29.12.2014 Views

SNDT Women's University Syllabus – B. Sc. Bio Technology SNDT ...

SNDT Women's University Syllabus – B. Sc. Bio Technology SNDT ...

SNDT Women's University Syllabus – B. Sc. Bio Technology SNDT ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>SNDT</strong> Women’s <strong>University</strong><br />

(Sndt.digitaluniversity.ac)<br />

<strong>Syllabus</strong> – B. <strong>Sc</strong>. <strong>Bio</strong> <strong>Technology</strong><br />

<strong>SNDT</strong> Women’s <strong>University</strong><br />

1, Nathibai Thackersey Road,<br />

Mumbai 400 020<br />

Revised - 2008<br />

1 | P a g e


B.<strong>Sc</strong>. BIOTECHNOLOGY<br />

INTRODUCTION - BIOTECHNOLOGY COURSE<br />

<strong>Bio</strong>technology refers to the use of living organisms or the products of these organisms to modify<br />

human health and the human environment. It is revolutionizing the way we manufacture products<br />

and view the relationships of all living things.<br />

Although biotechnology is considered a rather new science, the processes used today have their<br />

basis in nature. These processes are used to transfer genetic materials from one cell into another<br />

by using a common bacterium. This transfer of DNA permits variance of one or several traits and<br />

confers a new property on an organism. For example, tomato plants have been made resistant to<br />

Tobacco Mosalc Virus, which can cause large crop loss.<br />

<strong>Bio</strong>technology has the potential to affect a number of fields and issues, including agriculture, food<br />

processing, health care, forensics, energy production, and the environment. Current applications<br />

include diagnostics, the production of vaccines and pharmaceuticals, and improved crop and<br />

livestock the life sciences such as biotechnology, medicine, biomedical research bioinformatics,<br />

etc.<br />

2 | P a g e


S..D.T. WOME’S UIVERSITY<br />

<strong>Syllabus</strong><br />

(2007-2008)<br />

B.SC. (<strong>Bio</strong>technology)<br />

Semester I to VI<br />

Faculty ame: <strong>Sc</strong>ience<br />

Course ame : B.<strong>Sc</strong>. <strong>Bio</strong>-<strong>Technology</strong><br />

<strong>Sc</strong>heme: SEMESTER I<br />

o. Subject L C P D TP TW P/V T<br />

1001<br />

Introduction to<br />

<strong>Bio</strong>technology and 4 7 6 3 75 25+25 50 175<br />

Cell <strong>Bio</strong>logy<br />

1002<br />

Inorganic, Organic &<br />

Physical Chemistry<br />

4 6 4 3 75 25+25 25 150<br />

1003<br />

General Microbiology<br />

and Basic 4 6 4 3 75 25+25 25 150<br />

<strong>Bio</strong>chemistry<br />

Total 12 19 14 9 225 75+75 100 475<br />

SCHEME: SEMESTER II<br />

o. Subject L C P D TP TW P/V T<br />

2001<br />

FUNDAMENTALS OF<br />

BIOCHEMISTRY,<br />

BIOCOMPUTING AND<br />

BIOSTATISTICS<br />

4 7 6 3 75 25+25 50 175<br />

2002<br />

MICROBIAL<br />

PHYSIOLOGY AD 4 6 4 3 75 25+25 25 150<br />

GEETICS<br />

2003 BIOPHYSICS 4 6 4 3 75 25+25 25 150<br />

Total 12 19 14 9 225 75+75 100 475<br />

SCHEME: SEMESTER III<br />

o. Subject L C P D TP TW P/V T<br />

BASIC ASPECTS OF<br />

3001 CELLULAR<br />

METABOLISM<br />

4 7 6 3 75 25+25 50 175<br />

3002 BIOSTATISTICS 4 6 4 3 75 25+25 25 150<br />

3003 BIOCHEMISTRY 4 6 4 3 75 25+25 25 150<br />

Total 12 19 14 9 225 75+75 100 475<br />

3 | P a g e


SCHEME: SEMESTER IV<br />

o. Subject L C P D TP TW P/V T<br />

4001<br />

FUNDAMENTALS OF<br />

IMMUNOLOGY AND<br />

GENETICS<br />

4 7 6 3 75 25+25 50 175<br />

4002<br />

4003<br />

BIOPHYSICAL AND<br />

BIOCHEMICAL<br />

TECHNIQEUS<br />

4 6 4 3 75 25+25 25 150<br />

ORGAIC AD<br />

BIOPHYSICAL 4 6 4 3 75 25+25 25 150<br />

CHEMISTRY<br />

Total 12 19 14 9 225 75+75 100 475<br />

SCHEME: SEMESTER V<br />

o. Subject L C P D TP TW P/V T<br />

BIOPROCESS AND<br />

5001 BIOCHEMICAL<br />

ENGINEERING<br />

4 7 6 3 75 25+25 50 175<br />

5002<br />

5003<br />

GENETICS AND<br />

MOLECULAR<br />

BIOTECHNOLOGY<br />

4 7 6 3 75 25+25 50 175<br />

ANALYTICAL<br />

TECHNIQUES IN 4 7 6 3 75 25+25 50 175<br />

BIOTECHNOLOGY<br />

Total 12 21 18 9 225 75+75 150 525<br />

SCHEME: SEMESTER VI<br />

o. Subject L C P D TP TW P/V T<br />

6001<br />

PRINCIPLES OF<br />

BIOTECHNOLOGY<br />

APPLIEDTO PLANTS &<br />

4 7 6 3 75 25+25 50 175<br />

ANIMALS<br />

6002<br />

ENVIRONMENTAL<br />

BIOTECHNOLOGY<br />

4 7 6 3 75 25+25 50 175<br />

6003<br />

RELEVANT TOPICS IN<br />

BIOTECHNOLOGY<br />

4 7 6 3 75 25+25 50 175<br />

Total 12 21 18 9 225 75+75 150 525<br />

4 | P a g e


SEMESTER-I<br />

PAPER 1 INTRODUCTION TO BIOTECHNOLOGY AND CELL BIOLOGY<br />

4HRS /WK<br />

Credits: 4 Total Hrs 60 100 Marks<br />

Sr.<br />

No.<br />

Module<br />

I<br />

Sub-topics<br />

1 INTRODUCTION & SCOPE OF BIOTECHNOLOGY<br />

1.1 Historical Perspective<br />

1.2 Definitions of <strong>Bio</strong>technology<br />

1.3 Applications of <strong>Bio</strong>technology- Agriculture,<br />

Medicine & Environment<br />

1.4 Ethical and Social Impacts<br />

1.5 Current Status of <strong>Bio</strong>technology & Future of<br />

<strong>Bio</strong>technology in Developing World.<br />

2 BASIC CONCEPT AND UNDERSTANDING OF CELL<br />

2.1 Concept of Life, Cell As A Basic Unit Of Living<br />

System and Cell Theory<br />

2.2 Origin and Evolution of Cell<br />

2.3 Diversity of Cell Size and Shape<br />

2.4 Classification, Structure and Function of<br />

Prokaryotic cell<br />

2.5 Microscopic Techniques for Study of Cell<br />

3 STRUCTURE AND FUNCTION OF CELL<br />

ORGANELLES<br />

3.1 Cell Wall and Plasma Membrane<br />

3.2 Cytoskeleton<br />

3.3 Mitochondria, Chloroplast, Endoplasmic<br />

Reticulum, Golgi Bodies<br />

3.4 Lysosomes, Glyoxisomes, Peroxisomes,<br />

Ribosomes<br />

3.5 Nucleus<br />

4 CELL CYCLE AND CELL DIVISION<br />

4.1 Overview of Cell Cycle<br />

4.2 Mitosis and Meiosis<br />

4.3 DNA Packaging (Prokaryotic and Eukaryotic)<br />

4.4 Structure and Ultrastructure of Chromosome<br />

4.5 Polytene and Lampbrush Chromosomes<br />

5 ADVANCE STUDIES IN CELL BIOLOGY<br />

5.1 Cell Locomotion- Amoeboid, Flagella, Cillia,<br />

Cytoplasmic Streaming<br />

5.2 Cell- Cell Interaction<br />

5.3 Cellular Basis of Development –<br />

Gametogenesis, Fertilization, Events during<br />

Fertilization, Early Embryonic Development<br />

5.4 Overview of Stem cells<br />

5.5 Cancer <strong>Bio</strong>logy<br />

No of<br />

lectures<br />

10<br />

15<br />

10<br />

15<br />

10<br />

Weightage<br />

in %<br />

20<br />

10<br />

25<br />

20<br />

25<br />

5 | P a g e


INTRODUCTION TO BIOTECHNOLOGY & CELL BIOLOGY (PRACTICALS)<br />

6 HRS/WK<br />

1. Introduction to LAB and lab environment<br />

2. Pipetteman use and calibration<br />

3. Use of top-loading balances, analytical balances and double pan balances<br />

4. Using and writing standard experimental protocols; Flow chart<br />

5. Preparation of solution<br />

6. Preparation of buffer solution<br />

7. Operation of pH meter and measurement of pH<br />

8. Staining techniques (Simple, Differential and Special)<br />

9. Calibration of stage and ocular micrometer and measurement of given biological samples<br />

10. Use of Haemocytometer and determination of cell densities (Blood ells/Yeast)<br />

11. Cytology and histology of various organs ( Permanent slides or fresh preparation)<br />

12. Cell types of plants – maceration of various tissues and identification of Xylem, vessels,<br />

trachied stomata, root hair<br />

13. Preparation of permanent slides showing different stages of cell division – Mitosis and<br />

meiosis<br />

14. Human Karyotyping<br />

Credits: 3 Total Hrs 90 75 Marks<br />

LIST OF REFERENCE BOOKS:<br />

1. Alberts, Molecular <strong>Bio</strong>logy of cell. Garland Pub.<br />

2. Verma, Cell biology, Genetics, Molecular <strong>Bio</strong>logy, Evolution & Ecology. 2006<br />

3. Karp, Cell & Molecular <strong>Bio</strong>logy: concepts & Experiments, 4 th Edition<br />

4. Lodish, Cell & Molecular <strong>Bio</strong>logy, W.H. Freeman, 5 th Edn.<br />

5. Becker, 1996, <strong>Bio</strong>technology: A laboratory course, Alp<br />

6. Glick, Molecular <strong>Bio</strong>technology, ASM publication<br />

7. Becker & Hardin, The world of the Cell, Pearson Pub<br />

8. C.B. Powar, Cell <strong>Bio</strong>logy, Himalaya Press<br />

9. Nelson & Cox, Lehninger Principle <strong>Bio</strong>chemistry,Freeman Pub<br />

10. Desiker, Cell & Development <strong>Bio</strong>logy, Dominant Pub<br />

11. Albert, Essential Cell <strong>Bio</strong>logy, Garland <strong>Sc</strong>ience<br />

12. Geoffrey Cooper, The – Cell Molecular Approach, ASM Pub<br />

13. <strong>Bio</strong>technology, Demystifying the concepts. By David Bourgaize. Alp 2000<br />

14. <strong>Bio</strong>tInquiry- making connections in <strong>Bio</strong>logy, Nancy L.Pruitt, William Surver, John Wlley & Sons<br />

15. Explore Life, postlethwait J.H., & Hopson J.H., Thomson book pub<br />

16. Essential <strong>Bio</strong>logy (3 rd Edition), Campbell, Reece & Simon<br />

17. De Robertis, Cell <strong>Bio</strong>logy<br />

18. <strong>Bio</strong>technology Fundamental & application, S.S. Purohit, Agrobios<br />

