30.12.2014 Views

Detecting changes in the rate Poisson process

Detecting changes in the rate Poisson process

Detecting changes in the rate Poisson process

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Detect<strong>in</strong>g</strong> <strong>changes</strong> <strong>in</strong><br />

<strong>the</strong> <strong>rate</strong><br />

of a<br />

<strong>Poisson</strong> <strong>process</strong><br />

George V. Moustakides


Outl<strong>in</strong>e<br />

Overview of <strong>the</strong> change detection<br />

problem<br />

CUSUM test and Lorden’s criterion<br />

The <strong>Poisson</strong> disorder problem<br />

CUSUM average run length for <strong>Poisson</strong><br />

<strong>process</strong>es<br />

CUSUM optimality <strong>in</strong> <strong>the</strong> sense of Lorden<br />

G.V. Moustakides: <strong>Detect<strong>in</strong>g</strong> <strong>changes</strong> <strong>in</strong> <strong>the</strong> <strong>rate</strong> of a <strong>Poisson</strong> <strong>process</strong> 2


Change detection - Overview<br />

Available sequentially an observation <strong>process</strong><br />

{ξ t } with <strong>the</strong> follow<strong>in</strong>g statistics:<br />

ξ t ~ P ∞ for 0 6 t 6 τ<br />

~ P 0 for τ


We are <strong>in</strong>terested <strong>in</strong> sequential schemes.<br />

With every new observation <strong>the</strong> test must decide<br />

Stop and issue an alarm<br />

Cont<strong>in</strong>ue sampl<strong>in</strong>g<br />

Decision at time t uses available <strong>in</strong>formation<br />

F t = σ{ξ s :06 s 6 t}.<br />

up to time t.<br />

Sequential test stopp<strong>in</strong>g time T adapted to<br />

<strong>the</strong> filtration {F t }.<br />

G.V. Moustakides: <strong>Detect<strong>in</strong>g</strong> <strong>changes</strong> <strong>in</strong> <strong>the</strong> <strong>rate</strong> of a <strong>Poisson</strong> <strong>process</strong> 4


0<br />

P ∞ P 0<br />

τ<br />

t<br />

P τ<br />

: <strong>the</strong> probability measure <strong>in</strong>duced, when<br />

change takes place at time τ<br />

E τ [.]: <strong>the</strong> correspond<strong>in</strong>g expectation<br />

P ∞<br />

P 0<br />

: all data under nom<strong>in</strong>al regime<br />

: all data under alternative regime<br />

Parameters to be considered<br />

The detection delay T - τ<br />

Frequency of false alarms<br />

G.V. Moustakides: <strong>Detect<strong>in</strong>g</strong> <strong>changes</strong> <strong>in</strong> <strong>the</strong> <strong>rate</strong> of a <strong>Poisson</strong> <strong>process</strong> 5


Bayesian approach (Shiryayev 1978)<br />

Change time τ random with exponential prior.<br />

J(T ) = c E[ (T - τ) + ] + P[ T ν }<br />

Discrete time: i.i.d. observations<br />

(Shiryayev 1978, Poor 1998)<br />

Cont<strong>in</strong>uous time: Brownian Motion<br />

(Shiryayev 1978, Beibel 2000, Karatzas 2003)<br />

G.V. Moustakides: <strong>Detect<strong>in</strong>g</strong> <strong>changes</strong> <strong>in</strong> <strong>the</strong> <strong>rate</strong> of a <strong>Poisson</strong> <strong>process</strong> 6


