measured at 45 m<br />

height (from ground level) <strong>on</strong> a mast, located 127 m<br />

westwards from the Main Building (figure 1, positi<strong>on</strong><br />

Ƚ). The mast is st<str<strong>on</strong>g>and</str<strong>on</strong>g>ing <strong>on</strong> the Auditorium, which<br />

is 14 m high, 77 m l<strong>on</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> 56 m wide, <str<strong>on</strong>g>and</str<strong>on</strong>g> which is<br />

located at 72 m from the Main Building.<br />

2


The reference horiz<strong>on</strong>tal <str<strong>on</strong>g>rain</str<strong>on</strong>g> intensity is measured<br />

by two tipping-bucket <str<strong>on</strong>g>rain</str<strong>on</strong>g> gauges <strong>on</strong> the ro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Auditorium at positi<strong>on</strong>s Ⱦ <str<strong>on</strong>g>and</str<strong>on</strong>g> ȿ. Since December<br />

1998, a disdrometer (a device to measure the <str<strong>on</strong>g>rain</str<strong>on</strong>g>drop<br />

spectrum) has been installed next to <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

tipping-bucket <str<strong>on</strong>g>rain</str<strong>on</strong>g> gauges (È¿).<br />

The two <str<strong>on</strong>g>driving</str<strong>on</strong>g>-<str<strong>on</strong>g>rain</str<strong>on</strong>g> gauges at positi<strong>on</strong>s È <str<strong>on</strong>g>and</str<strong>on</strong>g> È<br />

have been develloped at the TUE. They are identical<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>sist mainly <str<strong>on</strong>g>of</str<strong>on</strong>g> (1) a tefl<strong>on</strong> coated collector<br />

(a shallow plate <strong>on</strong> which <str<strong>on</strong>g>rain</str<strong>on</strong>g>drops impinge <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

are supposed to drip downwards), (2) a wiper which<br />

improves the coagulati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> dripping-down <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

drops <strong>on</strong> the collector, (3) a reservoir <strong>on</strong> a balance to<br />

measure the collected <str<strong>on</strong>g>rain</str<strong>on</strong>g> water, see figure 2. Comparis<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this type <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>driving</str<strong>on</strong>g>-<str<strong>on</strong>g>rain</str<strong>on</strong>g> gauge with other<br />

types has been discussed in van Mook (1998), <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

will be discussed in Högberg et al. (1998).<br />

At positi<strong>on</strong> È, an ultras<strong>on</strong>ic anemometer is placed<br />

<strong>on</strong> an arm, by which the distance to the facade surface<br />

can be adjusted between 0.25 <str<strong>on</strong>g>and</str<strong>on</strong>g> 1.25 m.<br />

Table 1 gives an overview <str<strong>on</strong>g>of</str<strong>on</strong>g> the instrumentati<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the applied output sample rates.<br />

4 SIMULATION METHOD<br />

4.1 Wind calculati<strong>on</strong> method<br />

Simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the wind around the Main Building<br />

have been performed by a commercially available<br />

c.f.d. package Fluent (versi<strong>on</strong> 4.4). The used model<br />

is a st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard K-ε model (Fluent Inc. 1995). Some important<br />

features are as follows:<br />

¯ Except for C µ 0032, the st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard values <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the K-ε model have been applied. The C µ c<strong>on</strong>stant<br />

has been adapted according to the findings<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Bottema (1993), who also compared his <str<strong>on</strong>g>simulati<strong>on</strong>s</str<strong>on</strong>g><br />

favourably with wind tunnel <str<strong>on</strong>g>measurements</str<strong>on</strong>g>.<br />

Figure 2: Driving-<str<strong>on</strong>g>rain</str<strong>on</strong>g> gauge, with <str<strong>on</strong>g>driving</str<strong>on</strong>g>-<str<strong>on</strong>g>rain</str<strong>on</strong>g> collector<br />

II, wind deflector, reservoir (3 litres) <str<strong>on</strong>g>and</str<strong>on</strong>g> balance. Left:<br />

foreplate with the round catchment area (0.492 m 2 ). Right:<br />

backplate <str<strong>on</strong>g>and</str<strong>on</strong>g> the inside.<br />

¯ The three-dimensi<strong>on</strong>al computati<strong>on</strong>al domain is<br />

1190 m l<strong>on</strong>g in east-west directi<strong>on</strong>, 1477 m l<strong>on</strong>g<br />

in north-south directi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> 225 m high. It is devided<br />

into 95, 96 <str<strong>on</strong>g>and</str<strong>on</strong>g> 47 cells respectively.<br />

Figure 3 shows the computati<strong>on</strong>al grid. The first<br />

grid cells <strong>on</strong> the facade <str<strong>on</strong>g>of</str<strong>on</strong>g> the Main Building<br />

have a thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.25 m. Care is taken to keep<br />

the grid expansi<strong>on</strong> factor <str<strong>on</strong>g>of</str<strong>on</strong>g> two successive grid<br />

lines between 0.7 <str<strong>on</strong>g>and</str<strong>on</strong>g> 1.3.<br />

