01.01.2015 Views

人間の視覚特性を考慮した投影画像の光学的補正 ... - 東京大学

人間の視覚特性を考慮した投影画像の光学的補正 ... - 東京大学

人間の視覚特性を考慮した投影画像の光学的補正 ... - 東京大学

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

「 画 像 の 認 識 ・ 理 解 シンポジウム(MIRU2006)」 2006 年 7 月<br />

<br />

<br />

† †† † †<br />

† 153–8505 4–6–1<br />

†† 101–8430 2–1–2<br />

E-mail: †{ashdownm,takahiro,ysato}@iis.u-tokyo.ac.jp, ††imarik@nii.ac.jp<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

, <br />

Perceptual Photometric Compensation for Projected Images<br />

Mark ASHDOWN † ,ImariSATO †† , Takahiro OKABE † , and Yoichi SATO †<br />

† Institute of Industrial Science, The University of Tokyo Komaba 4–6–1, Meguro-ku, Tokyo, 153–8505 Japan<br />

†† National Institue of Informatics Hitotsubashi 2–1–2, Chiyoda-ku, Tokyo, 101–8430 Japan<br />

E-mail: †{ashdownm,takahiro,ysato}@iis.u-tokyo.ac.jp, ††imarik@nii.ac.jp<br />

Abstract Digital projectors have been steadily becoming smaller and cheaper, and are now used to augment various surfaces<br />

with digital information. However, in situations other than the ideal dark room with a perfect white screen we must contend<br />

with ambient light and non-uniformity in surface colour, which will reduce the contrast of the output and introduce visible<br />

irregularities. Here we present a method to compensate for the irregularities and simultaneously achieve contrast equal or similar<br />

to that which would be obtained in the ideal situation. Rather than insisting on a photometrically perfect result we allow<br />

some errors in the final output due to the limited projector range and spatial variations, but these are bounded by perceptual<br />

limits derived from a model of the human visual system and the content of the image.<br />

Key words projector, calibration, compensation, human vision, perception<br />

1. <br />

<br />

<br />

<br />

<br />

<br />

<br />

[1], [7]<br />

() <br />

<br />

<br />

<br />

() <br />

() <br />

<br />

<br />

Grossberg [4] Fujii [3] <br />

RGB RGB <br />

<br />

(, ) RGB <br />

RGB <br />

49


24 RGB 0<br />

255<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Grossberg<br />

[4] Fujii [3] <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Majumder [6] Wang<br />