19. Analyzing Chromosome, B. Crepulkowaki, BIOS <strong>Sc</strong>ientific Publishers Ltd.<br />

20. Cytogenetics, P.K. Gupta, Rastogi Pub<br />

21. Introduction to <strong>Bio</strong>technoloogy, Brown Campbell priest, Panima Pub<br />

22. Basic <strong>Bio</strong>technology, Prave Fanst, Sitting & Sukatsch, Panma Pub<br />

23. <strong>Bio</strong>technology & Genomics, P.K. Gupta, Rastogi Pub<br />

24. <strong>Bio</strong>technology,l U.Satyanarayan, Books and Allied<br />

25. Cell <strong>Bio</strong>logy, SAdava, Panima Pub<br />

26. Cell & Motecular <strong>Bio</strong>logy, P.K. Gupta, Rastogi Pub.<br />

6 | P a g e


PAPER 1 INORGANIC, ORGANIC & PHYSICAL CHEMISTRY : 4HRS /WK<br />

Credits: 4 Total Hrs 60 100 Marks<br />

Sr.<br />

No.<br />

Module<br />

I<br />

Sub-topics<br />

1 a) Hydrogen : Isotopes of hydrogen –<br />

separation of the isotopes – properties and uses<br />

of heavy hydrogen – position of hydrogen in the<br />

Periodic Table – ortho and para hydrogen –<br />

separation difference in structure and properties<br />

– hydrides – definition – classification –<br />

separation and properties.<br />

b) Oxides: Definition – classification –<br />

properties.<br />

c) Water: Hardness of water – types of<br />

hardness – removal of hardness – industrial<br />

implications of hardness in water – estimation of<br />

hardness by EDTA method (outline only) – units<br />

for hardness of water.<br />

d) Hydrogen Peroxide: Manufacture,<br />

properties, structure and uses of hydrogen<br />

peroxide – estimation of hydrogen peroxide by<br />

permanganimetry – strength of hydrogen<br />

peroxide in volume – strength, normality and<br />

percentage – calculation of strength of these<br />

different terms.<br />

e) Ozone : Manufacture, composition, structure<br />

and properties.<br />

2 a) Detection and estimation of nitrogen and<br />

halogens in organic compounds – empirical<br />

formula – molecular formula – structural formula<br />

– calculation of E.F. and M.F. from percentage<br />

composition.<br />

b) Nature of valency of carbon in organic<br />

compounds – brief outline hybridizations sp 3 , sp 2<br />

and sp with one example for each – tetrahedral<br />

arrangement of valency of carbon. Board –<br />

breaking and bond – forming in organic reactions<br />

– homolytic cleavage – heteroltic cleavage –<br />

reaction intermediates – formation, stability and<br />

reactions of carabonium ion, carbanion and free<br />

radicals.<br />

c) Nucleophilis – Electrophiles, definition, types<br />

and examples – specific reactions involving<br />

these.<br />

No of<br />

lectures<br />

15<br />

15<br />

Weightage<br />

in %<br />

25<br />

25<br />

7 | P a g e<br />

d) Types of reactions – substitution – addition –


elimination – rearrangements and polymerization<br />

– illustration with specific examples.<br />

3 a) Gaseous state, Postulates of Kinetic theory of<br />

gases – derivation of expression for pressure of<br />

gas on the basis of Kinetic theory – deducing the<br />

basic gas laws. Derivation of real gases from<br />

ideal behaviour – reasons for deviation.<br />

Derivation of vander Waals gas equation –<br />

explanation of behaviour of real gases on the<br />

basis of vander Walls gas equation.<br />

b) Average, RMS and most probable velocities<br />

(equations only – no derivation) relationship<br />

between these different velocities. Liquefaction<br />

of gases – critical phenomenon – modern<br />

methods – Joule – Thomson effect – inversion<br />

temperature.<br />

4 a) Structure of atom: Rutherford model of the<br />

atom – defects of Rutherford model, Bohr model,<br />

of an atom – merits and demerits – Sommerfeld<br />

modification – wave theory – de Broglie’s<br />

concept – dual nature – Heisenberg’s uncertainty<br />

principle – difference between orbit and orbital –<br />

shapes of atomic orbitals.<br />

b) Bonding : (i) V.B. Theory: Postulates of<br />

V.B. theory – application to the formation of<br />

simple molecules like H 2 , and He. Overlap of<br />

atomic orbitals – s-s, s-p, and p-p, overlap –<br />

principle of hybridization. (ii) M.O. theory:<br />

Formation of M.Os – bonding and anti-bonding<br />

and non-bonding M.Os – M.O. diagram for H 2 ,<br />

He and F 2 .<br />

15<br />

15<br />

25<br />

25<br />

INORGANIC, ORGANIC & PHYSICAL CHEMISTRY (PRACTICALS)<br />

4HRS /WK<br />

Credits: 3 Total Hrs 60 50 Marks<br />

LABORATORY EXPERIMENTS:<br />

At lest 10 Experiments relevant to above topics to be conducted.<br />

8 | P a g e


PAPER 1<br />

GENERAL MICROBIOLOGY AND BASIC BIOCHEMISTRY (THEORY)<br />

4hrs /wk Credits: 4 Total Hrs 60 100 Marks<br />

Sr.<br />

No.<br />

Module<br />

I<br />

Sub-topics<br />

1 Unit of microbial world: <strong>Sc</strong>ope of<br />

Microbiology, Microbiology and Human Health,<br />

Beneficial and Harmful microbes. Development<br />

of microbiology (contributions of pioneers)<br />

2 Diversity of microbial world: Principle of<br />

Classification, Classification of viruses,<br />

Bacteria (including Cyanobacteria) algae and<br />

Fungi (including yeasts).<br />

3 Methods for studying microorganism:<br />

Origin of microbes, Microscopy, Pure culture<br />

techniques, Sterilization, Aseptic techniques,<br />

Isolation of pure culture, Conditions and media<br />

for growth of microorganisms in the Laboratory<br />

4 <strong>Bio</strong>chemistry of Microbes: Chemical<br />

elements, Structure of atoms, Molecules and<br />

Chemical bonds, Chemical reactions,<br />

Molecules of living systems, pH and pK,<br />

Buffers, Carbohydrates, Lipids, Proteins,<br />

DNA & RNA.<br />

5 Structure of archae prokaryotic and<br />

Eukaryotic cells: Plasma membrane,<br />

Transport across membrane, Cell surface,<br />

Energy transformation.<br />

No of<br />

Lectures<br />

12<br />

12<br />

12<br />

12<br />

12<br />

Weightage<br />

in %<br />

10<br />

10<br />

10<br />

10<br />

10<br />

LIST OF REFERENCE BOOKS:<br />

1. Ronald M. Atlas, Alfred E. Brown, Kenneth W. Dobra, Llonas Miller. (1986). Basic<br />

Experimental Microbiology. Prentice Hall. 316pp.<br />

2. Robert F. Boyd. (1984) General Microbiology. Times Mirror/Mosby College Pub. 22pp.<br />

9 | P a g e


GENERAL MICROBIOLOGY AND BASIC BIOCHEMISTRY (PRACTICALS) 4 hrs/wk<br />

Credits: 3 Total Hrs 60 50 Marks<br />

a) Preparation of culture media: solid/liquid<br />

b) Sterilization techniques.<br />

c) Isolation of single colonies of solid media.<br />

d) Enumeration f bacterial numbers by serial dilution and plating.<br />

e) Simple and differential staining.<br />

f) Determination of antibiotic resistance of bacteria.<br />

LABORATORY EXPERIMENTS:<br />

At lest 10 Experiments relevant to above topics to be conducted.<br />

10 | P a g e


11 | P a g e<br />

Semester – II<br />

FUNDAMENTALS OF BIOCHEMISTRY, BIOCOMPUTING & BIOSTATISTICS (THEORY)<br />

PAPER II -<br />

4HRS/WK<br />

Credits : 4 Total hrs : 60 100 : Marks<br />

Sr.<br />

No.<br />

Module<br />

I<br />

Sub-topics<br />

No of<br />

lectures<br />

Weightage<br />

%<br />

1 Chemistry of Life: An Introduction<br />

12 20<br />

1.1 The Properties of Water<br />

1.2 The Properties of <strong>Bio</strong>molecules<br />

1.3 Chemical Bonds/ Interaction: Ionic, Covalent,<br />

Nonpolar, Polar, Hydrogen Bonds, Hydrophobic<br />

Interactions, Vander Wall’s Attractive Force<br />

1.4 pH, pKa, Acids, Bases and Buffers<br />

1.5 Thermodynamics of <strong>Bio</strong>logical System: The First<br />

Law, The Second Law, The Third Law, Free<br />

Energy, ATP and other High Energy Compounds<br />

2 The Molecules of Life – I<br />

12 20<br />

2.1 Chemistry of Carbohydrates: Functions<br />

and Classifications, Monosaccharides:<br />

Configuration and Conformation, Reactions<br />

of Monosaccharides, Sugar Derivatives<br />

2.2 Disaccharides and Polysaccharides:<br />

Classifications and Function<br />

2.3 Glycoconjugates: Proteoglycans,<br />

Glycoproteins and Glycolipids<br />

2.4 Amino Acids: Structures, General Properties,<br />

Classifications, Nomenclature, Nonstandard<br />

Amino Acid (Amino Acid Derivatives)<br />

2.5 Proteins: An Overview of Four Levels of<br />

Structures s in Proteins, Classifications of<br />

Proteins, Properties of Proteins,<br />

<strong>Bio</strong>logically Important Peptides.<br />

3 The molecules of Life – II<br />

12 20<br />

3.1 Lipids: Classifications of Lipids, Functions of<br />

Lipids, Fatty Acids, Triacylglycerols,<br />

Phospholipids, Steroids<br />

3.2 Basic Understanding of Nucleotides,<br />

Structure and Properties of Nitrogen<br />

Basis, Functions of Nucleotides,<br />

Nucleotide Analogs<br />

3.3 Nucleic Acids: Historical aspects of DNA as<br />

Genetic Material, Semi Conservative Nature of<br />

DNA, Chargaff’s Rule<br />

3.4 Watson and Crick DNA Double Helix Structure,<br />

other Types of DNA Structure, Denaruration<br />

and Renaturation of DNA, Types of RNA<br />

and their Functions, Catalytic RNAs (Ribozymes)<br />

3.5 Vitamins: Classification, Functions, Sources and<br />

Deficiency Disorder<br />

4 <strong>Bio</strong>computing :<br />

4.1 Computer Applications: Structure of computer<br />

(components, peripherals, use, types): the<br />

window screen and parts of window, the control panel<br />

4.2 Creation of a drawing, use of window explorer,<br />

word processor use, spreadsheet use. Database<br />

use, presentation use<br />

12 20


4.3 Internet, email and web authoring: setup of email<br />

address, Concept of domain, understanding<br />

the terms, http, www, URL, book marking web<br />

sites, forwarding and saving web pages.<br />

4.4 Basics of HTML page creation & design using HIML<br />

4.5 Inserting tables<br />

5 BIOSTATISTICS :<br />

5.1 <strong>Sc</strong>ope of <strong>Bio</strong>statistics, Samples and population<br />