The grid is a so-called structured grid, so that undesired<br />

large expansi<strong>on</strong> factors <str<strong>on</strong>g>and</str<strong>on</strong>g> cell aspect<br />

ratios are inevitable in some parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the grid.<br />

¯ The pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> the wind coming into the domain<br />

is described by:<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g>:<br />

u 20´zµ u £1<br />

04 ln z<br />

z 01<br />

<br />

u u <br />

£ z<br />

20´zµ <br />

04 ln<br />

z 0<br />

d<br />

<br />

for z 20m (7)<br />

for z 20m (8)<br />

with u´zµ = horiz<strong>on</strong>tal wind velocity [m s<br />

1 ]at<br />

height z [m] above ground level, z 0 = roughness<br />

Table 1: Measurement positi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> instrumentati<strong>on</strong>. The<br />

reference quantities (at the Auditorium) are marked with<br />

an asterisk. See also figure 1.<br />

positi<strong>on</strong> quantity/instrument<br />

[output sample rate]<br />

Ƚ £ wind velocity (3d) / Solent Research Ultras<strong>on</strong>ic<br />

Anemometer [1 / min]<br />

Ⱦ £ horiz<strong>on</strong>tal <str<strong>on</strong>g>rain</str<strong>on</strong>g> intensity / Young tipping<br />

bucket <str<strong>on</strong>g>rain</str<strong>on</strong>g> gauge 52202 [2 / min]<br />

È¿ £ horiz<strong>on</strong>tal <str<strong>on</strong>g>rain</str<strong>on</strong>g> intensity / Young tipping<br />

bucket <str<strong>on</strong>g>rain</str<strong>on</strong>g> gauge 52202 [2 / min]<br />

È¿ £ durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> horiz<strong>on</strong>tal <str<strong>on</strong>g>rain</str<strong>on</strong>g> / home-made<br />

<str<strong>on</strong>g>rain</str<strong>on</strong>g> indicator [2 / min]<br />

È¿ £ horiz<strong>on</strong>tal <str<strong>on</strong>g>rain</str<strong>on</strong>g>drop spectrum / Parsivel<br />

M300 (IMK Karlsruhe) [2 / min]<br />

È wind velocity (3d) at 50–125 cm from facade<br />

surface / Solent Windmaster 1086M<br />

Ultras<strong>on</strong>ic Anemometer [1 / s]<br />

È <str<strong>on</strong>g>driving</str<strong>on</strong>g>-<str<strong>on</strong>g>rain</str<strong>on</strong>g> intensity / <str<strong>on</strong>g>driving</str<strong>on</strong>g>-<str<strong>on</strong>g>rain</str<strong>on</strong>g> collector<br />

II with wiper + balance [2 / min]<br />

È <str<strong>on</strong>g>driving</str<strong>on</strong>g>-<str<strong>on</strong>g>rain</str<strong>on</strong>g> intensity / <str<strong>on</strong>g>driving</str<strong>on</strong>g>-<str<strong>on</strong>g>rain</str<strong>on</strong>g> collector<br />

II with wiper + balance [2 / min]<br />

3


length [m] for z 20 m, z 01 = roughness length<br />

[m] for z 20 m, u £ = fricti<strong>on</strong> velocity [m s 1 ],<br />

u £1 = fricti<strong>on</strong> velocity [m s 1 ] yielded from<br />

u 20´20µ u 20´20µ, d = displacement height<br />

[m].<br />

The values <str<strong>on</strong>g>of</str<strong>on</strong>g> z 0 1.0 m <str<strong>on</strong>g>and</str<strong>on</strong>g> d 10 m have been<br />

determined by <str<strong>on</strong>g>measurements</str<strong>on</strong>g> <strong>on</strong> the site (Geurts<br />

1997). The split-up <str<strong>on</strong>g>of</str<strong>on</strong>g> the wind pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile is necessary<br />

to account for the displacement height d<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 10 m; otherwise, the wind pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile below 10<br />

m height would be undetermined. Moreover, the<br />

fetch c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a park up to a distance <str<strong>on</strong>g>of</str<strong>on</strong>g> 400<br />

m from the Main Building (therefore a estimated<br />

z 01 <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.1 m) <str<strong>on</strong>g>and</str<strong>on</strong>g> buildings west from the park<br />

with a height <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 m.<br />

The fricti<strong>on</strong> velocity u £ is based <strong>on</strong> the wind<br />

speed U 10 at Eindhoven airport (5 km westward<br />

from the Main Building, with z =10m,<br />

z 0 = 0.03 m <str<strong>on</strong>g>and</str<strong>on</strong>g> d = 0 m) <str<strong>on</strong>g>and</str<strong>on</strong>g> the measured ratio<br />

u´45µU 10 113 (Geurts 1997), which is in<br />

agreement to the internal boundary layer model<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Simiu <str<strong>on</strong>g>and</str<strong>on</strong>g> Scanlan (1986, p. 67).<br />

¯ As the facade c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a smooth glass<br />

cladding, a value <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.0005 m is assumed for its<br />

roughness length.<br />

4.2 Driving-<str<strong>on</strong>g>rain</str<strong>on</strong>g> calculati<strong>on</strong> method<br />

The calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the drop trajectories have also<br />

been performed by the same c.f.d. package Fluent<br />

(versi<strong>on</strong> 4.4). The trajectories were calculated after<br />

the wind flow was calculated for a chosen geometry<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> reference wind speed. The trajectory calculati<strong>on</strong><br />