[10] <br />

<br />

Majumder <br />

<br />

<br />

Wang [10] <br />

(Perceptually-based Threshold<br />

Map, [8]) <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2. · <br />

<br />

<br />

<br />

<br />

()<br />

<br />

. <br />

, <br />

<br />

<br />

<br />

· <br />

<br />

<br />

<br />

<br />

.<br />

2. 1 <br />

RGB Yxy<br />

(Y ,xy 1 ) <br />

<br />

<br />

RGB <br />

RGB ĩ .<br />

Stone [9] 3×3 <br />

RGB XYZ (XYZ <br />

) Grossberg<br />

[4] <br />

<br />

<br />

, <br />

<br />

c = Mĩ + t (1)<br />

c <br />

XYZ , M 3 × 3 , t <br />

.<br />

<br />

<br />

M t 12 <br />

5. 1 . <br />

c Yxy <br />

Yxy Y XYZ Y xy <br />

x = X+Y X<br />

+Z , y = X+Y Y<br />

+Z . <br />

X = x Y y , Y = Y, Z =(1 − x − y) Y y .<br />

2. 2 <br />

Yxy <br />

1.<br />

50


Y , <br />

e =(e x ,e y ) ⊤ . 2<br />

1. <br />

e [L, H] ( 1 )<br />

L H .<br />

2. e <br />

() [L ′ , H ′ ].<br />

3. <br />

() .<br />

[L ′′ , H ′′ ] .<br />

4. Y [L ′′ , H ′′ ]<br />

<br />

<br />

<br />

.<br />

5. Y ′ <br />

(1) (<br />

) <br />

3. <br />

3. 1 <br />

<br />

<br />

()<br />

<br />

<br />

e <br />

<br />

(1) XYZ Yxy RGB <br />

ĩ XYZ Yxy <br />

RGB <br />

ĩ =(1,0,0) ⊤ , (0,1,0) ⊤ , (0,0,1) ⊤ <br />

Yxy xy <br />

3 (r,g,b) ( 2(a))<br />

RGB ĩ =(0,0,0) ⊤ , (1,1,1) ⊤ <br />

(lh) .<br />

e =(e x ,e y ) ⊤ <br />

e <br />

3 e e <br />

image minimum maximum<br />

1 () () <br />

.<br />

2<br />

<br />

Y (cd/m 2 ) .<br />

3<br />

2<br />

(a)<br />

(b)<br />

.<br />

(a)<br />

XYZ RGB (a) XYZ <br />

d . (b)RGB<br />

d .<br />

( 2 (a)).<br />

3. 2 e · [L, H] <br />

e XYZ d =(e x ,e y ,1−e x −e y ) ⊤<br />

sd, s > = 0 , <br />

e (1) <br />

˜d = M −1 d˜t = M −1 t <br />

(b)<br />

sd = Mĩ+t. (2)<br />

ĩ = s˜d − ˜t. (3)<br />

RGB · <br />

˜d (s L ,s H ) RGB <br />

ĩ <br />

e ĩ R = 0, ĩ G = 0, ĩ B = 0 <br />

˜d ( 3(b))<br />

s s R = ˜t R / d˜<br />

R s G = ˜t G / d˜<br />

G s B = ˜t B / d˜<br />

B <br />

. −˜t <br />

e <br />

<br />

(<br />

s L = max ,<br />

d<br />

˜tR˜<br />

˜t G<br />

, ˜t )<br />

B<br />

R d˜<br />

G d˜<br />

B<br />

. (4)<br />

<br />

<br />

(<br />

s H 1 + ˜tR<br />

= min , 1 + ˜t G<br />

, 1 + ˜t )<br />

B<br />

. (5)<br />

d˜<br />

R d˜<br />

G d˜<br />

B<br />

d L = s L dd H = s H d 2 <br />

L H <br />

51


3. 3 <br />

<br />

() [LH] <br />

2(b)xy <br />

l () h (<br />

) e (e L′ e H′ ) <br />

. e e L′ e H′ e<br />

<br />

e L′ L ′ e H′ H ′ <br />

e L′ e H′ lh e<br />

[L ′ ,H ′ ] [LH] <br />

Wight <br />

[11] .<br />

3. 4 <br />

<br />

[L ′ , H ′ ] <br />

Ramasubremanian (Perceptuallybased<br />

Threshold map [8]) <br />

T . Threshold map <br />

:<br />

Threshold-versus-intensity function (TVI): TVI<br />

<br />

80 cd/m 2 <br />

, <br />

. <br />

TVI <br />

<br />

Contrast sensitivity function (CSF)<br />

<br />

<br />

<br />

<br />

[2] CSF<br />

<br />

Visual MaskingCSF <br />

.<br />

3 Visual masking <br />

TVI CSF 2 <br />

r T =(Y +r)/Y <br />

T T = 1.1<br />

10% <br />

<br />

3 T <br />

<br />

L ′′ = L ′ /T, H ′′ = H ′ T (6)<br />

<br />

3Weber’s law .<br />

image<br />

TVI component<br />

CSF component<br />

threshold map<br />

4 Y TVI <br />

CSF <br />

T .<br />

4. <br />

<br />

<br />

<br />

<br />

4. 1 <br />

Y <br />

[L ′′ ,H ′′ ] <br />

Y ′ <br />

<br />

<br />

L = logL ′′ H = logH ′′ Y = logY <br />

Y [0,1] <br />

Y Y ′ = Y(Y h −Y l )+Y l<br />

Y l Y h <br />

<br />

Y l Y h <br />

<br />

<br />

<br />

• Y ′ <br />

<br />

L < = Y(Y h − Y l )+Y l < = H <br />

• <br />

Y l Y h <br />

δ <br />

<br />

Y l Y h <br />

Y l = 0 <br />

Y h Y l <br />

4. 1. 1 4. 1. 2 <br />

<br />

Y l Y h <br />

52


5<br />

1 Y <br />

Y ′ , Y l = exp(Y l ) <br />

Y h = exp(Y h ) <br />

Original ε=0<br />

6<br />

Y ′ <br />

ε=0.9<br />

ε=0.99<br />

ε <br />

5<br />

[<br />

Y ′ = exp Y(Y h − Y l )+Y l] (7)<br />

4. 1. 1 <br />

HY Y l <br />

Y h <br />

<br />

H = Y(Y h − Y l )+Y l Y h <br />

<br />

<br />

<br />