concept, Collection of data sampling techniques,<br />

Processing of data, Presentation of data<br />

5.2 Measures of Central tendency- Arithmetic, Harmonic<br />

and Geometric Mean, Mode and Median, their<br />

applications, merits and demerits; Measures of<br />

dispersion- Range, Variance, Standard Deviation<br />

Coefficient of variance, their applications, merits<br />

and demerits.<br />

5.3 Correlation analysis and Regression analysis:<br />

Linear, Bivarieate regression analysis<br />

5.4 Probability and Conditional probability, Theoretical<br />

distributions- Binomial and Poisson Distribution<br />

and their Properties; Normal distribution and its<br />

properties, Skewness and kurtosis<br />

5.5 Significance tests: The meaning of significance,<br />

Hypothesis testing, Student’s T-test, Chi square test<br />

(nonparametric test), Analysis of varianceintroduction<br />

and application in biology, one-way and<br />

two-way ANOVA, Calculation of F-Ratio, least<br />

significant difference.<br />

12 20<br />

12 | P a g e


SEMESTER – II<br />

FUNDAMENTALS OF BIOCHEMISTRY, BIOCOMPUTING AND BIOSTATISTICS (PRACTICAL)<br />

6HRS /WK<br />

1. Qualitative tests for carbohydrates<br />

2. Qualitative tests for Amino acids<br />

3. Titration curve of amino acids and determination of pI,<br />

4. pK1 and pK2<br />

5. Estimation of reducing and non reducing sugars<br />

6. Estimation of amino acids<br />

7. Introduction to Window operating system<br />

8. Overview of window accessories<br />

9. Use and application of Word-2000<br />

10. Excel and Power Point-2000<br />

11. Basics of Internet working<br />

12. Concept of multimedia and web-paging)<br />

13. Arrangement of data in tabulate format<br />

14. <strong>Bio</strong>statistics examples:<br />

a) Calculation of Mean, Standard Deviation and<br />

15. Coefficient of Variance<br />

16. b) Frequency distribution graphs and curves<br />

17. c) Value of confidence limit for the population mean<br />

18. d) Significant test: Student’s t-tst for paired & unpaired<br />

19. data<br />

20. e) Chi-square test<br />

g) Analysis of variance (ANOVA)- Randomized Block<br />

21. Design (RBD)<br />

h) Regression Coefficient and Correlation coefficient<br />

LIST OF REFERENCE BOOKS:<br />

13 | P a g e<br />

Credits: 3 Total Hrs 90 75 Marks<br />

1. Jerrold H Zar, <strong>Bio</strong>statistical analysis, 4 th Edition, Pearson Education<br />

2. P.S.S. Sundar Rao, An Introduction to <strong>Bio</strong>statistics, Eastern Economy Edition.<br />

3. N.Gurumani, An Introduction to <strong>Bio</strong>statistics, 2 nd Edition, MJP Publisher<br />

4. Jiang, Xu & Zhang, Current topics in Computational Molecular <strong>Bio</strong>logy, Ane Books<br />

5. Gary B. Fogel & David Corne, Evolutionary Computation In <strong>Bio</strong>informatics, Morgan, Kaufmann<br />

Publishers<br />

6. Martyn, Theoretical & Experimental DNA Computing, Springer International<br />

7. Saras Publication, <strong>Bio</strong>statistics applications<br />

8. Rajaramsn, Computer oriented Numerical Methods, Pentice Hall India<br />

9. Stallings, Computer Organization & Architecture, Pentice Hall India<br />

10. P.K.Sinha, Computer Fundamentals, 2 nd Edn.<br />

11. Yashvant Kanetkar, Let Us C, 6 th Revised Edn, BPB Publication<br />

12. Greenlaw, Hepp, Fundamentals of the Internet & World Wide Web, McGraw Hill Pub<br />

13. Martyn Amos, Theoretical & Experimental DNA Computing Springer International<br />

14. Wayne W.Daniel, <strong>Bio</strong>statistics: a foundation for analysis in the health science. Wiley Pub<br />

15. Lenhinger, Principles of <strong>Bio</strong>chemistry, Belson & Cox, 4 th Edition<br />

16. Stryer – <strong>Bio</strong>chemistry. W.H.Freeman & Co.<br />

17. Plumner. An introduction to practical <strong>Bio</strong>chemistry,3 rd Edition<br />

18. J.Jayaraman. Lab Manual in <strong>Bio</strong>chemistry<br />

19. Cohn and Stumph. Outline of <strong>Bio</strong>chemisty. Wiley eastern<br />

20. Zube’s <strong>Bio</strong>chemistry, 4 th Edition Macmillan<br />

21. Swtzer and Garrty. Experimental <strong>Bio</strong>chemistry WH Freeman. 2 nd Edition<br />

22. Voet & Voet Donald. 3 rd Edition. Fundamentals of <strong>Bio</strong>chemistry, J/W<br />

23. Hames and Hooper. 2000. Instant notes in <strong>Bio</strong>chemistry. BIOS <strong>Sc</strong>i. Publ.


24. Smith G. 1996. <strong>Bio</strong>technology.Cambeidge Univ. Press<br />

25. Geoffrey Cooper. 2000. The cell with CD-Rom. Sinauer Asso. Incorp.<br />

26. Elliott & Elliot. 3 rd Edition <strong>Bio</strong>chemistry and molecular bilogy<br />

27. Seidman and moore. 200. Basic laboratory methods for biotechnology. Lovgman<br />

28. Boyer. 1999. Concepts in <strong>Bio</strong>chemistry. Thomson<br />

29. A Test book of <strong>Bio</strong>chemistry, A.V.S.S. Rama Rao, UBS Publisher<br />

14 | P a g e


MICROBIAL PHYSIOLOGY AD GEETICS (Theory)<br />

Credits : 4 Total hrs : 60 100 : Marks<br />

6HRS /WK<br />

Sr.<br />

No.<br />

Module<br />

I<br />

Sub-topics<br />

No of<br />

lectures<br />

Weightage<br />

%<br />

1 Bacterial morphology and Ultrastructure: 15 30<br />

Composition, structure and biosynthesis of cell<br />

wall in Gram positive and Gram negative bacteria<br />

Physiology of bacteria growth, phases of growth,<br />

Growth conditions. Differentiation in bacterial<br />

Cells – sporulation, germination. Bacterial cell<br />

division, replication of bacterial chromosome, coordination<br />

of cell division with replication of<br />

chromosome, partitioning of chromosome into<br />

daughter cells.<br />

2 Primary and Secondary metabolism. 10 15<br />

3 Bacterial Plasmids: structure & properties, 10 15<br />

replication, incompatibility, plasmid<br />

amplification.<br />

Bacteriophages: Lytic development cycle – T4;<br />

Lytic & lysogenic development of phage λ; single<br />

standard DNA phages.<br />

Transposition: structure of bacterial transposons<br />

types of bacterial transposons. Mechanism of<br />

antibiotic resistance and spread of antibiotic<br />

resistance.<br />

4 Genetic recombination: requirements,<br />

15 30<br />

molecular basis, genetic analysis of<br />

recombination in bacteria.<br />

Bacterial genetics: concepts of haploid<br />

Genomes, Genetic exchange through coniugation,<br />

Transformation and transduction (generalized<br />

and specialized).<br />

Transformation: Natural transformation,<br />

Competence, DNA uptake, role of natural<br />

Transformation, artificially induced competence,<br />

electroportion.<br />

Conjugation: self transmissible plasmids,<br />

F factor, tra genes, on T,F’ and Hfr strains,<br />

steps in conjugation, chromosome mobilization,<br />

transfer systems in Gram Positive bacterua,<br />

DNA repair and restriction: Types of repairs<br />

Systems, restriction endonuclease, various<br />

types of restriction enzymes, their properties and<br />

uses. Methylation – dependent restriction<br />

enzymes, dam and dcm methylases.<br />

Gene expression: transcription, translation and<br />

Control of expression in microbes.<br />

5 Mutations: spontaneous and induced, base<br />

pair changes, frameshifts, deletions, inversions,<br />

tandem duplications, insertions, useful<br />

phenotypes (auxotrophic, conditional lethal,<br />

10 10<br />

15 | P a g e


esistant), reversion vs. suppression, Ames test.<br />

LIST OF REFERENCE BOOKS<br />

1. Wolfgag K. Joklik (1995). Zinssers Microbiology. Mc Graw-Hill Companies. 1294pp.<br />

2. Stanley R. Maloy, David Freifelder, and John E. Cronan. (1994). Microbial Genetics (2 nd<br />

Ed.) Jones and Bartlett Publishers. 512pp.<br />

3. Larry Snyder and Wendy Champness. (1997). Molecular Genetics of Bacteria.<br />

ASM Press. 672pp.<br />

16 | P a g e


MICROBIAL PHYSIOLOGY AD GEETICS (Practicals)<br />

6HRS /WK<br />

Credits: 3 Total Hrs 90 75 Marks<br />

Module Sub-topics<br />

I<br />

1 Determination of growth phase of E.coli by measure<br />

ment of OD and colony forming units. Relationship<br />

between OD and cfu measurements, measurement<br />

of growth by dry weight and wet weight – Penicillium<br />

spp. Determination of antibiotic resistance by<br />

plating method.<br />

Sr.<br />

No.<br />

No of<br />

lectures<br />

Weightage<br />

%<br />

Isolation of E.coli plasmid DNA by rapid method and<br />

Separation by agarose gel electrophoresis.<br />

Transformation of E.coli: Preparation of competent<br />

cells, determination of viable counts, efficiency of<br />

plasmid transformation.<br />

Infection of E.coli with phage T4, determination of<br />

Phage titre by plating method.<br />

Induction of lac operon: culture of E.coli,<br />

Induction by IPTG, measurement of b-galactosidase<br />

Activity over a time period of 2 hr.<br />

Conjugation in E. coli using plate method.<br />

LIST OF REFERENCE BOOKS<br />

1. Alcamo, I.E. Laboratory Fundamentals of Microbiology. 2001. Jones and Bartlett Publishers.<br />

17 | P a g e


BIOPHYSICS (THEORY)<br />

6HRS /WK<br />

Credits: 4 Total Hrs 60 Marks 100<br />

Sr.<br />

No.<br />

Module<br />

I<br />

Sub-topics<br />

1 a) <strong>Sc</strong>ope and methods: Molecular organization,<br />

different levels. Organisation of proteins –<br />

primary, secondary, tertiary and quaternary<br />

structure.<br />

2 Conformational analysis: Nucleic acids and<br />

their organization in living cells. Interactions of<br />

nucleic acids.<br />

3 Polysaccharides and lipids; biological<br />

membranes.<br />

4 Methods in biophysical analysis: CD, ORD,<br />

fluorescence spectroscopy, raman<br />

spectroscopy, EM, NMR, X-ray diffraction.<br />

No of<br />

lectures<br />

Weightage<br />

%<br />

15 25<br />

15 25<br />

15 25<br />

15 25<br />

LIST OF REFERENCE BOOKS<br />

1. Introduction to protein structure, 1991. Branden & Tooze. Garland Publishing Company.<br />

2. <strong>Bio</strong>chemistry of nucleic acids, 1992. Adams et. al. Chapman & Hall.<br />