Figure 3: Computati<strong>on</strong>al grid. View from south-west. From<br />

left to right: the Auditorium, the Main Building <str<strong>on</strong>g>and</str<strong>on</strong>g> building<br />

T.<br />

has also implicati<strong>on</strong>s for the the computati<strong>on</strong>al grid:<br />

the dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the grid cells in which drop trajectory<br />

deviati<strong>on</strong>s will occur, should be smaller than the<br />

stopping distance <str<strong>on</strong>g>of</str<strong>on</strong>g> the smallest drop. This implies a<br />

maximum dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5 m near the facade, i.e. the<br />

approximate stopping distance <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 m for a 0.5 mm<br />

drop at 2 m s<br />

1 (van Mook et al. 1997). Dispersi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

drops due to the turbulence <str<strong>on</strong>g>of</str<strong>on</strong>g> wind is not taken into<br />

account.<br />

After the calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> drop trajectories, catch ratios<br />

η´Dµ are calculated by determining the number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> drops released in the undisturbed wind field per<br />

square metre, <str<strong>on</strong>g>and</str<strong>on</strong>g> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> drops impinged <strong>on</strong> a<br />

chosen positi<strong>on</strong> <strong>on</strong> the building facade per square metre.<br />

A total <str<strong>on</strong>g>of</str<strong>on</strong>g> 20,000 drops (with D = 0.5, 1.0, 1.5,<br />

... 6.0 mm) were released in the computati<strong>on</strong> domain,<br />

for every <str<strong>on</strong>g>of</str<strong>on</strong>g> the three chosen reference wind speeds<br />

U href 3.5, 5.7 <str<strong>on</strong>g>and</str<strong>on</strong>g> 11.2 m s<br />

1 , <str<strong>on</strong>g>and</str<strong>on</strong>g> two wind directi<strong>on</strong>s<br />

Φ ref 270 Æ (= normal to the facade) <str<strong>on</strong>g>and</str<strong>on</strong>g> Φ ref <br />

300 Æ .<br />

5 RESULTS AND DISCUSSION<br />

5.1 Wind<br />

The <str<strong>on</strong>g>simulati<strong>on</strong>s</str<strong>on</strong>g> have been compared in mainly three<br />

ways:<br />

¯ Normalised wind velocities: Figure 4a shows the<br />

wind speed at 50 cm from the facade at positi<strong>on</strong><br />

È, U absÈ , normalised by the horiz<strong>on</strong>tal wind<br />

speed U href at positi<strong>on</strong> Ƚ.<br />

The simulated wind speeds U absÈ (figure 4a)<br />

are (just) within the st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<str<strong>on</strong>g>measurements</str<strong>on</strong>g>. The larger deviati<strong>on</strong>s are found<br />

at wind directi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 240 Æ , due to the wake<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> building T. Building T (figures 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> 3) has<br />

the same height as the Main Building. When<br />

building T is included in the computati<strong>on</strong>al domain,<br />

the results compare better with the <str<strong>on</strong>g>measurements</str<strong>on</strong>g>.<br />

Figures 4b-d show the normalised velocity comp<strong>on</strong>ents<br />

at 50 cm from the facade at positi<strong>on</strong> È.<br />

See figure 1 for the definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the x-y-z axis<br />

system. The predicti<strong>on</strong>s made by the <str<strong>on</strong>g>simulati<strong>on</strong>s</str<strong>on</strong>g><br />

(with inclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> building T in the grid) <str<strong>on</strong>g>of</str<strong>on</strong>g> U xÈ<br />

are within the st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>measurements</str<strong>on</strong>g>.<br />

But this does not apply for the vertical<br />

comp<strong>on</strong>ent U yÈ , which is the sec<strong>on</strong>d most important<br />

c<strong>on</strong>tributi<strong>on</strong> to the wind speed at È. In<br />

this case <strong>on</strong>e should be carefull interpreting the<br />

measured data: the ultras<strong>on</strong>ic anemometer at È<br />

4


= 10-min mean <str<strong>on</strong>g>and</str<strong>on</strong>g> st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard dev.<br />

= simulati<strong>on</strong> without building T<br />

= simulati<strong>on</strong> with building T<br />

Uabs_P4 / Uh_ref [−]<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Uy_P4 / Uh_ref [−]<br />

0<br />

−0.01<br />

−0.02<br />

−0.03<br />

−0.04<br />

a.<br />

0<br />

200 250 300 350<br />

ref. horiz<strong>on</strong>tal wind directi<strong>on</strong> [deg from N]<br />

c.<br />

−0.05<br />

200 250 300 350<br />

ref. horiz<strong>on</strong>tal wind directi<strong>on</strong> [deg from N]<br />

