02.01.2015 Views

Heliostat field design for solar thermochemical processes* - SFERA

Heliostat field design for solar thermochemical processes* - SFERA

Heliostat field design for solar thermochemical processes* - SFERA

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>SFERA</strong> Winter School<br />

Solar Fuels & Materials Page 15<br />

<strong>Heliostat</strong> <strong>field</strong> <strong>design</strong> <strong>for</strong> <strong>solar</strong><br />

<strong>thermochemical</strong> <strong>processes*</strong><br />

Robert Pitz-Paal<br />

DLR - Solar Research<br />

based on: Robert Pitz-Paal, Nicolas Bayer Botero, Aldo Steinfeld <strong>Heliostat</strong> <strong>field</strong> layout<br />

optimization <strong>for</strong> high-temperature <strong>solar</strong> <strong>thermochemical</strong> processing Solar Energy, Volume 85,<br />

Issue 2, February 2011, Pages 334-343<br />

Classification of CRS-Tools<br />

degree of detail<br />

component analysis<br />

system analysis<br />

system layout<br />

simulation of<br />

operations<br />

optimisation of<br />

operations<br />

per<strong>for</strong>mance calc.<br />

layout optimisation<br />

calculation speed<br />

2


<strong>SFERA</strong> Winter School<br />

Solar Fuels & Materials Page 16<br />

Maximizing annual energy<br />

output<br />

or<br />

Minimizing production cost<br />

<strong>Heliostat</strong> Field Optimization<br />

by variation of<br />

Design parameters<br />

heliostat position<br />

tower height<br />

receiver aperture<br />

…<br />

Operation parameters<br />

operation temperature<br />

…<br />

E<br />

S<br />

W<br />

N<br />

3<br />

Per<strong>for</strong>mance Calculation<br />

Given: <strong>Heliostat</strong>, <strong>Heliostat</strong> Positions, Aim Points, Tower, Receiver, (Secondary)<br />

Task: calculate annual per<strong>for</strong>mance<br />

P<br />

inc<br />

( x,<br />

y,<br />

t)<br />

DNI ( t)<br />

FMir<br />

refl<br />

atmo<br />

( x,<br />

y)<br />

cos(<br />

x,<br />

y,<br />

t)<br />

b&<br />

• coordinate systems:<br />

s<br />

( x,<br />

y,<br />

t)<br />

<br />

inc<br />

( x,<br />

y,<br />

t)<br />

• tower coordinate system<br />

• sun angles<br />

• azimuth 0° = south<br />

• elevation 90° = zenith<br />

y<br />

x<br />

• receiver coordinate systems<br />

4


<strong>SFERA</strong> Winter School<br />

Solar Fuels & Materials Page 17<br />

Per<strong>for</strong>mance Calculation<br />

Given: <strong>Heliostat</strong>, <strong>Heliostat</strong> Positions, Aim Points, Tower, Receiver, (Secondary)<br />

Task: calculate annual per<strong>for</strong>mance<br />

90<br />

80<br />

70<br />

60<br />

50<br />

P<br />

inc<br />

( x,<br />

y,<br />

t)<br />

DNI ( t)<br />

FMir<br />

refl<br />

atmo<br />

( x,<br />

y)<br />

cos(<br />

x,<br />

y,<br />

t)<br />

b&<br />

• time system:<br />

9 h<br />

Vormittag<br />

10 h<br />

11 h<br />

Mittag<br />

12 h<br />

Jun<br />

Mai/Jul<br />

Apr/Aug<br />

Mär/Sep<br />

s<br />

( x,<br />

y,<br />

t)<br />

<br />

13 h<br />

inc<br />

Nachmittag<br />

14 h<br />

( x,<br />

y,<br />

t)<br />

15 h<br />

40<br />

30<br />

20<br />

6 h<br />

7 h<br />

8 h<br />

9 h<br />

10 h<br />

11 h<br />

10<br />

8 h<br />

16 h<br />

5 h<br />

0<br />

60 90 120 150 180 210 240 270<br />

Feb/Okt<br />

Jan/Nov<br />

Dez<br />

13 h<br />

14 h<br />

15 h<br />

16 h<br />

17 h<br />

18 h<br />

5<br />

Per<strong>for</strong>mance Calculation<br />

Given: <strong>Heliostat</strong>, <strong>Heliostat</strong> Positions, Aim Points, Tower, Receiver, (Secondary)<br />