3. Crystaliography made crystal clear, 1993, G. Rhodes, Academic press.<br />

4. Principles of physical biochemistry, 1998. Van Holde et. al. Prentice Hall.<br />

BIOPHYSICS (Practicals)<br />

4HRS /WK<br />

Credits: 3 Total Hrs 60 50 Marks<br />

LABORATORY EXPERIMENTS:<br />

At lest 10 Experiments relevant to above topics to be conducted.<br />

18 | P a g e


Semester – III<br />

PAPER III BASIC ASPECTS OF CELLULAR METABOLISM (THEORY) 4HRS/WK<br />

19 | P a g e<br />

Credits: 4 Total Hrs 60 100 Marks<br />

Sr.<br />

No.<br />

Module<br />

I<br />

Sub-topics<br />

No of<br />

lectures<br />

Weightage<br />

%<br />

1 1.1 Basics of bioenergetics; Principles of<br />

12 20<br />

thermodynamics: the 1 st law of thermodynamics,<br />

understanding of state functions- H, E, w, q and<br />

terms exergonic, endergonic reactions systems &<br />

surrounding; units of energy<br />

1.2 The 2 nd law of thermodynamics: Defining the<br />

entropy, spontaneous reaction and disorder, concept<br />

of free energy, free energy and direction of chemical<br />

reaction, nature of equilibrium (keq), law of mass<br />

action.<br />

1.3 Introduction to metabolism and metabolic<br />

pathways, compartmentalization of metabolic<br />

pathways, central and peripheral pathways.<br />

1.4 Enzyme Structure and function: Enzymes are<br />

catalytical molecules; Define catalyst, comparebiocatalyst<br />

and chemical catalyst; Enzymes<br />

nomendature and classification, activation of<br />

energy and trasition state theory, collision and<br />

proximity effect.<br />

1.5 Cofactors: Metal ions and organic molecules,<br />

enzyme catalysis mechanism, Enzyme-substrate<br />

interactions_(ES) formation, Factors affecting<br />

enzyme activity: Enzymes and environmental<br />

conditions, Effect of substrate concentrations<br />

on enzyme reaction, enzyme kinetics, derivations<br />

of Michael’s – Menten constant, Linear<br />

transformation of equation<br />

2 2.1 The 3 – Dimensional nature of protein: the complex 12 20<br />

shapes of proteins allow specificity t substrate or<br />

ligand binding; role of tertiary and /or quartnery<br />

structure of protein to achieve 3- D shape<br />

(conformation and configuration)<br />

2.2 Folding and unfolding of proteins, stabilization<br />

of folded protein, examples of Ribouncleases A<br />

and Chymotrypsin reaction mechanism<br />

2.3 Mechanism of enzyme inhibition<br />

2.4 Regulation of metabolic pathways, allosteric<br />

proteins<br />

2.5 Basics and mechanism of covalent modification<br />

of enzyme<br />

3 3.1 Energy releasing and precursors supply pathways:<br />

Overview Glycolysis. Acetyl CoA formation<br />

(PDH- the multienzyme comples), Overview Citric<br />

Acid Cycle, Precursors available form the pathways<br />

3.2 Oxidation – Reduction (Redox Processes):<br />

Redox reactions in living cells, Redox potential,<br />

Redox potential and its relationship with<br />

concentration and pH, Redox column)<br />

3.3 Electron Transport chain; Electron carriers are<br />

12 20


integral proteins of mitochondrial membrane,<br />

components of ETC.<br />

3.4 Oxidative phosphorylation: Oxidation reduction<br />

of NADH carries 2e- and one proton,<br />

chemiosmotic model, formation of proton<br />

gradient across membrane, entry of protons into<br />

drives phosphorylation of ADP to ATP- ATP<br />

synthase, substrate – level phosphorylation<br />

3.5 Regulation of Glycolysis and citric acid cycle<br />

pathways, anaerobic respiration inyeast,<br />

muscle cells and lactobacillus ( Incomplete<br />

oxidation, fermentation)<br />

4 4.1 Photosynthesis vs. Respiration, structure<br />

of chloroplast, - membrane, Grana, Thylakod<br />

and Chlorophyll pigments, light energy and<br />

absorption spectra of chlorophyll a and b<br />

photo systems II and I. Reaction centre,<br />

ATP and NADPH synthesis<br />

4.2 Dark reaction – CO2 fixation use of ATP and<br />

NADPH from light reaction, The Kelvin Cycle.<br />

4.3 An overview of alternative pathways of<br />

carbohydrate metabolism: Pentose Phosphate<br />

pathway, signifance of the pathway; Gluconeogenesis<br />

and its importance<br />

4.4 Lipid metabolism: Oxidation of lipids vie<br />

B- oxidation; Amino acid metabolism:<br />

Assimilation, Transamination oxidative<br />

decarboxylation and synthesis of amino<br />

acids; GS; GOGAT reaction and their<br />

regulation, urea cycle<br />

4.5 An overview of interrelations among the<br />

pathways, Adenylylated energy charge (AEC)<br />

of a cell and overall regulation (Energy State<br />

of the Cell)<br />

5 5.1 Role of membrane in transportation of molecules<br />

and signal Transduction: membrane structure<br />

and fluids mosaic model.<br />

5.2 Movement of molecule across membrane:<br />

The mechanism of transportation<br />

5.3 Membrane proteins and their role in<br />

transportation and transduction of signals’<br />

domains and micro domains of membrane<br />

proteins an basic understanding<br />

5.4 Signal transduction, cascades: The G-Proteinsmembrane<br />

receptors and detail mechanism of<br />

message transfer and secondary messenger<br />

5.5 Role of hormones as messenger in regulation of<br />

cellular metabolism<br />

12 20<br />

12 20<br />

20 | P a g e


PAPER III<br />

BASIC ASPECTS OF CELLULAR METABOLISM (PRACTICALS) 6HRS/WK<br />

Credits: 4 Total Hrs 60 Marks 100<br />

Sr.<br />

No.<br />

Module Sub-topics<br />

I<br />

1 To demonstrate working operations of<br />

spectrophotometer<br />

2 Use of pH meter<br />

3 Isolation of protein by Ammonium Sulphate<br />

precipitation<br />

method.<br />

4 Assaying of various enzymes (any three)<br />

a) Amylases by KI-12 method<br />

b) Phenol oxidase (Potato)<br />

c) Invertase by GOD/OID and DNSA METHOD<br />

d) Proteolytic enzymes (Trypsin or Pepsin)<br />

e) Lipases (Germinating castor seeds)<br />

f) Phosphatases<br />

g) Glucose oxidase.<br />

5 Estimation protein by Lowry’s and Bradfords’s methods<br />

Assaying Enxyme Reaction Kinetics (Invertase or<br />

Phosphatase)<br />

a) Effect of varying substrate concentration on the<br />

reaction rate, Determination of Vo, Vmax and Km<br />

values<br />

b) Effect of parameters pH and temperature on<br />

enzyme activity.<br />

No of<br />

lectures<br />

Weightage<br />

%<br />

LIST OF REFERENCE BOOKS:<br />

21 | P a g e<br />

1. Boyer, 1999, Concepts in biochemistry, Thomson<br />

2. Pagano, 2000, Principle of biostatistics. Thomson<br />

3. Harmes. <strong>Bio</strong>chemistry, 2 nd Ed. Viva Book<br />

4. Fisher, Chemistry for biologists, Viva Books<br />

5. Turner, Molecular <strong>Bio</strong>logy. Viva Books.<br />

6. Enger. Concepts in biology. Tata McGraw-Hill.<br />

7. Iganacimatha. Basic biotechnology.<br />

8. Mitechell. Introduction to Genetic Algorithms. Prentice-Hall.<br />

9. Das and Mookrijee. Outline of biology.<br />

10. Roy and De. Cell bilogy<br />

11. <strong>Bio</strong>technology, Demystifying the concepts. By David Bourgaize. Alp 2000<br />

12. Peaceniks & Lamb. 1994. How to write about biology. Longman.<br />

13. Eric. S. Grace. <strong>Bio</strong>technology unzipped: Promises and realities.<br />

14. William Bains. <strong>Bio</strong>technology from A to Z<br />

15. Barnum. <strong>Bio</strong>technology: An Introduction. 1999. Brooks Cole Pub. Comp.<br />

16. Weaver. Molecular bilogy. WCB/McGraw-Hill 1999<br />

17. Wilson, & Walker. 1995. Principles and techniques of practical <strong>Bio</strong>chemistry.<br />

18. ambridge Univ. Press.<br />

19. Davidson V.L.& Sittman. 1993. <strong>Bio</strong>chemistry.<br />

20. Boyer. 2001. Modern Experimental bioch. 3/e. Addison<br />

21. Becker. 1996. <strong>Bio</strong>technology: A laboratory course. Alp<br />

22. Lenhinger. Principles of biochemistry<br />

23. Stryer- <strong>Bio</strong>chemistry. W.H.Freeman & Co.


22 | P a g e<br />

24. Plumner. An Introduction to practical <strong>Bio</strong>chemistry.<br />

25. J.Jayraman. Lab Manual in <strong>Bio</strong>chemistry.<br />

26. Cohn and Stumph. Outline of <strong>Bio</strong>chemistry. Wiley eastrn.<br />

27. Zube’s <strong>Bio</strong>chemistry. Macmillan.<br />

28. Blel & Odian. 1999. Organic and <strong>Bio</strong>chemistry<br />

29. Tinoco. Iland others. 1995. Physical chemistry Principles and applications in biological<br />

<strong>Sc</strong>iemnces. Prentice-Hall.<br />

30. Paul H. Teesdale & others. 2001. Essentials of <strong>Bio</strong>logical chemistry. J/W<br />

31. Swetzer and Gauilty 1995. Experimental <strong>Bio</strong>chemistry WH Freeman.<br />

32. Voet Donald. 1999. Fundamentals of <strong>Bio</strong>chemistry, J/W<br />

33. Hames and Hooper. 2000. Instant notes in <strong>Bio</strong>chemistry. bIOS <strong>Sc</strong>i. Pubi.<br />

34. Smith G. 1996. <strong>Bio</strong>technology. Cambeidge Univ. Press.<br />

35. Geoffrey looper. 2000. The cell with CD-Rom. Sinauer Asso. Incorp.<br />

36. Athel Cornish-Bowder. 1999. Basic mathematics for biochemists. OUP.<br />

37. Elliott & Elliott. 2001. <strong>Bio</strong>chemistry and molecular biolgy. OUP.<br />

38. Millar Thomas. (ED). 2000. <strong>Bio</strong>chemistry explained: A practical guide to learning<br />

<strong>Bio</strong>chemistry. Hardwood ACa. Publ.<br />

39. Haynie, D.T. 2001. <strong>Bio</strong>logical thermodynamics Cambridge Uni. Press.<br />

40. Hargreaves and Thmpson (Ed). 1999. <strong>Bio</strong>chemistry of Exercises X. Human Kinetics<br />

Publ.<br />

41. Aldridge, Susan. 1994. <strong>Bio</strong>chemistry: a textbook for A- level biology: Practical Guide.<br />

Cambridge Uni. Press.<br />

42. Seidman and Moore. 2000. Basic laboratory methods for biotechnology. Lovgman.


PAPER III BIOSTATISTICS 4HRS/WK<br />

Credits: 4 Total Hrs 60 100 Marks<br />

Sr.<br />

No.<br />

Module<br />

I<br />

Sub-topics<br />

1 Introduction: definition of statistics: population<br />

and Universe, the sample and population,<br />

statistical Inference; parameter and statistics.<br />

2 Interval Data: construction of a histogram;<br />

Interpretation of histogram, the normal distribution,<br />

the mean mode, median and standard deviation,<br />

representing the normal curve, uncertainties in<br />

estimation of a mean, comparison of means and<br />

variances.<br />

Proportion data: examples of proportion data:<br />

(MPN, sterility testing of medicines, animal<br />

toxicity, therapeutic trial of drugs and vaccines,<br />

animal toxicity, infection and immunization<br />

studies) statistical treatment to proportion data.<br />

Chi-square test, goodness of fit.<br />

Count data: examples of count data (bacterial<br />

cell count, radioactivity count, colony and plaque<br />

counts), statistical treatment to count data:<br />

Poisson distribution, standard error, confidence<br />

limits of counts.<br />

3 Analysis of variance: Analysis of co-variance:<br />

Introduction, procedure and tests, multiple<br />

Comparisons<br />

4 Correlation and regression and line fitting<br />

through graph points; standard curves;<br />

correlation, liner regression (fitting the best<br />

straight line through a series of points) MLR,<br />

multi-colinearity. Standard curves and<br />

interpolation of unknown Y-values.<br />

5 Statistical basis of biological assays:<br />

Response-Dose metameter. Delusion Assays<br />

Direct and indirect assays. Quantal Responses<br />

Probit, logit, LD 50 , ED 50, PD 50 – Standard line<br />

Interpolation assay, parallel line assay ( 4 point,<br />

6 point, assays), slope ratio assay.<br />

No of<br />

lectures<br />

Weightage<br />

%<br />

12 20<br />

12 20<br />

12 20<br />

12 20<br />

12 20<br />

LIST OF REFERENCE BOOKS:<br />

1) Bliss, C.I.K. (1967): Statistics in <strong>Bio</strong>logy, Vol. 1 Mc. Graw Hill, New York.<br />

2) Campbell R.C. (1974): Statistics for <strong>Bio</strong>logists, Cambridge <strong>University</strong> Press, Cambridge.<br />

3) Hewitt, W. (1977): Microbiological Assay. Academic Press, New York.<br />

23 | P a g e


4) Lutz, W. (1967): Statistical Methods as Applied to Immunological data, app. 1163-1206. In<br />

D.M. Weir (Ed/) Hand-book of Experimental Immunology. Blackwell Publications Ltd.,<br />

Oxford.<br />

5) Wardlaw, A.C. (1982): (1) Four Point parallel line assay of penicillin pp. 370-379.<br />

(ii) Microbiological assay of a vitamin-nicotinic acid. Pp214-233, In. S.B. Primrose and<br />

A.C. WAARDLAW (Eds.) Sourcebook of Experiments for the Teaching of Microbiology.<br />

Academic Press, London and New York.<br />

6) Wardlaw, A.C. (1985): Practical Statistics for Experimental <strong>Bio</strong>logists. John Wiley and<br />