0.8<br />

0.6<br />

0.25<br />

Ux_P4 / Uh_ref [−]<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

−0.6<br />

Uz_P4 / Uh_ref [−]<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

b.<br />

−0.8<br />

200 250 300 350<br />

ref. horiz<strong>on</strong>tal wind directi<strong>on</strong> [deg from N]<br />

d.<br />

0<br />

200 250 300 350<br />

ref. horiz<strong>on</strong>tal wind directi<strong>on</strong> [deg from N]<br />

Figure 4: Measured <str<strong>on</strong>g>and</str<strong>on</strong>g> simulated wind velocities at 50 cm from the facade at positi<strong>on</strong> È, normalised by the reference<br />

wind speed U href, as functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the reference wind directi<strong>on</strong> Φ ref . Figure 4a: the normalised wind speed U absÈ. Figure<br />

4b-d: the normalised velocity comp<strong>on</strong>ents U xÈ, U yÈ <str<strong>on</strong>g>and</str<strong>on</strong>g> U zÈ.<br />

is positi<strong>on</strong>ed vertically, <str<strong>on</strong>g>and</str<strong>on</strong>g> in this directi<strong>on</strong>, the<br />

vertical wind is mostly obstructed by the housing<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the anemometer.<br />

¯ Mean pressure coefficients: Data from previous<br />

wind tunnel <str<strong>on</strong>g>and</str<strong>on</strong>g> full-<str<strong>on</strong>g>scale</str<strong>on</strong>g> <str<strong>on</strong>g>measurements</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

mean pressure coefficients <strong>on</strong> the west facade <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the Main Building (Geurts 1997) are compared<br />

with the simulati<strong>on</strong> results <str<strong>on</strong>g>of</str<strong>on</strong>g> the current study<br />

in figure 5.<br />

The simulated pressure coefficients at the edges<br />

show large deviati<strong>on</strong>s from the <str<strong>on</strong>g>measurements</str<strong>on</strong>g>.<br />

This might be caused by too large or n<strong>on</strong>-ideally<br />

formed grid cells near the edges.<br />

The general difficulties <str<strong>on</strong>g>of</str<strong>on</strong>g> the st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard K-ε model<br />

with the simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> recirculati<strong>on</strong> <strong>on</strong> the leeward<br />

sides <str<strong>on</strong>g>and</str<strong>on</strong>g> the (over-)producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> turbulent kinetic<br />

energy at the windward edges <str<strong>on</strong>g>of</str<strong>on</strong>g> a building have been<br />

pointed out in the literature (see e.g. Murakami et al.<br />

(1992)). Literature also points out, though, that generally<br />

the wind speed values at the windward side <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a building are simulated in good agreement to (wind<br />

tunnel) <str<strong>on</strong>g>measurements</str<strong>on</strong>g>. Seen this, the general difficulties,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the use <str<strong>on</strong>g>of</str<strong>on</strong>g> a structured grid with inevitably<br />

n<strong>on</strong>-ideally shaped grid cells, the <str<strong>on</strong>g>simulati<strong>on</strong>s</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

present study seem to compare well enough with the<br />

<str<strong>on</strong>g>measurements</str<strong>on</strong>g> to proceed to the <str<strong>on</strong>g>driving</str<strong>on</strong>g>-<str<strong>on</strong>g>rain</str<strong>on</strong>g> calculati<strong>on</strong>s.<br />

¯ Qualitatively: The <str<strong>on</strong>g>simulati<strong>on</strong>s</str<strong>on</strong>g> show recirculati<strong>on</strong><br />

<strong>on</strong> the ro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> side facades.<br />

5


wind tunnel measurement fit<br />

full-<str<strong>on</strong>g>scale</str<strong>on</strong>g> <str<strong>on</strong>g>measurements</str<strong>on</strong>g><br />

simulati<strong>on</strong><br />

mean pressure coefficient [−]<br />

1.5<br />

1<br />

0.5<br />

Φ ref 270 Æ<br />

Φ ref 300 Æ<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

relative distance x_so [−]<br />

Figure 5: Measured (Geurts 1997) <str<strong>on</strong>g>and</str<strong>on</strong>g> simulated (current<br />

study) mean pressure coefficients as functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the positi<strong>on</strong><br />

<strong>on</strong> the facade, at 72% <str<strong>on</strong>g>of</str<strong>on</strong>g> building height. The north<br />

edge <str<strong>on</strong>g>of</str<strong>on</strong>g> the west facade is represented by the relative positi<strong>on</strong><br />

x so = 1, the south edge by x so =0.<br />

5.2 Driving <str<strong>on</strong>g>rain</str<strong>on</strong>g><br />

Figure 6a shows the measured <str<strong>on</strong>g>driving</str<strong>on</strong>g>-<str<strong>on</strong>g>rain</str<strong>on</strong>g> ratios k<br />

(eq. 5), at facade positi<strong>on</strong> È as functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the reference<br />

wind velocity comp<strong>on</strong>ent normal to the facade<br />

(U yref ), measured at Ƚ. The 10-min values in this<br />

graph show a large scatter, although the data has been<br />

selected by the following criteria: (1) wind from west<br />

225 Æ Φ ref 315 Æ , (2) a maximum r.m.s. wind directi<strong>on</strong><br />

σ Φref 5 Æ , (3) a minimum for the reference<br />

horiz<strong>on</strong>tal <str<strong>on</strong>g>rain</str<strong>on</strong>g> intensity R h 002 mm/h, <str<strong>on</strong>g>and</str<strong>on</strong>g>, (4) a<br />

maximum relative difference in <str<strong>on</strong>g>rain</str<strong>on</strong>g> intensity R h ,at<br />

the two reference positi<strong>on</strong>s Ⱦ <str<strong>on</strong>g>and</str<strong>on</strong>g> ȿ:<br />