Non-Bayesian setup (Pollak 1985)<br />

The change time τ is determ<strong>in</strong>istic & unknown.<br />

J(T ) = sup τ E τ [ (T - τ) | T >τ ]<br />

Optimization problem: <strong>in</strong>f T J(T )<br />

subject to: E ∞ [ T ] > γ<br />

Discrete time: i.i.d. detect change <strong>in</strong> <strong>the</strong> pdf<br />

from f ∞ (ξ) to f 0 (ξ). Roberts (1966) proposed<br />

f 0 (ξ t )<br />

S t = (S t-1 +1)<br />

f ∞ (ξ t )<br />

T SRP = <strong>in</strong>f t { t: S t > ν }<br />

(Mei 2006)<br />

G.V. Moustakides: <strong>Detect<strong>in</strong>g</strong> <strong>changes</strong> <strong>in</strong> <strong>the</strong> <strong>rate</strong> of a <strong>Poisson</strong> <strong>process</strong> 7


CUSUM test and Lorden’s criterion<br />

Discrete time, i.i.d. observations.<br />

Pdf before and after <strong>the</strong> change: f ∞ (ξ n ), f 0 (ξ n )<br />

S<strong>in</strong>ce change time τ is unknown<br />

sup 06τ 6t<br />

n=τ+1<br />

t<br />

Σn=1<br />

t<br />

f 0 (ξ n )<br />

Σlog( )<br />

f ∞ (ξ n )<br />

-<strong>in</strong>f 06τ6t Σn=1<br />

> ν<br />

f 0 (ξ n )<br />

log( )<br />

f 0 (ξ n )<br />

f ∞ (ξ n )<br />

f ∞ (ξ n )<br />

τ<br />

log( )<br />

> ν<br />

u t<br />

– m t<br />

> ν<br />

G.V. Moustakides: <strong>Detect<strong>in</strong>g</strong> <strong>changes</strong> <strong>in</strong> <strong>the</strong> <strong>rate</strong> of a <strong>Poisson</strong> <strong>process</strong> 8


dP 0<br />

u t = log( (F<br />

dP t ))<br />

∞<br />

m t = <strong>in</strong>f 06s 6t u s<br />

CUSUM <strong>process</strong>: y t = u t – m t > 0<br />

The CUSUM stopp<strong>in</strong>g time (Page 1954):<br />

T C = <strong>in</strong>f t { t: y t > ν }<br />

G.V. Moustakides: <strong>Detect<strong>in</strong>g</strong> <strong>changes</strong> <strong>in</strong> <strong>the</strong> <strong>rate</strong> of a <strong>Poisson</strong> <strong>process</strong> 9


ν<br />

ν<br />

ν<br />

u t<br />

m t<br />

ML estimate of τ<br />

T C<br />

G.V. Moustakides: <strong>Detect<strong>in</strong>g</strong> <strong>changes</strong> <strong>in</strong> <strong>the</strong> <strong>rate</strong> of a <strong>Poisson</strong> <strong>process</strong> 10


Non-Bayesian setup (Lorden 1971).<br />

Change time τ is determ<strong>in</strong>istic and unknown.<br />

J(T ) = sup τ essup E τ [ (T - τ) + | F τ ]<br />

Optimization problem: <strong>in</strong>f T J(T )<br />

subject to: E ∞ [ T ] > γ<br />

Discrete time: i.i.d. observations<br />

(Moustakides 1986, Ritov 1990, Poor 1998)<br />

Cont<strong>in</strong>uous time: BM (Shiryayev 1996, Beibel<br />

1996); Ito <strong>process</strong>es (Moustakides 2004)<br />

G.V. Moustakides: <strong>Detect<strong>in</strong>g</strong> <strong>changes</strong> <strong>in</strong> <strong>the</strong> <strong>rate</strong> of a <strong>Poisson</strong> <strong>process</strong> 11


The <strong>Poisson</strong> disorder problem<br />

Let {N t } homogeneous <strong>Poisson</strong>, with <strong>rate</strong> λ<br />

satisfy<strong>in</strong>g:<br />

λ = {<br />

Bayesian Approach<br />

λ ∞ , 0 6 t 6 τ<br />

λ 0 , τ


CUSUM & average run length<br />

u t = (λ ∞ - λ 0 )t + log(λ 0 /λ ∞ )N t<br />

m t = <strong>in</strong>f 06s 6t u s<br />

y t = u t – m t<br />

T C = <strong>in</strong>f t { t: y t > ν }<br />

We are <strong>in</strong>terested <strong>in</strong> comput<strong>in</strong>g E[ T C ] when<br />