Sons., Inc. New ork.<br />

24 | P a g e


PAPER III<br />

BIOCHEMISTRY (THEORY)<br />

4HRS/WK<br />

Sr.<br />

No.<br />

1<br />

2<br />

3<br />

4<br />

5<br />

Module<br />

I<br />

Sub-topics<br />

Credits: 4 Total Hrs 60 100 Marks<br />

Protein and nucleic acid structure and conformation,<br />

allosteric proteins, enzymes structure and kinetics,<br />

biological membrane.<br />

Metabolism, basic concepts, carbohydrate, lipid and<br />

nucleic acid metabolism, photosynthesis.<br />

<strong>Bio</strong>synthesis of macromolecules, lipids hormones,<br />

Aminoacids nucleotides.<br />

DNA transactions, gene concepts, DNA replication<br />

Repair and recombination, protein synthesis, control<br />

of gene expression.<br />

Membrane transport, cell walls, hormone action,<br />

Muscle contraction, clinical applications of<br />

<strong>Bio</strong>chemistry.<br />

No of Weightlectures<br />

age %<br />

12 20<br />

12 20<br />

12 20<br />

12 20<br />

12 20<br />

LIST OF REFERENCE BOOKS:<br />

1. Stryer, (1995). <strong>Bio</strong>chemistry, W.H. Freeman & Co. 1064pp.<br />

BIOCHEMISTRY (PRACTICALS)<br />

4HRS/WK CREDITS: 2 TOTAL HRS 60 50 MARKS<br />

a) Estimation of DNA and RNA by measured of sugar.<br />

b) Estimation of protein.<br />

c) Estimation of blood glucose – glucose oxidase ,method<br />

d) Estimation of serum cholesterol – cholesterol oxidase method.<br />

e) Liver function tests.<br />

f) Estimation of biliubin.<br />

LIST OF REFERENCE BOOKS:<br />

1. F.J. Baker, Bacteriological Techniques<br />

2. Gunasekaran, Introduction to Microbial Techniques.<br />

3. Sadasivam and Manickam. <strong>Bio</strong>chemical Methods.<br />

25 | P a g e


Semester – IV<br />

PAPER IV<br />

FUNDAMENTALS OF IMMUNOLOGY AND GENETICS (THEORY)<br />

4HRS/WK<br />

26 | P a g e<br />

Credits: 4 Total Hrs 60 100 Marks<br />

Sr.<br />

No.<br />

Module<br />

I<br />

Sub-topics<br />

No of<br />

lectures<br />

Weightage<br />

%<br />

1 1.1 Introduction and Historical perspective of<br />

15 20<br />

innate and acquired immunity, characteristics<br />

of the immune response, cells involved in the<br />

acquired immune response, soma clonal selection<br />

theory.<br />

1.2 Elements of innate and acquired immunity:<br />

* Innate immunity, physiological and chemical<br />

barriers, cellular defense, Phagocytosis and<br />

extracellular killing, inflammation, fever<br />

biologically active substances, lymphatic<br />

organs, interrelationship between innate and<br />

acquired immunity<br />

1.3 Antigens: Foreignness, high molecular weight,<br />

chemical complexity, degradability, Haptens<br />

1.4 Antigents: Primary and secondary responses,<br />

Antigenicity and antigen binding site, Epitopes<br />

recognized by B-cells and T-cells, cross reactivity,<br />

Immunogenic adjuvant.<br />

1.5 Antibody structure and function: Structural<br />

features and biological properties of<br />

IgG,IgM,IGA, IgD, IgE, and immunoglobulin super<br />

family, generation of antibody diversity.<br />

2 2.1 Antigen-antibody Interactions: Lattice Hypothesis, 10 20<br />

agglutination and precipitation<br />

2.2 Antigen-antibody interactions: In vivo and In vitro<br />

Interactions between Ag & Ab.<br />

2.3 Major Histocompatibility Complex in mouse and<br />

HLA system in human<br />

2.4 T-Cell generation, activation and differentiation<br />

3 3.1 Cytokines: General properties and functions,<br />

12 20<br />

cytokine receptors.<br />

3.2 Complement System: Activation pathways and<br />

biological activities of complements.<br />

3.3 Dysfunctional Immunity: Immediate and delayed<br />

hypersensitivity<br />

3.4 Dysfunctional Immunity: Autoimmunity and<br />

autoimmune diseases<br />

3.5 Dysfunctional Immunity:Immunodeficiency diseases.<br />

4 4.1 History of Genetics: Concepts and definition, Elements<br />

of heredity and variation<br />

4.2 Mendelian inheritance patterns and laws of heredity<br />

4.3 Linkage and linkage maps<br />

4.4 Varieties of gene expression: multiple alleles, lethal<br />

12 20<br />

genes, pleiotrophic genes, Gene Interactions and<br />

epistatis.<br />

4.5 Chromosome systems and sex linkage.


5 5.1 Non Chromosomal inheritance.<br />

5.2 Mutations and their types.<br />

5.3 Chromosomal alterations & meiotic consequences.<br />

5.4 Human genetics.<br />

5.5 Gene mapping and genome analysis.<br />

12 20<br />

PAPER IV<br />

FUNDAMENTALS OF IMMUNOLOGY AND GENETICS (PRACTICSLS)<br />

6HRS/WK<br />

Credits: 3 Total Hrs 90 75 Marks<br />

Sr.<br />

No.<br />

Module<br />

I<br />

Sub-topics<br />

1 1. Preparation and Identification of different cell types<br />

in peripheral blood: Tltal and Differential count of<br />

blood cells.<br />

2. Aglutination and Precipitation.<br />

a) Blood grouping<br />

b) Widal test<br />

c) SRID test<br />

d) Ouchterlony Double Diffusion test<br />

e) HIV detection rapid test<br />

d) Pregnancy detection rapid test<br />

2 Isolation of Ig from serum<br />

3 Detection of Antigen or Antibody by ELISA test<br />

4 Problem solving of Mendalian Principles.<br />

No of<br />

lectures<br />

Weightage<br />

%<br />

LIST OF REFERENCE BOOKS:<br />

1. Immunology – by IM Roitt, J Brostoff and DK Male (1993) BMP. London,<br />

2. J.Kuby (1991). Immunology _ freeman and company<br />

3. A.K.Abbas A.H.Lichtman J.S. Pober (1994). Cellular and Moiecular immunology- W.B.Saundes<br />

Co.Phladelphia<br />

4. V.R. Muthukkaruppan, S. Baskar and F.Sinigaglia (1986) Hybridoma techniques: A laboratory<br />

Course- Macmillian India Limited<br />

5. V.E. Cells (1994) Cell Bilogy Vol-I Immunology to III- Academic Press.<br />

6. Basic Immunology by Jacqueline Sharon<br />

7. Jan Kay. Introduction to Animal Physiology.Viva Books.<br />

8. Jurd. Animal <strong>Bio</strong>logy. Viva books.<br />

9. Riott. Brostoff and Mal. 1993. Immunology, BMP Lond.<br />

10. Abbas and other. 1994. Cellular and molecular immunology. W.B.Saunders Co.<br />

11. Coleman, Lombard & Sicard. 1993Fundamental of immunology. WCB.<br />

12. Janeway etal. 1999. Immunobiology<br />

13. Todd R.F. 2000. Lecture notes on Immunology.<br />

14. David Wild. 2001. Immunoassay Handbook. Macmillian<br />

15. Fairbanks and Andersen: Genetics, the countinuity of life.<br />

16. Hertwell et.al. :Genetics- From Genes to Genomes<br />

17. Karvita Ahluwalia: Genetics. New Age International P.Ltd.<br />

18. Griffith et.al. : An Introduction to Genetic Analysis<br />

19. Weaver Hedrick: Genetics<br />

27 | P a g e


PAPER IV<br />

BIOPHYSICAL AND BIOCHEMICAL TECHNIQEUS (Theory)<br />

6HRS/WK<br />

28 | P a g e<br />

Credits: 3 Total Hrs 60 75 Marks<br />

Sr.<br />

No.<br />

Module<br />

I<br />

Sub-topics<br />

No of<br />

lectures<br />

Weightage<br />

%<br />

1 Concepts of <strong>Bio</strong>energetics:<br />

10 15<br />

Principles of thermodynamics and their applications<br />

in biochemistry – introduction, thermodynamic<br />

system, thermodynamic state functions, first and<br />

second laws of thermodynamics, concept of free<br />

energy, standard free energy, determination of ∆G<br />

for a reaction, relation between equilibrium<br />

constant and standard free energy change,<br />

biological standard state and standard free energy<br />

change in coupled reactions. <strong>Bio</strong>logical oxidationreduction<br />