R hȿ R hȾ <br />

02<br />

R hȾ<br />

By criterium 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 4 the relative error in R h is limited;<br />

the other criteria have been defined to make a<br />

comparis<strong>on</strong> with the simulati<strong>on</strong> possible.<br />

The measured <str<strong>on</strong>g>driving</str<strong>on</strong>g>-<str<strong>on</strong>g>rain</str<strong>on</strong>g> ratios k as functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the reference horiz<strong>on</strong>tal <str<strong>on</strong>g>rain</str<strong>on</strong>g> intensity R h also show<br />

scatter. Figure 6b shows this for the data <str<strong>on</strong>g>of</str<strong>on</strong>g> figure 6a,<br />

which have been additi<strong>on</strong>ally selected for reference<br />

wind speeds 5 U href 7ms 1 . The <str<strong>on</strong>g>driving</str<strong>on</strong>g>-<str<strong>on</strong>g>rain</str<strong>on</strong>g><br />

ratios do not show a clear dependency to the horiz<strong>on</strong>tal<br />

<str<strong>on</strong>g>rain</str<strong>on</strong>g> intensity. From figures 6a <str<strong>on</strong>g>and</str<strong>on</strong>g> 6b <strong>on</strong>e can c<strong>on</strong>clude<br />

that an other parameter plays a role in <str<strong>on</strong>g>driving</str<strong>on</strong>g><br />

<str<strong>on</strong>g>rain</str<strong>on</strong>g>. Below, with the results <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>driving</str<strong>on</strong>g>-<str<strong>on</strong>g>rain</str<strong>on</strong>g> <str<strong>on</strong>g>simulati<strong>on</strong>s</str<strong>on</strong>g>,<br />

<strong>on</strong>e will see that the <str<strong>on</strong>g>rain</str<strong>on</strong>g>drop spectrum may<br />

be this parameter.<br />

Figure 7 gives the catch ratio η´Dµ as functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

facade positi<strong>on</strong>s È <str<strong>on</strong>g>and</str<strong>on</strong>g> È, a reference wind directi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 240 Æ (= 30 Æ from the normal <str<strong>on</strong>g>of</str<strong>on</strong>g> the facade) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

three reference wind speeds. The shape <str<strong>on</strong>g>of</str<strong>on</strong>g> the catch<br />

ratio as functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the drop diameter is as expected:<br />

smaller drops are less likely to impinge <strong>on</strong> the building<br />

facade because they are more easily carried by the<br />

wind than thicker drops. In the figure is also visible<br />

that an increase <str<strong>on</strong>g>of</str<strong>on</strong>g> the reference wind speed causes<br />

more drops to hit the facade. To calculate <str<strong>on</strong>g>driving</str<strong>on</strong>g><str<strong>on</strong>g>rain</str<strong>on</strong>g><br />

ratios k <strong>on</strong>e needs horiz<strong>on</strong>tal <str<strong>on</strong>g>rain</str<strong>on</strong>g>drop spectra<br />

n h´Dµ. Unfortunately, usable data from the disdrometer<br />

have not yet been obtained, so <str<strong>on</strong>g>rain</str<strong>on</strong>g>drop spectra<br />

known from literature will be used here (Marshall <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Palmer 1948), (Ulbrich 1983). See figure 8.<br />

The resulting <str<strong>on</strong>g>driving</str<strong>on</strong>g>-<str<strong>on</strong>g>rain</str<strong>on</strong>g> ratios k, calculated from<br />

a.<br />

b.<br />

<str<strong>on</strong>g>driving</str<strong>on</strong>g>−<str<strong>on</strong>g>rain</str<strong>on</strong>g> ratio at P5 [−]<br />

<str<strong>on</strong>g>driving</str<strong>on</strong>g>−<str<strong>on</strong>g>rain</str<strong>on</strong>g> ratio at P5 [−]<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 2 4 6 8 10 12<br />

ref. wind velocity normal to facade [m/s]<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

0 1 2 3 4 5<br />

ref. horiz<strong>on</strong>tal <str<strong>on</strong>g>rain</str<strong>on</strong>g> intensity [mm/h]<br />

Figure 6: Measured <str<strong>on</strong>g>driving</str<strong>on</strong>g>-<str<strong>on</strong>g>rain</str<strong>on</strong>g> ratios k (10-min values)<br />

at the facade positi<strong>on</strong> È, as functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> (a) the reference<br />

wind velocity comp<strong>on</strong>tent normal to the facade U yref <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

(b) the reference horiz<strong>on</strong>tal <str<strong>on</strong>g>rain</str<strong>on</strong>g> intensity R h .<br />