N t is <strong>Poisson</strong> with <strong>rate</strong> λ.<br />

Exist<strong>in</strong>g formula (Taylor 1975) for:<br />

u t = at + bW t ; W t is standard Wiener<br />

G.V. Moustakides: <strong>Detect<strong>in</strong>g</strong> <strong>changes</strong> <strong>in</strong> <strong>the</strong> <strong>rate</strong> of a <strong>Poisson</strong> <strong>process</strong> 13


a>0; b


G.V. Moustakides: <strong>Detect<strong>in</strong>g</strong> <strong>changes</strong> <strong>in</strong> <strong>the</strong> <strong>rate</strong> of a <strong>Poisson</strong> <strong>process</strong> 15


We end up with a DDE and <strong>the</strong> follow<strong>in</strong>g<br />

boundary conditions:<br />

af 0 (y) + λ[f(y + b) - f(y)] = -1; y∈[0,ν)<br />

f(y) = f(0) for y 6 0;<br />

f(y 0 ) = E[ T C ]<br />

u t<br />

f(ν)=0<br />

m t<br />

T C<br />

ν<br />

G.V. Moustakides: <strong>Detect<strong>in</strong>g</strong> <strong>changes</strong> <strong>in</strong> <strong>the</strong> <strong>rate</strong> of a <strong>Poisson</strong> <strong>process</strong> 16


(<br />

Exist<strong>in</strong>g formula (Taylor 1975) for:<br />

u t = at + bW t ; W t standard Wiener<br />

b 2 f 00 (y) + af 0 (y) = -1; y∈[0,ν ]<br />

2<br />

f 0 (0)= 0; f(ν)=0<br />

G.V. Moustakides: <strong>Detect<strong>in</strong>g</strong> <strong>changes</strong> <strong>in</strong> <strong>the</strong> <strong>rate</strong> of a <strong>Poisson</strong> <strong>process</strong> 17<br />

)


af 0 (y) + λ[f(y +b) - f(y)] = -1; y∈[0,ν)<br />

f(y) = f(0) for y 6 0; f(ν)=0<br />

Because b


a0<br />

af 0 (y) + λ[f(y + b) - f(y)] = -1; y∈[0,ν)<br />

f 0 (0)= 0; f(y)=0 for y > ν<br />

Backward DDE<br />

G.V. Moustakides: <strong>Detect<strong>in</strong>g</strong> <strong>changes</strong> <strong>in</strong> <strong>the</strong> <strong>rate</strong> of a <strong>Poisson</strong> <strong>process</strong> 19


where p is def<strong>in</strong>ed as<br />

with<br />

G.V. Moustakides: <strong>Detect<strong>in</strong>g</strong> <strong>changes</strong> <strong>in</strong> <strong>the</strong> <strong>rate</strong> of a <strong>Poisson</strong> <strong>process</strong> 20


Average over 10000 repetitions:<br />

λ ∞ = 2, λ 0 = 1, (a=1, b=-log2), ν = 5.5<br />

Formula<br />

Simulation<br />

E 0 [ T C ] 15.3832 15.3605<br />

E ∞ [ T C ] 779.9669 771.1219<br />

λ ∞ = 1, λ 0 = 2, (a=-1, b=log2), ν = 5.5<br />

Formula<br />

Simulation<br />

E 0 [ T C ] 12.2885 12.2673<br />

E ∞ [ T C ] 981.9811 986.7159<br />

G.V. Moustakides: <strong>Detect<strong>in</strong>g</strong> <strong>changes</strong> <strong>in</strong> <strong>the</strong> <strong>rate</strong> of a <strong>Poisson</strong> <strong>process</strong> 21