reactions – introduction, redox<br />

potentials, relation between standard<br />

reductionpotentials and free energy change<br />

(derivations and numericals included). Highenergy<br />

phosphate compounds – introduction,<br />

phosphate group transfers-free energy of<br />

hydrolysis of ATP and sugar phosphates along<br />

with reasons for high ∆G.<br />

2 Hydrodynamic Methods:<br />

05 15<br />

Sedimentation – sedimentation velocity, preparative<br />

and analytical ultracentrifugation techniques,<br />

determination of molecular weight by hydrodynamic<br />

methods (derivations excluded and numericals<br />

included).<br />

3 Measurement of pH:<br />

05 10<br />

Principles of glass and reference electrodes, types<br />

of electrodes, complications of pH measurement<br />

(determination of molecular weight by hydrodynamic<br />

methods (derivations excluded and numericals<br />

included).<br />

4 Radioisotopic Techniques:<br />

Types of radioisotopes used in <strong>Bio</strong>chemistry, units<br />

of radioactivity measurements, techniques used to<br />

measure radioactivity (gas ionization and<br />

liquid scintillation counting), nuclear emulsions used<br />

in biological studies (pre-mounted, liquid and<br />

stripping), isotopes commonly used in biochemical<br />

studies – 32 P, 35 S, 14 C and 3 H), Autoradiography.<br />

<strong>Bio</strong>logical hazards of radiation and safety measures<br />

In handling radioisotopes. <strong>Bio</strong>logical applications.<br />

05 10


5 Chromatography:<br />

10 15<br />

General principles and applications of –<br />

1. Adsorption chromatography.<br />

2. Ion-exchange chromjatogrphy.<br />

3. Thin-layer chromatography<br />

4. Molecular-sieve chromatography<br />

5. Hydrophobic chromatography.<br />

6. Gas-liquid chromatography<br />

7. HPLC<br />

8. Affinity chromatography<br />

9. Paper chromatography.<br />

6 Electrophoresis<br />

05 10<br />

Basic principles of agarose electrophoresis, PAGE<br />

and SDS-PAGE, Two-dimensional electrophoresis, its<br />

importance. Isoelectrofocussing.<br />

7 Spectroscopic Techniques:<br />

15 15<br />

Beer-Lambert law, light absorption and its<br />

transmittance, determination and application of<br />

extinction coefficient, application of visible and UV<br />

spectroscopic techniques (structure elucidation and<br />

numericals excluded). Principle and application<br />

of NMR, ESR, Mass spectroscopy. Fluorescent and<br />

emission spectroscopy.<br />

8 Immunological Techniques:<br />

Immunodiffusion, immunoelectrophcresis,<br />

Radioimmunoassay, ELISA, immunofluorescence.<br />

05 10<br />

29 | P a g e


PAPER IV<br />

BIOPHYSICAL AND BIOCHEMICAL TECHNIQEUS (Practicals) 6HRS/WK<br />

Credits: 4 Total Hrs 90 Marks: 50<br />

Sr.<br />

No.<br />

1<br />

Module<br />

I<br />

Sub-topics<br />

Preparation of standard buffers and determination<br />

of pH of a solution.<br />

2 Qualitative tests for :<br />

a) Carbohydrates<br />

b) Proteins and amino acids<br />

c) Lipids<br />

3 Determination of saponification value and iodine<br />

number of fats.<br />

4 Estimation of ascorbic acid.<br />

5 Titration curve for amino acids and determination of<br />

pK value.<br />

6 Verification of Beer-Lambert’s law.<br />

7 Estimation of –<br />

i) Carbohydrate by anthrone method.<br />

ii) Blood glucose by the methods<br />

(a) Folin-Wu, (b) Nelson-Somogyi.<br />

8 Estimation of amino acids by ninhydrin method.<br />

9 Isolation and assay of glycogen from rate liver.<br />

10 i) Extraction of total lipids by Folch method<br />

ii) Estimation of food adulterant.<br />

11 Estimation of DNA and RNA.<br />

12 Separation of sugars using paper chromatography.<br />

No of<br />

lectures<br />

Weightage<br />

%<br />

30 | P a g e


PAPER IV<br />

ORGAIC AD BIOPHYSICAL CHEMISTRY<br />

4HRS/WK Credits: 4 Total Hrs 60 Marks: 100<br />

Sr.<br />

No.<br />

Module<br />

I<br />

Sub-topics<br />

1 Organic Chemistry:<br />

Electronic theory of valency, dipole moments.<br />

Electronic displacements in a molecule: Inductive<br />

effect, resonance. The hydrogen bond,<br />

hydrophobic interactions. Atomic and molecular<br />

orbitals. Shapes of biomolecules, hybridization and<br />

tetracovalency of carbon.<br />

No of Weightlectures<br />

age %<br />

30 50<br />

Isomerism: Structural isomerism, Stereoisomerism,<br />

Isomerism (E&Z nomenclature)<br />

Types of organic reactions: Substitution addition,<br />

Elimination, rearrangement, Condensation and<br />

polymerization.<br />

Free radicals in biological systems: Oxygen as a<br />

free radical in the autooxidation of fats. Antioxidants<br />

(Free radical inhibitors in the cell such as vitamin A,<br />

vitamin E, vitamin C, Se etc.)<br />

Mechanism of substitution in the benezene ring:<br />

o-, p- and m-directing groups. The concept of<br />

resonance with reference to benzene derivates.<br />

Direct influence of substituents –electronic<br />

Interpretation.<br />

Stereochemistry: Optical isomerism, optical activity,<br />

Meso-compounds, specific rotation, chirality, chiral<br />

Center, enantiomers, diasteroisomers, D L, R S,<br />

Threo erythro notations, conformation and<br />

Configuration, dihedral angles, conformational<br />

Analysis of ethane, n-butane, cyclohexane, monoand<br />

di-substituted cyclohexane, monosaccharides,<br />

boat and chair forms, eclipsed, gauche and<br />

staggered conformations, axial and equatorial<br />

bonds. Anomers and mutarotation, glycoside,<br />

epimers, glucopyranose, fructopyranose, periodic<br />

acid oxidation of sugars.<br />

Heterocyclic systems occurring in living systems:<br />

Numbering of the ring and properties of pyran,<br />

Furan, thiozole, indole, pyridine, pyrimidine,<br />

Quinine, purine and pteridine.<br />

2 <strong>Bio</strong>physicsl Chemistry:<br />

Thermodynamics studies in chemistry and<br />

31 | P a g e<br />

30 50


<strong>Bio</strong>chemistry: Open, closed and isolated system;<br />

first law of thermodynamics, heat of formation and<br />

heat of reaction; second law of thermodynamics,<br />

molecular basis of entropy, Helmholtz and Gibbs<br />

free energy; third law of thermodynamics and<br />

calculation of entropy; application of the first and<br />

second law of thermodynamics in understanding<br />

energies in living cells, chemical potential,<br />

equilibrium constant.<br />

Types of electrodes, standard electrode potential<br />

and its determination, its relationship with emf,<br />

electron transfer measures.<br />

Phosphate group transfer potentials, coupled<br />

reactions.<br />

Water : Physical properties and structure of water,<br />

Hydrogen bonding, ionization of water, pH scale,<br />

acids-bases, Handerson-Hasselbalch equation,<br />

buffers, ionization behaviour of amino acids and<br />

proteins, titration curve, buffer solutions and their<br />

action.<br />

Radioisotope techniques: Nature of radioactivity,<br />

Properties of α,β and γ-rays, measurement of<br />

radioactivity, use of radioisotopes in research.<br />

In vivo and in vitro labeling techniques, double<br />

labeling, quenching, internal standard,<br />

channel ratio, emulsion counting, radioactive<br />

decay,<br />

autoradiography.<br />

Viscosity: Its measurement, viscosity of<br />

Macromolecules, molecular weights of<br />

<strong>Bio</strong>molecules. Sedimentation of<br />

macromolecules, centrifugation techniques<br />

and<br />

their applications, differential centrifugation,<br />

density gradient and ultracentrifugation<br />

techniques. Subcellular fractionaction.<br />

Electrophoretic techniques: Moving boundary<br />

and zonal electrophoresis, paper and gel<br />

Electrophoresis, isoelectric focusing.<br />

Chromatography: Paper, TLC, Adsorption,<br />

partition, ion-exchange, reverse phase, gel<br />

filtration, affinity, gas chromatography, HPLC<br />

(High Pressure Liquid Chromatography).<br />

32 | P a g e<br />

Spectroscopy: Basic concepts & applications


of X-ray diffraction, NMR, ESR, UV, IR,<br />

fluorescence, Raman, mass spectroscopy in<br />

structure determination of organic and<br />

biomolecules, CD and ORD.<br />

Microscopy: Light, electron (scanning and<br />

transmission), phase contrast, fluorescence<br />

microscopy, freeze-fracture techniques,<br />

specific staining of organelles or marker<br />

enzymes.<br />

ORGAIC AD BIOPHYSICAL CHEMISTRY (PRACTICALS)<br />

4hrs /wk Credits: 3 Total Hrs 60 50 Marks<br />

LABORATORY EXPERIMENTS:<br />

At lest 10 Experiments relevant to above topics to be conducted.<br />

33 | P a g e


Semester – V<br />

PAPER V<br />

BIOPROCESS AND BIOCHEMICAL ENGINEERING (THEORY) 4HRS/WK<br />

Credits: 4 Total Hrs 60 100 Marks<br />

Sr.<br />

No.<br />

Module<br />

I<br />

Sub-topics<br />

No of<br />

lectures<br />

Weightage<br />

%<br />

1 1.1 Selective and enrichment Techniques for isolation 12 20<br />

and screening of biotechnologically useful microorganism<br />

from natural and man-made samples.<br />

1.2 Primary secondary screening<br />

1.3 Strain Improvement: Nature of mutation, mutagenesis,<br />

isolation of mutants<br />

1.4 Strain Improvement: Application of recombinant DNA<br />

technique in strain construction<br />

1.5 Techniques for preservation and storage of cultures.<br />

2 2.1 Fermentor and bioreactor: Design and types 12 20<br />

of various fermentors<br />

2.2 Introduction to Aeration and agitation, oxygen<br />

transfer rate, heat control<br />

2.3 Basic concept of growth and growth kinetics<br />

2.4 Batch, fed-batch and continuous culture operations,<br />

chemostat and turbidostat<br />

2.5 Starter culture, its importance and preparation<br />

3 3.1 Introduction and types of fermentation media 12 20<br />

3.2 Raw materials used in fermentation media<br />

3.3 Media optimization<br />

3.4 Sterilization of media, air and equipments<br />

3.5 Process parameters and measurement techniques:<br />

a) Measurement of temperature, pressure and pH<br />

b) Flow rates of liquid and gases<br />

c) Automation (process computerization)<br />

4 4.1 Overview of downstream processing<br />

12 20<br />

4.2 Extraction and separation techniques;<br />

a) Cell distruption – disintegration<br />

b) Flocculation & Floatation<br />

c) Filtration<br />

d) Centrifugation<br />

e) Distillation<br />

4.3 Enrichment of product by:<br />

a) Thermal process<br />

b) Membrane filtration and dialysis<br />

c) Freeze concentration<br />

d) Chromatographic methods.<br />

4.4 Purification: Crystallization and drying<br />

4.5 <strong>Bio</strong>assay, Quality control procedure & fermentation<br />

economics<br />

5 5.1 An overview of solid state fermentation<br />

12 20<br />

5.2 Fermentation processes of alcohol, organic<br />

acids (Cluconic acid & Citric acid)<br />

5.3 Fermentation processes of amino acids (Lysine),<br />

vitamins (Vit.B12)<br />

5.4 Fermentation processes of antibiotics (penicillin)<br />

5.5 Fermentation processes of SCP. Baker’s yeast,<br />

Food & feed yeast, legume inoculants.<br />

34 | P a g e


BIOPROCESS AND BIOCHEMICAL ENGINEERING (PRACTICALS)<br />

6HRS/WK<br />

Credits: 3 Total Hrs 90 75 Marks<br />

1. Isolation, <strong>Sc</strong>reening and characterization of Lipolytic, Proteolytic, Amylolytic microbes and<br />

Enzymes.<br />

2. <strong>Sc</strong>reening of antibiotic producing microorganisms<br />

3. To demonstrate various techniques of bioassay for antibiofatic and vitamins<br />

4. Optimization of medium parameters for the production of biomass and enzymes (Amylases)<br />

5. Typical fermentation of alcohol, gluconic acid and citric acid<br />

6. Separation and purification of antibiotic from fermented broth<br />

7. Determination of growth phases of microorganisms<br />

LIST OF REFERENCE BOOKS:<br />

1. Mukhopadhyay. Process <strong>Bio</strong>technology Fundamental. Viva book<br />

2. Shuler and kargi, 1992. <strong>Bio</strong>process engineering. Prentice-Hall<br />

3. Bialy & Illis. 1986. <strong>Bio</strong>chemical Eng. Fundaments. McGraw-Hill<br />

4. <strong>Sc</strong>hugel. 1987. <strong>Bio</strong>reaction engineering. J/W<br />

5. Stanbury and Whitaker. Principles of fermentation technology.<br />

6. Sikyta. Methods in Industrial microbiology. Ellis Hardwood Ltd.<br />

7. Krijsman. Product recovery in bioprocess technology<br />

8. T.K. Ghose. BHioprocess computation in biotechnology. Ellis Hardwood. Ltd.<br />

9. Murray Joh. 1997. Microorganism and biotechnology.<br />

10. Demain efal. (ED). 1999. Manual of mdustrial Microbiology and <strong>Bio</strong>technology. Asm Press.<br />

11. <strong>Bio</strong>process Engineering Principles by Doran (D); Academic Prss, 1998<br />

12. Cooney, A.E. Humphrey, Comprehensive <strong>Bio</strong>technology: The principles and Regulation of<br />

<strong>Bio</strong>technology in Industry, Agriculture and Medicine, Vol. 2, Pergamon Press, 1985<br />

13. Doran, <strong>Bio</strong>process Engineering Principles- Academic Press-2001<br />

35 | P a g e


Paper VI GENETICS AND MOLECULAR BIOTECHNOLOGY<br />

Sr.<br />

No.<br />

Module<br />

I<br />

36 | P a g e<br />

4HRS/WK<br />

Credits: 4 Total Hrs 60 100 Marks<br />

Sub-topics<br />

1 <strong>Sc</strong>ope of Genetic Engineering<br />

2 Milestones in Genetic Engineering<br />

Isolation of enzymes, DNA sequencing, synthesis and<br />

mutation, detection and separation, cloning, gene<br />

expression. Cloning and patenting of life forms.<br />

Genetic engineering guidelines.<br />

3 Molecular Tools and Their Applications<br />

Restriction enzymes, modification enzymes, DNA and<br />

RNA markers.<br />

4 Nucleic Acid Purification, Yield Analysis<br />

5 Nucleic Acid Amplification and its Applications.<br />

6 Gene Cloning Vectors<br />

Plasmids, bacteriophages, phagemids, cosmids.<br />

Artificial chromosomes.<br />

7 Restriction Mapping of DNA Fragments and Map<br />

Construction. Nucleic Acid Sequencing.<br />

8 cDNA Synthesis and Cloning.<br />

mRNA enrichment, enrichment, reverse transcription,<br />

DNA primers, linkers, adaptors and their chemical<br />

synthesis, Library construction and screening.<br />

9 Alternative Strategies of Gene Cloning<br />

Cloning interacting genes- Two-and three hybrid<br />

systems, cloning differentially expressed genes.<br />

Nucleic acid microarray arrays.<br />

10 Site-directed Mutagenesis and Protein Engineering<br />

11 How to Study Gene Regulation<br />

DNA transfection, Northern blot, Primer extension, S1<br />

mapping. RNase protection assay, Reporter assays.<br />

12 Expression Strategies for Heterologous Genes<br />

Vector engineering and codon optimiztion, host<br />

engineering. In vitro transcription and translation,<br />

expression in bacteria, expression in Yeast, expression<br />

in insects and insect cells, expression in mammalian<br />

cells, expression in plans.<br />

13 Processing of Recombinant Proteins<br />

Purification and refolding, characterization of<br />

recombinant proteins, stabilization of proteins.<br />

14 Phage Display<br />

15 T-DNA and Transposon Tagging<br />

Role of gene tagging in gene analysis, T-DNA and<br />

transposon tagging, identification and isolation of<br />

genes through T-DNA or transposon.<br />

16 Transgenic and Gene Knockout Technologies<br />

Targeted gene replacement, Chromosome<br />

engineering.<br />

17 Gene Therapy<br />

Vector engineering. Strategies of gene delivery, gene<br />

replacement/augmentation, gene correction, gene<br />

edition, gene regulation and silencing.<br />

No of<br />

lectures<br />

Weightage<br />

in %


GENETICS AND MOLECULAR BIOTECHNOLOGY (PRACTICALS)<br />

6 HRS/WK<br />

Credits: 3 Total Hrs 90 75 Marks<br />

Sr.<br />

No.<br />

Module-<br />

Sub-topics<br />

1 Bacterial culture and antibiotic selection<br />

media. Preparation of competent cells.<br />

2<br />

Isolation of plasmid DNA.<br />

3<br />

4<br />

ISOLATION OF Lambda phage DNA.<br />

Quantitation of nucleic acids.<br />

5 Agarose gel electrophoresis and restriction<br />

mapping of DNA.<br />

6 Construction of restriction map of plasmid<br />

DNA<br />

7<br />

Cloning in plasmid/phagemid vectors.<br />

No of<br />

lectures<br />

Weightage<br />

in %<br />

8<br />

Preparation of helper phage and its titration.<br />

9 Preparation of single stranded DNA<br />

template.<br />

10<br />

DNA sequencing.<br />

11 Gene expression in E. coli and analysis of<br />

gene product.<br />

12<br />

PCR<br />

13<br />

Reporter Gene assay (Gus/CAT/b-GAL)<br />

LIST OF REFERENCE BOOKS:<br />

1. Molecular Cloning: a Laboratory Manual, J. Sambrook, E.F. Fritsch and<br />

T. Maniatis, Cold Spring Harbor Laboratory Pres, New York, 2000<br />

2. DNA Cloning: a Practical Approach, D.M. Glover and B.D. Hames, IRL<br />

Press, Oxford. 1995.<br />

3. Molecular and Cellular Methods in <strong>Bio</strong>logy and Medicine, P.B.<br />

Kaufman, W. Wu, D. Kim and L.J. Cseke, CRC Press, Florida, 1995.<br />

4. Methods in Enzymology Vol. 152, Guide to Molecular Cloning Techniques, S.L.<br />

Berger and A.R. Kimmel, Academic Press, Inc. San Diego, 1998.<br />

5. Methods in EnzymologyVol. 185, Gene Expression <strong>Technology</strong>, D.V. Goeddel,<br />

Academic Press, Inc. San Diego 1990.<br />

6. DNA <strong>Sc</strong>ience, A First Course in Recombinant <strong>Technology</strong>, D.A. Mickloss and G.A.<br />

Freyer, Cold Spring Harbor Laboratory Press, New York, 1990.<br />

7. Molecular <strong>Bio</strong>technology (2 nd Edn.), S.B. Primrose, Blackwell <strong>Sc</strong>ientific Publishers,<br />

Oxford, 1994.<br />

37 | P a g e


8. Milestones in <strong>Bio</strong>technology. Classic papers on Genetic Engineering, J.A. Davies<br />

and W.S. Reznikoff, Butterworth-Heinemann, Boston, 1992.<br />

9. Route Maps in Gene <strong>Technology</strong>, M.R. Walker and R. Rapley,<br />

Blackwell <strong>Sc</strong>ience Ltd., Oxford, 1997.<br />

10. Genetic Engineering. An introduction to gene analysis and exploitation in<br />

eukaryotes, S.M. Kingsman and A.J. Kingsman, Blackwell <strong>Sc</strong>ientific Publications,<br />