ε (0 < ε < = 1) <br />

Y h <br />

Y h ←<br />

H − Yl<br />

εY +(1 − ε) + Yl (8)<br />

Y l <br />

<br />

Y l ← L − εYYh<br />

1 − εY<br />

6 ε <br />

<br />

ε = 0.9 <br />

4. 1. 2 <br />

Majumder [6] <br />

(8) Y h <br />

Y h (= logY h ) <br />

<br />

[<br />

]<br />

Y h i, j − Yh <<br />

i ′ , j ′ = log 1 + δ<br />

√(i−i ′ ) 2 +(j − j ′ ) 2 (10)<br />

(9)<br />

5 cycles per degree <br />

1%<br />

2m <br />

1024 × 768 3m <br />

δ =(180 × 5 × 0.01 × 2)/(π × 3 × 1024) ≈ 1/540 <br />

4. 2 <br />

Y ′ L < = Y ′ < = H <br />

<br />

L < = Y ′ < = H <br />

<br />

<br />

Case Luminance Final XYZ value<br />

1 H ′ < = Y ′ d H′<br />

2 H


(a)<br />

<br />

<br />

(b)<br />

(c)<br />

(d)<br />

(e)<br />

<br />

<br />

8<br />

<br />

3 4 <br />

<br />

<br />

RGB <br />

XYZ <br />

Ilie [5] <br />

RGB XYZ <br />

5. 2 <br />

8 <br />

<br />

<br />

9 <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

10 (a) (b) <br />

(c) <br />

<br />

, 4 (d) <br />

(e)<br />

<br />

<br />

10 (c) <br />

(f)<br />

(g)<br />

9 (a) (b)(d) <br />

(c)(e) (f)(g) (d)(e)<br />

<br />

<br />

<br />

<br />

(d) (e)<br />

<br />

<br />

(d) (e) (e) (d) <br />

<br />

<br />

<br />

Pentium 43.2 GHz PC <br />

1024 × 768 <br />

Task<br />

Time<br />

Convert original image to XYZ 20 ms<br />

Make L,H,L ′ ,H ′<br />

550 ms<br />

Threshold map<br />

480 ms<br />

Make L ′′ ,H ′′<br />

10 ms<br />

Iterative luminance fitting (3 rounds) 350 ms<br />

Make final XYZ and convert to RGB 280 ms<br />

TOTAL<br />

1690 ms<br />

4 [4] [3] <br />

54


(a) (b) () (c) (d) (e) +<br />

10<br />

<br />

<br />

<br />

<br />

10 (a) <br />

(b) <br />

<br />

<br />

<br />

10 100 <br />

<br />

(a)94(b)4<br />

2 (a)96(b)4<br />

0 <br />

<br />

<br />

<br />

<br />

6. <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

[1] Oliver Bimber, Andreas Emmerling, and Thomas Klemmer. Embedded<br />

Entertainment with Smart Projectors. IEEE Computer, 38(1):48–<br />

55, 2005.<br />

[2] Peter J. Burt and Edward H. Adelson. The Laplacian Pyramid as<br />

a Compact Image Code. IEEE Transactions on Communications,<br />

31(4):532–540, 1983.<br />

[3] Kensaku Fujii, Michael D. Grossberg, and Shree K. Nayar. A<br />

Projector-Camera System with Real-Time Photometric Adaptation<br />

for Dynamic Environments. In Proceedings of CVPR 2005, pages<br />

814–821, 2005.<br />

[4] Michael D. Grossberg, Harish Peri, Shree K. Nayar, and Peter N.<br />

Belhumeur. Making One Object Look Like Another: Controlling<br />

Appearance Using a Projector-Camera System. In Proceedings of<br />

CVPR 2004, pages 452–459, 2004.<br />

[5] Adrian Ilie and Greg Welch. Ensuring Color Consistancy across<br />

Multiple Cameras. In Proceedings of ICCV 2005, pages 1268–1275,<br />

2005.<br />

[6] Aditi Majumder and Rick Stevens. Perceptual Photometric Seamlessness<br />

in Projection-Based Tiled Displays. ACM Transactions on<br />

Graphics, 24(1):118–139, 2005.<br />

[7] Claudio Pinhanez. The Everywhere Displays Projector: A Device to<br />

Create Ubiquitous Graphical Interfaces. In Proceedings of Ubiquitous<br />

Computing (UbiComp) 2001, pages 315–331, 2001.<br />

[8] Mahesh Ramasubramanian, Sumanta N. Pattaniak, and Donald P.<br />

Greenberg. A Perceptually Based Physical Error Metric for Realistic<br />

Image Synthesis. In Proceedings of ACM SIGGRAPH 99, pages<br />

73–82, 1999.<br />

[9] Maureen C. Stone. Color and Brightness Appearance Issues in Tiles<br />

Displays. IEEE Computer Graphics & Applications, 21(5):58–66,<br />

2001.<br />

[10] Dong Wang, Imari Sato, Takahiro Okabe, and Yoichi Sato. Radiometric<br />

Compensation in a Projector-Camera System Based on the<br />

Properties of Human Vision System. In Proceedings of IEEE International<br />

Workshop on Projector-Camera Systems 2005, 2005.<br />

[11] W. D. Wright. The Sensitivity of the Eye to Small Colour Differences.<br />

Proceedings of the Physical Society, 53(2):93–112, 1941.<br />

55

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!