28.12.2014 Views

Spontaneous symmetry breaking

Spontaneous symmetry breaking

Spontaneous symmetry breaking

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Laboratory frame and intrinsic frame<br />

(ammonia molecule)<br />

H<br />

H<br />

H<br />

|R› = |L› =<br />

" #<br />

r<br />

D " #<br />

= 0<br />

N<br />

)<br />

P L = R " #<br />

= 1 2 1+ # P<br />

)<br />

but<br />

( ) L<br />

L r<br />

D L " 0<br />

!<br />

!<br />

The height of the barrier: 0.254 eV at 0 K<br />

Minima separation of about 0.75 A<br />

Parity splitting (inversion doubling): 0.0001 eV<br />

Application: ammonia maser based on the inversion doubling 1954<br />

(Nobel Prize for Charles Townes in 1964)


The transition matrix element between the members of the doublet<br />

carries important information about the collectivity of the system.<br />

The normalized signature-projected LM wave functions are:<br />

Since K x is signature-odd, one has<br />

Consequently, the transition matrix element is:<br />

For large values of χ, this matrix element becomes<br />

In the limit of large χ, the transition matrix element carries<br />

information about the deformation of the system!


Laboratory frame and intrinsic frame<br />

(molecular or nuclear quadrupole moment)<br />

Q =<br />

2K 2 -I(I+1)<br />

Q<br />

(I+1)(2I+3) 0<br />

MEASURED<br />

INTRINSIC<br />

RELATIVE<br />

MOTION<br />

Q=0 for I=K=0, independently of Q 0 !


Symmetry <strong>breaking</strong><br />

q = !<br />

= 0 but<br />

0 0 0<br />

Q ˆ<br />

! crit<br />

E<br />

ω RPA<br />

=0<br />

ω RPA<br />

>0 ω RPA<br />

-<br />

imag.<br />

Vibrator<br />

(weak<br />

coupling)<br />

Soft<br />

(interm.<br />

coupling)<br />

Rotor<br />

(strong<br />

coupling)<br />

No phase<br />

Band structures<br />

transition<br />

labelled by<br />

in the finite<br />

different q.n.<br />

system!<br />

[ H ˆ S ˆ ] h ˆ , S ˆ<br />

deformed<br />

intrinsic<br />

system!<br />

Q 2 !<br />

“exact”<br />

mean field<br />

of the internally<br />

broken symmetries<br />

[ ] ! 0


Nuclear deformation:<br />

spontaneous <strong>symmetry</strong> <strong>breaking</strong><br />

Molecular physics: Jahn-Teller effect 1937<br />

Any configuration of atoms or ions (except a<br />

linear chain) can develop a stable <strong>symmetry</strong><strong>breaking</strong><br />

deformation provided the coupling<br />

between degenerate electronic excitations and<br />

collective molecular vibrations is strong.<br />

Nuclear physics: Bohr-Mottelson 1952-53<br />

Any nuclear configuration can develop a stable<br />

<strong>symmetry</strong>-<strong>breaking</strong> deformation provided the<br />

coupling between degenerate single-nucleonic<br />

excitations and collective nuclear modes is<br />

strong.<br />

The unified model. Particle vibration coupling<br />

V int<br />

= !" r<br />

( ) # $µ<br />

$µ<br />

( )<br />

% Y $µ<br />

&


Intrinsic symmetries<br />

5 - ν=1<br />

3 -<br />

1 -<br />

(parallel band)<br />

D •h (C 2 , P)<br />

O<br />

C<br />

O<br />

6 +<br />

4 +<br />

2 +<br />

0 +<br />

ν=0<br />

(ground band)<br />

CO 2<br />

- an axially symmetric molecule with no static dipole moment.<br />

O<br />

C<br />

O<br />

C •ν (S=C 2 P)<br />

3 -<br />

2 +<br />

O N<br />

4 +<br />

1 -<br />

0 +<br />

N 2<br />

O - an axially symmetric molecule with static dipole moment.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!