Oxford, 1998.<br />

11. Molecular <strong>Bio</strong>technology - Glick<br />

38 | P a g e


SEMESTER - V<br />

PAPER VII ANALYTICAL TECHNIQUES IN BIOTECHNOLOGY (THEORY) 4 HRS/WK<br />

39 | P a g e<br />

Credits: 4 Total Hrs 60 100 Marks<br />

Sr.<br />

No.<br />

Module<br />

I<br />

Sub-topics<br />

No of<br />

lectures<br />

Weightage<br />

%<br />

1 Strategies and principles of analytical techniques 10 20<br />

1.1 Concepts of Good Laboratory Practice and Quality<br />

Management<br />

1.2 Qualitative and quantitative aspects of analyzing<br />

resources and products<br />

1.3 Principles and physical cad chemical analysis<br />

1.4 Advancement in development of techniques<br />

1.5 Basics of modern molecular analytical methods in<br />

<strong>Bio</strong>technology<br />

2 Spectroscopy<br />

25 20<br />

2.1 Interaction of EM radiation with matter: Overview of<br />

Electromagnetic spectrum; physical phenomenon:<br />

Absorption, Resonance fluorescence, Emission,<br />

Refraction, Diffraction.<br />

2.2 <strong>Sc</strong>attering, Raman <strong>Sc</strong>attering, Resonance Raman<br />

<strong>Sc</strong>attering, Beer-Lambert’s Laws<br />

2.3 UV-Vis spectrophotometric: The basic modules and<br />

components and their function; instruments based on<br />

spectrophotometer principles:<br />

2.4 Micro plate readers and their applications<br />

2.5 Atomic spectroscopy: Principles and application of<br />

Atomic Absorption/ Emission Spectrometer.<br />

3 3.1 Basics of IR and NMR and their application in<br />

25 20<br />

biotechnology.<br />

3.2 Basics of X-Ray diffraction analysis and their<br />

application in biotechnology<br />

3.3 Overview of separation techniques, Distillation,<br />

Crystallization, Extraction, Ultra filtration, and<br />

dialysis, centrifugation, chromatography &<br />

electrophoresis.<br />

3.4 Centrifugation: Fundamentals and definition, concept<br />

sedimentation, the basis components: Electric motor,<br />

Drive shaft, Rotors to hold tubes and controls;<br />

sedimenting force, RCF, Floating force,<br />

Frictional resistance diffusion and Seder unit;<br />

3.5 Preparative & analytical centrifuges; density gradient<br />

centrifugation (zonal and isopycnic), differential<br />

centrifugation, Application to cell fractionation and<br />

macromolecules.<br />

4 Separation Techniques: Principles and Application :<br />

4.1 Chromatography<br />

a. Chromatography theory and principles:<br />

b. Solvent extraction theory<br />

c. Partition theory: Retention and differential<br />

migration mechanism (Impelling retarding forces) &<br />

equilibrium between two phases, definition of key<br />

terms:retention time, peak shape, band broadening,<br />

column efficiency, Rate Theory (HETP), resolution,<br />

selectivity, normal chromatography & Reverse.<br />

20 20


4.2 Properties of solvents (MP), stationary<br />

phase and supporting phase.<br />

Classifications of the technique, Types: Partition,<br />

Adsorption, Ion exchange, size exclusion,<br />

Affinity, Chromatography. Planner Chromatography,<br />

Paper Chromatography, ILC, Column Chromatography:<br />

CG/ CLC, HPLC and FPLC<br />

Electrophoresis: Principles and methods.<br />

5 5.1 Immunoassay techniques: Antibodies as specific<br />

reagents, Competitive and non-competitive binding<br />

immunoassay, Labeling, ELISA<br />

5.2 <strong>Bio</strong>sensors: Principles and definition, characteristic<br />

of ideal biosensors, Basic measuring procedure<br />

5.3 <strong>Bio</strong>chemical components of biosensors: Enzyme<br />

based biocatalyst sensors, <strong>Bio</strong>affinity systems,<br />

immunosensors<br />

5.4 <strong>Technology</strong> of biosnsors: Immobilization of<br />

bimolecular, activation of inorganic supports,<br />

methods of covalent binding.<br />

5.5 Application of biosensors: Clinical laboratory,<br />

In vivo determination of metabolites, Environmental<br />

monitoring of toxic compounds<br />

20 20<br />

40 | P a g e


ANALYTICAL TECHNIQUES IN BIOTECHNOLOGY (PRACTICALS)<br />

6 HRS/WK<br />

CREDITS: 3 TOTAL HRS 90 75 MARKS<br />

Sr.<br />

No.<br />

Module<br />

I<br />

Sub-topics<br />

1 Introduction to equality use concepts of accuracy and<br />

precision. Selection of analytical procedures. Sampling<br />

and sample preparation. Analysis, reporting and<br />

interpretation, and drawing conclusion. Calibration<br />

and graphical methods. ISO 9000<br />

2 Electricity: Voltage, current, resistance, AC/DC, solve<br />

problems using V=IR, Draw a complete circuit diagram<br />

(e.g. pH meter and spectrophotometer), list of safety<br />

rules for working with electricity.<br />

3 Computer component of given percentage solution,<br />

molarity solution, PPN, PPB solution, and stock solution.<br />

4 pH meter:<br />

a) List uses of pH meter, measurement,<br />

detailed diagram of pH electrod and reference<br />

electrode (combined electrd also), find pH<br />

of a solution giving detailed account of pH<br />

meter operation, troubleshooting.<br />

b) Preparation of solution using pH meter.<br />

c) Demonstration of the effects of the solution.<br />

No of<br />

lectures<br />

Weightage<br />

%<br />

5 Spectroscopy:-<br />

1. The basis component of photometer showing<br />

block diagram.<br />

2. Demonstrate the relationship between the<br />

colored sample solution and the color of<br />

wavelength used (complimentary color)<br />

3. Demonstrate the Beer’s Law, solving problems<br />

using the Law.<br />

4. Preparation of standard curve.<br />

LIST OF REFERENCE BOOKS:<br />

1. Harmes, <strong>Bio</strong>chemistry. 2 nd Ed. Viva Book.<br />

2. Fisher. Chemistry for biologists. Viva Books<br />

3. Wilson, & Walker. 1995. Principles and techniques of practical <strong>Bio</strong>chemistry. Cambridge Univ.<br />

Press.<br />

4. Davidson V.L.& Sittman. 1993. <strong>Bio</strong>chemistry.<br />

5. Blood & other 1996. Laboratory DNA <strong>Sc</strong>ience. Benjamin.<br />

6. Boyer. 2001. Modern Experimental bioch. 3/e. Addison<br />

7. Becker. 1996. <strong>Bio</strong>technology: A laboratory course. ALP<br />

8. Plumber. An introduction to practical <strong>Bio</strong>chemistry.<br />

9. J.Jayraman. Lab Manual in <strong>Bio</strong>chemistry.<br />

10. Chirikjian, J.P. 1995. <strong>Bio</strong>technology Theory and Technique for undergraduate laboratories Vol.1<br />

Jones and Barlett Pub.<br />

11. Tinoco. Iand others. 1995. Physical Chemistry Principles and application in <strong>Bio</strong>logical <strong>Sc</strong>iemnces.<br />

Prentice-Hall<br />

12. Paul H. Teesdale & others 2001. Essentials of <strong>Bio</strong>logical Chemistry.J/W<br />

13. Switzer and Gauity. 1995. Experimental <strong>Bio</strong>chemistry WH Freeman.<br />

41 | P a g e


14. Voet Donald. 1999. Fundamentals of <strong>Bio</strong>chemistry, J/W/<br />

15. Athel Cornish-Vowder. 1999. Basic mathematics for biochemists. OUP.<br />

16. Elliott & Elliott. 2001. <strong>Bio</strong>chemistry and molecular bilogy. OUP<br />

17. Millar Thomas.(ED). 2000. <strong>Bio</strong>chemistry explained: A practical guide to learning <strong>Bio</strong>chemistry,<br />

Hardwood Aca. Publ.<br />

18. Haynie, D.T. 2001. <strong>Bio</strong>logical thermodynamics Cambridge Univ. Press.<br />

19. Hargreaves and Thmpson (Ed). 1999. <strong>Bio</strong>chemistry of Exercises X. Human Kinetics Publi.<br />

20. Aldridge, Susan 1994. <strong>Bio</strong>chemistry: a textbook for A- level biology: Practical Guide. Cambridge<br />

Univ. Press<br />

21. 21 Seidman and Moore. 200. Basic laboratory methods for biotechnology. Lovgman.<br />

42 | P a g e


Semester – VI<br />

PAPER VII PRINCIPLES OF BIOTECHNOLOGY APPLIEDTO PLANTS & ANIMALS (THEORY)<br />

4 HRS/WK<br />

Credits: 4 Total Hrs 60 100 Marks<br />

Sr.<br />

No.<br />

Module Sub-topics No of<br />

lectures<br />

Weightage<br />

%<br />

1 1.1 Principles of tissue culture: Historical perspectives 12 20<br />

and development of plant/animal tissue culture<br />

techniques.<br />

1.2 Cell/tissue growth and differentiation- morphogenesis<br />

1.3 Concepts of totipotency of cell<br />

1.4 The tissue categories and key characteristics of<br />

animal tissues<br />

1.5 Concepts embryonic and stem cell<br />

2 2.1 Laboratory requirements for tissue culture<br />

12 20<br />

2.2 Culture media: preparation/ constituents and<br />

concepts of sterilization<br />

2.3 Preparation, isolation and selection of explant<br />

2.4 Nonconventional bloreactors<br />

2.5 Liquid cell suspension culture : Pollen cultue and<br />

protoplast culture, production and uses of<br />

haploids, preservation techniques of germplasm<br />

3 3.1 Gene transfer techniques using Agrobacterium 12 20<br />

3.2 DNA mediated gene transfer, basics of GMO<br />

3.3 Transgenic plants- crop improvement<br />

(viral resistance insect resistance, microbial<br />

resistance,herbicide tolerance & stress resistance)<br />

3.4 Plant tissue culture and secondary<br />

metabolite production<br />

4 4.1 Laboratory facilities, culture media and procedure 12 20<br />

for animal, cell and tissue culture<br />

4.2 Primary cultures, cell lines and cloning<br />

4.3 Tissue and organ culture<br />

4.4 In vitro fertilization and embryo transfer<br />

4.5 Transfection methods<br />

5 5.1 Hybridoma and monoclonal antibodies<br />

12 20<br />

5.2 Vaccine production by animal tissue culture<br />

5.3 Transgenic animals: Mice, Fish and Ship<br />

5.4 Production of synthetic seeds<br />

5.5 Edible vaccines and BT cotton.<br />

43 | P a g e


44 | P a g e


PAPER VIII<br />

PRINCIPLES OF BIOTECHNOLOGY APPLIED TO PLANTS & ANIMALS (PRACTICALS)<br />

6 HRS/WK<br />

CREDITS: 3 TOTAL HRS 90 75 MARKS<br />

1. Sterilization and related techniques used in tissue culture<br />

a) Autoclaving<br />

b) Hot Air Oven<br />

c) Filter Sterilization<br />

d) surface sterilization<br />

e) demonstration of all techniques related to sterilization,<br />

2. transfer and uses of Laminar Air Flow Hood and UV.<br />

3. Preparation of Media and media composition<br />

4. Introduction of explant for callusing<br />

5. Characterization of Callus<br />

6. Sub culturing of Callus<br />

7. Isolation of protoplasts<br />

8. Establishment of primary cell lines<br />

9. Isolation of Chick embryo<br />

10. Embryo transfer method<br />

LIST OF REFERENCE BOOKS:<br />

1. Enger, Concepts in biology, Tata McGraw-Hill.<br />

2. Iganacimatha. Basic biotechnology<br />

3. Das and Mookerjee. Outline of biology<br />

4. Roy and De.cell bilogy<br />

5. <strong>Bio</strong>technology, Demystifying the concepts. By David Bourgaize. Alp2000<br />