Optimality of CUSUM<br />

J(T ) = sup τ essup E τ [ (T - τ) + | F τ ]<br />

<strong>in</strong>f T J(T );<br />

subject to: E ∞ [ T ] > γ<br />

If T is such that<br />

E ∞ [ T ] > E ∞ [ T C ] = γ<br />

<strong>the</strong>n<br />

J(T ) > J(T C )<br />

G.V. Moustakides: <strong>Detect<strong>in</strong>g</strong> <strong>changes</strong> <strong>in</strong> <strong>the</strong> <strong>rate</strong> of a <strong>Poisson</strong> <strong>process</strong> 22


h(y) = E ∞ [ T C | y 0 =y]<br />

g(y) = E 0 [ T C | y 0 =y]<br />

essupE τ [(T C - τ) + | F τ ]=sup y g(y)=g(0)<br />

T C is an equilizer rule <strong>the</strong>refore<br />

J(T C ) = g(0)<br />

For <strong>the</strong> false alarm we have<br />

E ∞ [ T C ] = h(0)<br />

G.V. Moustakides: <strong>Detect<strong>in</strong>g</strong> <strong>changes</strong> <strong>in</strong> <strong>the</strong> <strong>rate</strong> of a <strong>Poisson</strong> <strong>process</strong> 23


We would like to show:<br />

If E ∞ [T ] > E ∞ [T C ]<br />

<strong>the</strong>n J(T ) > J(T C )<br />

Lemma<br />

Sufficient:<br />

If E ∞ [T ] > h(0)<br />

<strong>the</strong>n J(T ) > g(0)<br />

G.V. Moustakides: <strong>Detect<strong>in</strong>g</strong> <strong>changes</strong> <strong>in</strong> <strong>the</strong> <strong>rate</strong> of a <strong>Poisson</strong> <strong>process</strong> 24


We will show that this is true for any T<br />

G.V. Moustakides: <strong>Detect<strong>in</strong>g</strong> <strong>changes</strong> <strong>in</strong> <strong>the</strong> <strong>rate</strong> of a <strong>Poisson</strong> <strong>process</strong> 25


Consider <strong>the</strong> function f(y) def<strong>in</strong>ed as follows<br />

<strong>the</strong>n<br />

f(y)=e y [g(0) - g(y)] - [h(0) - h(y)]<br />

<br />

> 0<br />

> 0 ¥<br />

G.V. Moustakides: <strong>Detect<strong>in</strong>g</strong> <strong>changes</strong> <strong>in</strong> <strong>the</strong> <strong>rate</strong> of a <strong>Poisson</strong> <strong>process</strong> 26


Conclusion<br />

We considered <strong>the</strong> <strong>Poisson</strong> disorder problem<br />

of detect<strong>in</strong>g <strong>changes</strong> <strong>in</strong> <strong>the</strong> <strong>rate</strong> of a<br />

homogeneous <strong>Poisson</strong> <strong>process</strong>, <strong>in</strong> <strong>the</strong> sense<br />

of Lorden.<br />

We obta<strong>in</strong>ed closed form expressions for <strong>the</strong><br />

average run length of <strong>the</strong> CUSUM stopp<strong>in</strong>g<br />

time.<br />

We used <strong>the</strong>se formulas to prove optimality of<br />

<strong>the</strong> CUSUM test <strong>in</strong> <strong>the</strong> sense of Lorden.<br />

G.V. Moustakides: <strong>Detect<strong>in</strong>g</strong> <strong>changes</strong> <strong>in</strong> <strong>the</strong> <strong>rate</strong> of a <strong>Poisson</strong> <strong>process</strong> 27


EnD<br />

G.V. Moustakides: <strong>Detect<strong>in</strong>g</strong> <strong>changes</strong> <strong>in</strong> <strong>the</strong> <strong>rate</strong> of a <strong>Poisson</strong> <strong>process</strong> 28

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!