30.12.2014 Views

INNOVA JUNIOR COLLEGE JC 1 H2 Physics (2012) - ASKnLearn

INNOVA JUNIOR COLLEGE JC 1 H2 Physics (2012) - ASKnLearn

INNOVA JUNIOR COLLEGE JC 1 H2 Physics (2012) - ASKnLearn

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>INNOVA</strong> <strong>JUNIOR</strong> <strong>COLLEGE</strong><br />

<strong>JC</strong> 1 <strong>H2</strong> <strong>Physics</strong> (<strong>2012</strong>)<br />

15<br />

Name: ( ) Class: ________<br />

FA8: Gravitational Field<br />

Duration: 25 minutes<br />

Data<br />

Gravitational constant, G = 6.67 × 10 -11 N m 2 kg -2<br />

Formula<br />

Gravitational Potential, = GM<br />

r<br />

1 The figure below shows a planet P of mass m, orbiting the Sun S of mass M in a circular path of radius R.<br />

S<br />

R<br />

P<br />

(a) Write down an expression, in terms of G, m, M and R for the force exerted by the Sun on the planet.<br />

[1]<br />

GMm<br />

FG<br />

[1]<br />

2<br />

R<br />

GM<br />

(b) Show that the expression for the angular velocity of the planet in its orbit is ω =<br />

3<br />

R<br />

The gravitational force provides the centripetal force. [1]<br />

F G = F C<br />

GMm<br />

2<br />

<br />

2 mR <br />

[1]<br />

R<br />

GM<br />

<br />

3<br />

R<br />

[2]<br />

(c) The Earth is 1.5 ×10 11 m from the centre of the Sun and takes exactly one year to complete one orbit.<br />

The planet Jupiter takes 11.9 years to complete an orbit of the Sun. Using the expression in (b),<br />

calculate the radius of Jupiter’s orbit.<br />

2<br />

From (b),<br />

3<br />

T R<br />

2<br />

2 GM <br />

3<br />

T <br />

E<br />

R <br />

E<br />

3<br />

T R<br />

<br />

TJ<br />

RJ<br />

<br />

2<br />

3<br />

[1]<br />

11<br />

1 1.510<br />

<br />

<br />

11.9 RJ<br />

<br />

[1]<br />

11<br />

R 7.8 10 m<br />

[1]<br />

J<br />

radius = ………………………………… m [3]<br />

1


2 A satellite of mass 20 kg orbits the Earth with a uniform circular motion of period 24 hours, so that it is<br />

always directly above the same point on the Earth.<br />

(a) Explain why the orbit of the satellite must lie in the equatorial plane.<br />

The Earth is rotating from West to East about its axis. If it’s not placed at the equatorial plane, it will<br />

be sometimes over the northern or southern hemisphere [1] and hence not directly above the same<br />

point on the Earth.<br />

Or<br />

The gravitational force on the satellite acts towards the centre of the Earth. The satellite needs to be<br />

placed in a horizontal plane that cuts through the centre of the Earth and yet rotate in the same<br />

direction as the Earth’s [1], hence it has to be the equatorial plane.<br />

(b) Given that the gravitational field strength on the Earth’s surface is 9.81 m s -1 and the radius of the<br />

Earth is 6.4 ×10 6 m, calculate<br />

(i) the radius of the orbit<br />

F G = F C<br />

GMm 2<br />

<br />

<br />

2 mr <br />

r T <br />

2<br />

GM 2<br />

<br />

<br />

3 <br />

r T <br />

gr E<br />

3<br />

r<br />

2<br />

2<br />

<br />

<br />

T <br />

2<br />

6 2<br />

(9.81)(6.4 10 ) 2<br />

r<br />

3<br />

2<br />

<br />

<br />

246060<br />

<br />

2<br />

[1]<br />

[1]<br />

r = 4.2 × 10 7 m [1]<br />

radius = ………………………………… m [3]<br />

(ii)<br />

the satellite’s gravitational potential energy,<br />

U<br />

GMm<br />

<br />

r<br />

U<br />

gR m<br />

<br />

r<br />

(9.81)(6.410 ) (20)<br />

4.2 10<br />

[1]<br />

2 6 2<br />

E<br />

<br />

7<br />

U <br />

8<br />

1.91310 J<br />

U <br />

8<br />

1.910 J<br />

[1]<br />

gravitational potential energy = ………………………………… J [2]<br />

2


(ii) the satellite’s kinetic energy,<br />

GMm<br />

K <br />

2r<br />

2 6 2<br />

gRE<br />

m (9.81)(6.410 ) (20)<br />

K <br />

7<br />

2r<br />

2(4.2 10 )<br />

[1]<br />

7<br />

K 9.567<br />

10 J<br />

7<br />

K 9.6 10 J<br />

[1]<br />

kinetic energy = ………………………………… J [2]<br />

(iii) the satellite’s total energy.<br />

8 7<br />

E ( 1.91310 ) (9.56710 )<br />

T<br />

E <br />

T<br />

7<br />

9.610 J<br />

[1]<br />

total energy = ………………………………… J [1]<br />

END OF PAPER<br />

3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!