6


the menti<strong>on</strong>ed horiz<strong>on</strong>tal <str<strong>on</strong>g>rain</str<strong>on</strong>g>drop spectra, are shown<br />

in figure 9 with the mean <str<strong>on</strong>g>and</str<strong>on</strong>g> st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the measured <str<strong>on</strong>g>driving</str<strong>on</strong>g>-<str<strong>on</strong>g>rain</str<strong>on</strong>g> ratios <str<strong>on</strong>g>of</str<strong>on</strong>g> figure 6a. Two observati<strong>on</strong>s<br />

are made: Firstly, several <str<strong>on</strong>g>of</str<strong>on</strong>g> the simulated<br />

catch ratios for U yref 6ms 1 are well outside <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard deviati<strong>on</strong> range <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>measurements</str<strong>on</strong>g>. An<br />

explanati<strong>on</strong> might be that the chosen <str<strong>on</strong>g>rain</str<strong>on</strong>g>drop spectra<br />

are not realistic. For a reference wind speed U yref <br />

4ms 1 , the overestimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the simulated <str<strong>on</strong>g>driving</str<strong>on</strong>g>-<br />

U yref = 3.1 m s<br />

1 , Φ ref = 240 Æ<br />

U yref = 5.0 m s<br />

1 , Φ ref = 240 Æ<br />

U yref = 9.5 m s<br />

1 , Φ ref = 240 Æ<br />

È<br />

È<br />

<str<strong>on</strong>g>driving</str<strong>on</strong>g>−<str<strong>on</strong>g>rain</str<strong>on</strong>g> ratio at P5 [−]<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

<str<strong>on</strong>g>measurements</str<strong>on</strong>g>: = mean <str<strong>on</strong>g>and</str<strong>on</strong>g> st<str<strong>on</strong>g>and</str<strong>on</strong>g>. dev. k<br />

<str<strong>on</strong>g>simulati<strong>on</strong>s</str<strong>on</strong>g> : = 0.1 mm/h, = 1 mm/h,<br />

= 5 mm/h (R h )<br />

catch ratio [−]<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 1 2 3 4 5 6<br />

drop diameter [mm]<br />

Figure 7: Simulated catch ratio η´Dµ at facade positi<strong>on</strong>s È<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> È for wind directi<strong>on</strong> Φ ref = 240 Æ .<br />

horiz<strong>on</strong>tal drop mass spectrum [kg/(m2.s)]<br />

= Marshall <str<strong>on</strong>g>and</str<strong>on</strong>g> Palmer<br />

= Ulbrich<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 1 2 3 4 5 6<br />

3 x drop diameter [mm]<br />

Figure 8: Horiz<strong>on</strong>tal drop mass spectrum φ h´Dµ per drop<br />

size interval for reference horiz<strong>on</strong>tal <str<strong>on</strong>g>rain</str<strong>on</strong>g> intensities R h <br />

0.1, 1.0 <str<strong>on</strong>g>and</str<strong>on</strong>g> 5.0 mm/h <str<strong>on</strong>g>and</str<strong>on</strong>g> two <str<strong>on</strong>g>rain</str<strong>on</strong>g>drop spectra.<br />

0<br />

0 2 4 6 8 10 12<br />

ref. wind velocity normal to facade [m/s]<br />

Figure 9: Measured <str<strong>on</strong>g>and</str<strong>on</strong>g> simulated <str<strong>on</strong>g>driving</str<strong>on</strong>g>-<str<strong>on</strong>g>rain</str<strong>on</strong>g> ratios k at<br />

the facade positi<strong>on</strong> È, as functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the reference wind<br />

velocity comp<strong>on</strong>tent normal to the facade U yref <str<strong>on</strong>g>and</str<strong>on</strong>g> the reference<br />

horiz<strong>on</strong>tal <str<strong>on</strong>g>rain</str<strong>on</strong>g> intensity R h . Cf. figure 6a.<br />

<str<strong>on</strong>g>rain</str<strong>on</strong>g> ratio is apparent, <str<strong>on</strong>g>and</str<strong>on</strong>g> this may to be due to not yet<br />

investigated errors in the simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> wind velocity<br />

field <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>rain</str<strong>on</strong>g>drop trajectories.<br />

Sec<strong>on</strong>dly, the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>rain</str<strong>on</strong>g>drop<br />

spectrum is also visible in the simulated catch ratios<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> figure 9: different <str<strong>on</strong>g>rain</str<strong>on</strong>g>drop spectra with the same<br />

<str<strong>on</strong>g>rain</str<strong>on</strong>g> intensity yield different catch ratios. This is an indicati<strong>on</strong><br />

for the previously stated assumpti<strong>on</strong> that the<br />

<str<strong>on</strong>g>driving</str<strong>on</strong>g>-<str<strong>on</strong>g>rain</str<strong>on</strong>g> ratio k does not primarily depend <strong>on</strong> the<br />

horiz<strong>on</strong>tal <str<strong>on</strong>g>rain</str<strong>on</strong>g> intensity but <strong>on</strong> the <str<strong>on</strong>g>rain</str<strong>on</strong>g>drop spectrum.<br />