6. Eric. S. Grace. <strong>Bio</strong>technology uzippe: Promises and realities.<br />

7. William Bains. <strong>Bio</strong>technology from A to Z<br />

8. Barnum. <strong>Bio</strong>technology: An Introduction 1999. Brooks cole Pub. Co.<br />

9. Becker. 1996. <strong>Bio</strong>technology: A laboratory course.Alp<br />

10. Cohn and Stumph. Outline of <strong>Bio</strong>chemistry. Wiley eastern.<br />

11. Miglani. Dictionary of plant genetics and molecular biology. Viva Books<br />

12. Jan kay. Introduction to Animal physiology. Viva Books<br />

13. Jurd. Animal <strong>Bio</strong>logy. Viva books<br />

14. Twyman. Developmental <strong>Bio</strong>logy. Viva Books<br />

15. Iganacimatha. Appl. Plant <strong>Bio</strong>technology<br />

16. K.K.De. Plant tissue culture<br />

17. Babinnk and Philips. 1989. Animal <strong>Bio</strong>technology. Pergamonn.<br />

18. Gibert, Developmental biology<br />

19. Radint and Bhojwani. Plant and tissue culture<br />

20. Dixon and Gonzales. Plant cell culture. A practical approach. IRL press.<br />

21. Jenkius N. 1999. Animal cell biotechnology. Methods and protocols. Humana pres.<br />

22. Butler and Walter. 1997. Animal cell cultures and technology: The basics. IRL press<br />

23. VErpoorte, R. (ed). 2000. Metabolic engineering of plant secondary metabolism.<br />

24. Masters JRW (ED). Animal cell culture: A practical approach. 2000. OUP.<br />

25. Elements of <strong>Bio</strong>technology: P.K. Gupta<br />

45 | P a g e


26. Methods in plant tissue culture : U. Kumar<br />

27. Molecular biotechnology: Bernard, R. Glick and Pasternak<br />

28. Animal cell culture: Morgan<br />

29. Cell culture: butler and Dawson<br />

46 | P a g e


PAPER IX ENVIRONMENTAL BIOTECHNOLOGY (THEORY) 4 HRS/WK<br />

Sr.<br />

No.<br />

Credits: 4 Total Hrs 60 100 Marks<br />

Module Sub-topics No of lectures Weightage<br />

%<br />

1 1.1 Understanding the Earth Environment<br />

1.2 Basic concept of ecology and ecosystem; the<br />

components and processes of an ecosystem flow<br />

of energy and matter, food chain<br />

1.3 <strong>Bio</strong>geochemical cycle; their role in functioning of<br />

an ecosystem<br />

1.4 <strong>Bio</strong>diversity and biotechnology, Conservation of<br />

natural resources<br />

1.5 Interaction within, between and among population<br />

in community<br />

2 2.1 Microbes and their habitats<br />

2.2 Diversity in metabolic processes among<br />

microorganism<br />

2.3 Metabolism of organic matter<br />

2.4 Respiration, oxygenation, nitrate respiration,<br />

sulfate respiration, lithotrophy, hydrogen<br />

bacteria and sulfur bacteria, phototropic bacteria<br />

2.5 <strong>Bio</strong>degradation: Definition- ready<br />

biodegradability, ultimate biodegradation,<br />

inherent biodegradability, recalcitrant compounds,<br />

Anthropogenic compounds (Zenobiotics)<br />

3 3.1 An overview of selected compounds:<br />

Petroleum hydrocarbons, Alkanes,<br />

cycloalkanes, Aromatics, polycyclic,<br />

aromatics xenobiotics the pesticides.<br />

3.2 Pollution and contamination of natural<br />

components of environment :<br />

Define pollution and contamination; sources<br />

of pollutants, Transport and fate of contaminants<br />

in the environment<br />

3.3 Isolation and screening microbes degrade<br />

contaminants (pollutants):<br />

selective and enrichment cultivation techniques<br />

3.4 Transformation of pesticides- DDT (Dechlorination)<br />

to DBP and biomagnifications, reductive<br />

dechlorination of PCE, TCE and petroleum<br />

hydrocarbons.<br />

3.5 Concept of Co-oxidation and co-metabolism.<br />

Oxidative and reductive pathways of<br />

nitrobenzene biodegradation by Pseudomonas<br />

4 4.1 Treatment <strong>Technology</strong> of domestic wastewater:<br />

Physical, chemical and biological properties<br />

of wastewater primary, secondary and tertiary<br />

treatment processes, emphasizing on various<br />

biological oxidation processes and advanced<br />

treatment processes<br />

4.2 Activated sludge and anaerobic digestion<br />

4.3 Treatment of air pollutants using biotechnological<br />

procedure; basis of <strong>Bio</strong>leaching<br />

4.4 An overview of process of bioremediation<br />

4.5 Mechanism of composting<br />

12 20<br />

12 20<br />

12 20<br />

12 20<br />

47 | P a g e


5 5.1 Agricultural <strong>Bio</strong>technology: Basic of <strong>Bio</strong>logical<br />

Nitrogen Fixation and its importance<br />

5.2 Microbial processes of nitrification and<br />

defitrification; blotechnological applications in<br />

wastewater treatment and soil quality improvement.<br />

5.3 <strong>Bio</strong>control and biotechnology<br />

5.4 <strong>Bio</strong>fertilizer and bioplastic<br />

12 20<br />

48 | P a g e


ENVIRONMENTAL BIOTECHNOLOGY (PRACTICALS)<br />

6 HRS/WK<br />

1. Isolation of microorganisms from contaminated<br />

2. sources (water, soil) and screening for their<br />

3. potential to degrade xenobiotic<br />

4. Analysis of waste water<br />

CREDITS: 3 TOTAL HRS 90 75 MARKS<br />

1. To study sampling techniques, sample preservation<br />

2. To visit local sewage treatment plant to study its<br />

5. design, operation of primary, secondary , tertiary<br />

6. systems and mode of disposal<br />

3. To collect grab and composite sample<br />

4. Analysis of physical-Chemical parameters:<br />

7. TS,TDS, Colur, Tubidigy, pH,DO,COD, BOD,<br />

8. Total- N, PO4-p, NO3-N, NO2-N,NH4-4, chloride,<br />

9. Ca-Mg-hardness.<br />

5. Bacteriological analysis by MNP technique<br />

10. Isolation of nitrogen fixers from soil<br />

11. To determine MNP of Nitrifying organisms from soil<br />

12. To determine MNP of endospore formers.<br />

LIST OF REFERENCE BOOKS:<br />

1. Hammer. Water and Wastewater technology. Prentice-Hall<br />

2. APHA. Water and Wastewater analysis.<br />

3. <strong>Sc</strong>ragg. A.H.1999. Envion. <strong>Bio</strong>technology. Longman<br />

4. Rittman & Mc Carthy. 2000. Environ. <strong>Bio</strong>technology. Principles and application. McGraw-Hill.<br />

5. N.P. Cheremisinoff. 1999. <strong>Bio</strong>technology for waste and wastewater treatment. Noyes Pub<br />

6. Micheal Heal. (Ed).2001. Environmental monitoring and biodiagnostics of hazardous<br />

Contaminants.<br />

7. Milton. Wainwright. 1999. An Introduction to Environ. <strong>Bio</strong>technology. Kluwer Acad.<br />

8. Mitchell Melanie. 1998. An introduction to genetic algorithms. The MIT Press.<br />

9. Boyle Mike. 2000. Genes and genetic engineering AQA (B) <strong>Bio</strong>logy. Collins Educa<br />

10. Alan Fersht. 1999. Structure and mechanism in protein science. WH Freeman . Enggins Brian.<br />

1997. <strong>Bio</strong>ssensors. J/W<br />

11. Cunningham, A Introduction to <strong>Bio</strong>analytical Sensers J/W. 1998.<br />

49 | P a g e


PAPER – X RELEVANT TOPICS IN BIOTECHNOLOGY (THEORY) 4 HRS/WK<br />

Credits: 4 Total Hrs 60 100 Marks<br />

Sr.<br />

No.<br />

Module Sub-topics<br />

No of<br />

lectures<br />

Weightage<br />

%<br />

1 Principles of radiation biology<br />

12 20<br />

1.1 Atom, Nuclei, and radiation and radioactivity,<br />

radiation decay<br />

1.2 Natural and man-made sources of radioactivity,<br />

units and measurement of radioactivity.<br />

1.3 Radioactive substance, Radioisotopes, and<br />

their application<br />

1.4 Ionizing radiation, free radicals and radiation<br />

biology, health hazards<br />

1.5 Radiation and cancer bilogy.<br />

2 Understanding evolutions<br />

12 20<br />

2.1 Origin of life: Primitive earth and present earth<br />

environment and its development<br />

2.2 Early life processes of formation of the present<br />

complex life forms<br />

2.3 Theories of origin of organic evolution; Charles<br />

Darwin, Lamark and Wallace, Definition of<br />

biological evolution, micro and macroevolution<br />

2.4 Understanding species, morphological and<br />

biological species concept, theory of natural<br />

selection.<br />

2.5 Types of reproductive isolation and species<br />

formation, allopathic, sympatric and paratactic<br />

speciation<br />

3 Immobilization techniques and bioinformatics<br />

12 20<br />

3.1 Immobilization of cell and enzyme: Basic<br />

concept of immobilization in biotechnology,<br />

principles and mechanism of immobilization,<br />

techniques adsorption, occlusion, cross-linking,<br />

convalent binding, and Ionic binding.<br />

3.2 Choice of immobilization methods, choice of<br />

reactors, properties of immobilized enzyme –<br />

stability and kinetic properties.<br />

3.3 Supporting matrices used and their properties.<br />

Examples of the techniques in biotechnology:<br />

Alcohol, semi synthetic antibiotics, and amino<br />

acids production<br />

3.4 <strong>Bio</strong>technology and bioinformatics: What is<br />

bioinformatics Need of bioinformatics in<br />

biotechnology- an overview of bioinformatics<br />

3.5 <strong>Bio</strong>technology, biodiversity and bioinformatics:<br />

Genome and genome analysis.<br />

4 <strong>Bio</strong>informatics<br />

4.1 History of Human Gemone project (HUGP)<br />

4.2 Present status of human genome<br />

4.3 <strong>Bio</strong>informatics, Pharma and forme: Crop genomic,<br />

Gene finding, comparative Genomic, Bacterial<br />

analysis, Gene function discovery and chip informatics<br />

4.4 Introduction to DNA/Protein searching, the main<br />

databases use<br />

4.5 <strong>Bio</strong>informatics and molecular terms XML, Browser<br />

and databse, BIOXML, GAME, BSML, DTD, BLST,<br />

FASTA, GDB, Expasy, SWISS PORT, PDB.<br />

Gen Bank, EMBL, NCBI<br />

12 20<br />

50 | P a g e


5 Assignment<br />

Topics of assignment may be decided by the<br />

students relating to the subject and be submitted<br />

and examined during practical examination<br />

12 20<br />

51 | P a g e


BIOTECHNOLOGY (Practicals)<br />

6 HRS/WK<br />

CREDITS: 3 TOTAL HRS : 90 75 MARKS<br />

a) Preparation of culture of yeast cells and A. niger<br />

b) for cell imoblization and enzyme immobilization.<br />

c) Gel entrapment of yeast cells and to determine invertase<br />

d) activity by the Immobilized cells<br />

e) Immobilization of enzyme (glucose oxidase) from<br />

f) A-niger and measurement its activity<br />

g) To visit local cancer hospital to understand the working<br />

h) principles of radiation therapy and to prepare a report<br />

i) To demonstrate the radiation (X-ray, UV rays,) induced<br />

j) mutation in bacteria and searching for mutant<br />

k) Demonstration of various domains (search engines)<br />

l) for bioinformatics through internet.<br />

LIST OF REFERENCE BOOKS:<br />

1. Enger. Concepts in biology, Tata McGraw-Hill<br />

2. Iganacimatha, Basic <strong>Bio</strong>technology<br />

3. Das and Mookerijee. Outline of biology<br />

4. Roy and De. Cell biology<br />

5. <strong>Bio</strong>technology, Demystifying the concepts. By David Bourgaize. Alp 2000<br />

6. Eric. S. Grace. <strong>Bio</strong>technology unzipped: Promises and realities<br />

7. William Bains <strong>Bio</strong>technology from A to Z<br />

8. Barnum. <strong>Bio</strong>technology: An Introduction . 1999. Brooks Cole Pub. Co.<br />

9. Plumber. An introduction to practical <strong>Bio</strong>chemistry<br />

10. J.Jayraman. Lab Manual in <strong>Bio</strong>chemistry<br />

11. Becker. 1996. <strong>Bio</strong>technology: A laboratory course. ALP<br />

12. Lenhinger. Principles of biochemisty<br />

13. Cohn and Stumph. Outline of <strong>Bio</strong>chemisty. Wiley eastern<br />

14. Zube’s <strong>Bio</strong>chemistry. Macmillian<br />

15. Smith G. 1996. <strong>Bio</strong>technology. Cambeidge Univ. Press<br />

16. Geoffrey looper. 2000. The cell with CD-Rom. Sinauer Asso. Incorp.<br />

17. Haynie, D.T. 2001. <strong>Bio</strong>logical thermodynamics Cambridge Univ. Press<br />

18. Rifkin Jeremy 1999. The biotech centrury. Phoenix Press<br />

19. Coyne. 1999. Soil microbiology. An exploratory approach<br />

20. Nicklin. Microbiology. Viva Books<br />

52 | P a g e

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!