01.01.2015 Views

Information Brochure (pdf) - Physiology and Neurobiology ...

Information Brochure (pdf) - Physiology and Neurobiology ...

Information Brochure (pdf) - Physiology and Neurobiology ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

We employ mouse (mus musculus) as the primary<br />

model organism for our investigations. Moreover,<br />

it has been reported that amongst all the tissues,<br />

the central nervous system has the highest amount<br />

alternatively spliced transcripts. Thus, we employ<br />

the neural retinal to elucidate the role of Alternative<br />

Splicing in neural development.<br />

Our current work has focused on the role of alternative<br />

splicing in regulating bHLH transcription<br />

factors during retinal development. Specifically,<br />

we have investigated the post-transcriptional regulation<br />

of one of the atonal homologues called<br />

Math5. We have found that this gene is a single<br />

exon gene, which is alternatively spliced to produce<br />

two isoforms. Interestingly, the major isoform is<br />

spliced such that the entire coding sequence is<br />

spliced out. Consequently, most of the RNA that<br />

is produced for Math5 cannot produce a functional<br />

protein. This raises several interesting questions,<br />

which will be the focus of our future investigations.<br />

First, why should retinal progenitor cells produce<br />

Math5-mRNA that does not code for protein<br />

Second, does the non-coding isoform of Math5<br />

have a function Third, is this form of regulation<br />

found in other bHLH transcription factors<br />

Selected Publications<br />

Kanadia, R. N. <strong>and</strong> C. L Cepko. (2010). Alternative splicing<br />

produces high levels of noncoding isoforms of bHLH transcription<br />

factors during development. Genes <strong>and</strong> Development 24(3):<br />

229-34<br />

Kanadia,R. N., V. E. Clark, C. Punzo, J. Trimarchi <strong>and</strong> C. Cepko.<br />

(2008). Temporal requirement of the alternative splicing factor<br />

Sfrs1 for the survival of retinal neurons. Development 135(23):<br />

3923-33.<br />

Kanadia, R. N., J. Shin, Y. Yuan, S. G. Beattie, T. Wheeler, C.<br />

A. Thornton <strong>and</strong> M. S. Swanson. (2006). Reversal of RNA missplicing<br />

<strong>and</strong> myotonia following muscleblind overexpression in a<br />

mouse poly(CUG) model for myotonic dystrophy. Proceedings of<br />

the National Academy of Sciences, USA. August 1st; 103 (31):<br />

11748-53.<br />

Kanadia R. N., K. A. Johnstone, A. Mankodi, C. Lungu, C.<br />

A. Thornton, D. Esson D, Timmers, W. W. Hauswirth, M. S.<br />

Swanson. (2003). A muscleblind knockout model for myotonic<br />

dystrophy. Science 302(5652): 1978-80<br />

Kanadia, R. N., Y. Yuan, M. G. Poulos <strong>and</strong> M. Swanson.<br />

(2005). Journal of Biomolecular Structure <strong>and</strong> Dynamics, Book<br />

of Abstract Albany 22(6)<br />

Lin, X., J.W. Miller, A. Mankodi, R. N. Kanadia, Y. Yuan, R.<br />

T. Moxley, M. S. Swanson, C. A. Thornton. (2006). Failure of<br />

MBNL1-dependent postnatal splicing transitions in myotonic<br />

dystrophy. Human Molecular Genetics 15 (13): 2087-97.<br />

Y. Yuan, R. N. Kanadia, M. S. Swanson. (2005). Impact<br />

of Unstable Microsatellites on RNA processing (Review).<br />

CHEMTRACTS Biochemistry <strong>and</strong> Molecular Biology 18(3):<br />

129-140.<br />

Kanadia, R. N., C. R. Urbinati, V. J. Crusselle, D. Luo, Y. J. Lee,<br />

J. K. Harrison, S. P. Oh, M.S. Swanson. (2003). Developmental<br />

expression of mouse muscleblind genes Mbnl1, Mbnl2 <strong>and</strong><br />

Mbnl3. Gene Expr Patterns 3(4): 459-62.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!