Finally, a note is made <strong>on</strong> the relati<strong>on</strong>ship fomulated<br />

in Lacy (1965) <str<strong>on</strong>g>and</str<strong>on</strong>g> BS 8104 (BSI 1992) (eq. 6)<br />

with regard to the <str<strong>on</strong>g>measurements</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the present study.<br />

The measured catch ratios <str<strong>on</strong>g>of</str<strong>on</strong>g> figure 6a can be well<br />

fitted in a linear relati<strong>on</strong>ship like eq. 6, provided that<br />

<strong>on</strong>e should take U yref for U <str<strong>on</strong>g>and</str<strong>on</strong>g> account for k 0at<br />

U yref 2ms 1 .<br />

6 CONCLUSIONS<br />

In spite <str<strong>on</strong>g>of</str<strong>on</strong>g> the limitati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the applied K-ε model<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the practically limited number <str<strong>on</strong>g>of</str<strong>on</strong>g> grid cells <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the applied structured grid, the simulated wind speed<br />

at the facade is within the st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<str<strong>on</strong>g>measurements</str<strong>on</strong>g>. The simulated mean pressure coefficient<br />

at the windward facade agrees well with <str<strong>on</strong>g>measurements</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> previous studies at the Main Building<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the TUE. However, the mean pressure coefficient<br />

is overestimated at the edges <str<strong>on</strong>g>of</str<strong>on</strong>g> the windward facade.<br />

7


With <str<strong>on</strong>g>rain</str<strong>on</strong>g>drop spectra known from literature, <str<strong>on</strong>g>driving</str<strong>on</strong>g><br />

<str<strong>on</strong>g>rain</str<strong>on</strong>g> is simulated. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> the simulated <str<strong>on</strong>g>driving</str<strong>on</strong>g>-<str<strong>on</strong>g>rain</str<strong>on</strong>g><br />

ratios are well outside the st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

measured <str<strong>on</strong>g>driving</str<strong>on</strong>g>-<str<strong>on</strong>g>rain</str<strong>on</strong>g> ratio, especially at low wind<br />

speeds (U yref 4ms 1 ). A further investigati<strong>on</strong><br />

should bring clarity, whether it is mainly due to errors<br />

in the calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the wind velocity field, the<br />

drop trajectories or the chosen <str<strong>on</strong>g>rain</str<strong>on</strong>g>drop spectra.<br />

The 10-min values <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>driving</str<strong>on</strong>g>-<str<strong>on</strong>g>rain</str<strong>on</strong>g> ratio k show a<br />

large scatter, even selected for a refererence wind velocity<br />

interval U yref , a maximum r.m.s. wind directi<strong>on</strong><br />

σ Φref , <str<strong>on</strong>g>and</str<strong>on</strong>g> a minimum horiz<strong>on</strong>tal <str<strong>on</strong>g>rain</str<strong>on</strong>g> intensity R h . The<br />

st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> k as functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> U yref is 50%<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the mean value <str<strong>on</strong>g>of</str<strong>on</strong>g> k. The scatter <str<strong>on</strong>g>of</str<strong>on</strong>g> 10-min values<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> k does not <strong>on</strong>ly seem to depend <strong>on</strong> the menti<strong>on</strong>ed<br />

parameters but is presumably also due to variati<strong>on</strong>s in<br />

<str<strong>on</strong>g>rain</str<strong>on</strong>g>drop spectra, as is also visible in the <str<strong>on</strong>g>simulati<strong>on</strong>s</str<strong>on</strong>g>.<br />

Further research will include <str<strong>on</strong>g>rain</str<strong>on</strong>g>drop spectrum <str<strong>on</strong>g>measurements</str<strong>on</strong>g><br />

by a disdrometer to verify this.<br />

ACKNOWLEDGEMENTS<br />

This research is a joint project <str<strong>on</strong>g>of</str<strong>on</strong>g> the Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Architecture,<br />

Planning <str<strong>on</strong>g>and</str<strong>on</strong>g> Building <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Faculty<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Technical Physics, at the TUE. The project is partly<br />

funded by the comm<strong>on</strong> TUE programme <strong>on</strong> ‘Technology<br />

for Sustainable Development’.<br />

The fruitfull discussi<strong>on</strong>s with <str<strong>on</strong>g>and</str<strong>on</strong>g> the suggesti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> dr. Marcel Bottema, dr.ir. Chris Geurts, pr<str<strong>on</strong>g>of</str<strong>on</strong>g>.dr.ir.<br />

Klaas Kopinga, dr. Suresh Kumar M.Sc., pr<str<strong>on</strong>g>of</str<strong>on</strong>g>.ir. Jacob<br />

Wisse <str<strong>on</strong>g>and</str<strong>on</strong>g> dr.ir. Martin de Wit are greatly acknowledged.<br />

REFERENCES<br />

Bookelmann, J. <str<strong>on</strong>g>and</str<strong>on</strong>g> J. Wisse (1992). Numerical estimate<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>driving</str<strong>on</strong>g> <str<strong>on</strong>g>rain</str<strong>on</strong>g>. In Inaugural C<strong>on</strong>ference <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the Wind Engineering Society, 28–30 Sept., Cambrigde<br />

(UK). Wind Engineering Society.<br />

Bottema, M. (1993). Wind climate <str<strong>on</strong>g>and</str<strong>on</strong>g> urban geometry.<br />

Ph. D. thesis, Eindhoven University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology.<br />

BSI (1992). BS 8104: Code <str<strong>on</strong>g>of</str<strong>on</strong>g> practice for assessing<br />

exposure <str<strong>on</strong>g>of</str<strong>on</strong>g> walls to wind-driven <str<strong>on</strong>g>rain</str<strong>on</strong>g>. BSI.<br />

Choi, E. (1993). Simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> wind-driven-<str<strong>on</strong>g>rain</str<strong>on</strong>g><br />

around a building. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Wind Engineering<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Industrial Aerodynamics 46/47, 721–729.<br />

<strong>on</strong> building facades. Ph. D. thesis, Eindhoven University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Technology.<br />

Hangan, H. <str<strong>on</strong>g>and</str<strong>on</strong>g> D. Surry (1998). Wind-driven <str<strong>on</strong>g>rain</str<strong>on</strong>g> <strong>on</strong><br />

buildings: A C-FD-E approach. In Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the 4th UK C<strong>on</strong>ference <strong>on</strong> Wind Engineering, Bristol<br />

(UK), 2–4 September 1998, pp. 23–28. Wind<br />

Engineering Society.<br />

Högberg, A., M. K. Kragh, <str<strong>on</strong>g>and</str<strong>on</strong>g> F. van Mook (1998).<br />

A comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>driving</str<strong>on</strong>g> <str<strong>on</strong>g>rain</str<strong>on</strong>g> <str<strong>on</strong>g>measurements</str<strong>on</strong>g> with<br />

different gauges. Paper accepted for 5th Symposium<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Building Physics in the Nordic Countries,<br />

Göteborg, 24-26 August 1999.<br />

Lacy, R. (1965). Driving-<str<strong>on</strong>g>rain</str<strong>on</strong>g> maps <str<strong>on</strong>g>and</str<strong>on</strong>g> the <strong>on</strong>slaught<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>rain</str<strong>on</strong>g> <strong>on</strong> buildings. In RILEM/CIB Symposium <strong>on</strong><br />

Moisture in Buildings, Helsinki (SF).<br />

Marshall, J. <str<strong>on</strong>g>and</str<strong>on</strong>g> W. Palmer (1948). The distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>rain</str<strong>on</strong>g>drops with size. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Meteorology 5,<br />

165–166.<br />

Murakami, S., A. Mochida, Y. Hayashi, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

S. Sakamoto (1992). Numerical study <strong>on</strong> velocitypressure<br />

field <str<strong>on</strong>g>and</str<strong>on</strong>g> wind forces for bluff bodies by<br />

k-ε, ASM <str<strong>on</strong>g>and</str<strong>on</strong>g> LES. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Wind Engineering<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Industrial Aerodynamics 41-44, 2841–2852.<br />

Sankaran, R. <str<strong>on</strong>g>and</str<strong>on</strong>g> D. Paters<strong>on</strong> (1995). Computati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>rain</str<strong>on</strong>g> falling <strong>on</strong> a tall rectangular building. In 9th Internati<strong>on</strong>al<br />

C<strong>on</strong>ference <strong>on</strong> Wind Engineering, New<br />

Delhi, India, pp. 2127–2137. Internati<strong>on</strong>al Associati<strong>on</strong><br />

for Wind Engineering.<br />

Simiu, E. <str<strong>on</strong>g>and</str<strong>on</strong>g> R. Scanlan (1986). Wind effects <strong>on</strong><br />

structures (2 ed.). John Wiley & S<strong>on</strong>s, New York.<br />

Ulbrich, C. (1983). Natural variati<strong>on</strong>s in the analytical<br />

form <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>rain</str<strong>on</strong>g>drop size distributi<strong>on</strong>. Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Climate <str<strong>on</strong>g>and</str<strong>on</strong>g> Applied Meteorology 22(10), 1764–<br />

1775.<br />

van Mook, F. (1998). Measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>driving</str<strong>on</strong>g> <str<strong>on</strong>g>rain</str<strong>on</strong>g><br />

by a <str<strong>on</strong>g>driving</str<strong>on</strong>g>-<str<strong>on</strong>g>rain</str<strong>on</strong>g> gauge with a wiper. Paper presented<br />

at CIB taskgroup 21 meeting, Gävle (SE),<br />

5/6 June.<br />

van Mook, F., M. de Wit, <str<strong>on</strong>g>and</str<strong>on</strong>g> J. Wisse (1997). Computer<br />

simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>driving</str<strong>on</strong>g> <str<strong>on</strong>g>rain</str<strong>on</strong>g> <strong>on</strong> building envelopes.<br />

In Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> the 2nd European <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

African C<strong>on</strong>ference <strong>on</strong> Wind Engineering, 22-26<br />

June 1997, Genova (IT), pp. 1059–1066.<br />

Fluent Inc. (1995). Fluent user’s guide; Versi<strong>on</strong> 4.3.<br />

Fluent Inc.<br />

Geurts, C. (1997). Wind induced pressure fluctuati<strong>on</strong>s<br />

8

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!