Task: calculate annual per<strong>for</strong>mance<br />

P<br />

inc<br />

( x,<br />

y,<br />

t)<br />

DNI ( t)<br />

FMir<br />

refl<br />

atmo<br />

( x,<br />

y)<br />

cos(<br />

x,<br />

y,<br />

t)<br />

b&<br />

• time system:<br />

( x,<br />

y,<br />

t)<br />

<br />

( x,<br />

y,<br />

t)<br />

• 7 months: Dec, Jan/Nov, Feb/Oct, Mar/Sep, Apr/Aug, Mai/Jul, Jun<br />

• days/month: 31 61 59 61 61 62 60<br />

• one representative day per month (21st)<br />

• local <strong>solar</strong> time, hourly intervals<br />

s<br />

inc<br />

6


<strong>SFERA</strong> Winter School<br />

Solar Fuels & Materials Page 18<br />

Per<strong>for</strong>mance Calculation<br />

Given: <strong>Heliostat</strong>, <strong>Heliostat</strong> Positions, Aim Points, Tower, Receiver, (Secondary)<br />

Task: calculate annual per<strong>for</strong>mance<br />

P<br />

inc<br />

( x,<br />

y,<br />

t)<br />

DNI ( t)<br />

FMir<br />

refl<br />

atmo<br />

( x,<br />

y)<br />

cos(<br />

x,<br />

y,<br />

t)<br />

b&<br />

• radiation model:<br />

• tabulated data<br />

• clear sky model from Hottel (1976):<br />

s<br />

( x,<br />

y,<br />

t)<br />

<br />

inc<br />

( x,<br />

y,<br />

t)<br />

DNI ( t)<br />

( LAT , h,<br />

day,<br />

time)<br />

<br />

atmo<br />

IRR ET<br />

850<br />

LAT 35°N, 0m, <strong>solar</strong> noon<br />

800<br />

DNI [W/m²]<br />

750<br />

700<br />

650<br />

600<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

7<br />

Per<strong>for</strong>mance Calculation<br />

Given: <strong>Heliostat</strong>, <strong>Heliostat</strong> Positions, Aim Points, Tower, Receiver, (Secondary)<br />

Task: calculate annual per<strong>for</strong>mance<br />

P<br />

inc<br />

( x,<br />

y,<br />

t)<br />

DNI ( t)<br />

FMir<br />

refl<br />

atmo<br />

( x,<br />

y)<br />

cos(<br />

x,<br />

y,<br />

t)<br />

b&<br />

• atmospheric attenuation:<br />

atmo<br />

( x,<br />

y)<br />

f ( slant range)<br />

1.00<br />

s<br />

( x,<br />

y,<br />

t)<br />

<br />

inc<br />

( x,<br />

y,<br />

t)<br />

• agrees well with Pittman/Vant-Hull at<br />

Rho_H2O 7 g/m³<br />

Vis<br />

40 km<br />

H<br />

0 km<br />

h_tower 0.1 km<br />

Transmissivity [-]<br />

0.95<br />

0.90<br />

0.85<br />

0.80<br />

0.75<br />

0.70<br />

0.65<br />

Pitman/Vant-Hull<br />

HFLCAL<br />

0.60<br />

0 0.5 1 1.5 2 2.5 3<br />

Slant Range [km]<br />

8


<strong>SFERA</strong> Winter School<br />

Solar Fuels & Materials Page 19<br />

Per<strong>for</strong>mance Calculation<br />

Given: <strong>Heliostat</strong>, <strong>Heliostat</strong> Positions, Aim Points, Tower, Receiver, (Secondary)<br />

Task: calculate annual per<strong>for</strong>mance<br />

P<br />

inc<br />

( x,<br />

y,<br />

t)<br />

DNI ( t)<br />

FMir<br />

refl<br />

atmo<br />

( x,<br />

y)<br />

cos(<br />

x,<br />

y,<br />

t)<br />

b&<br />

• cosine factor<br />

s<br />

( x,<br />

y,<br />

t)<br />

<br />

inc<br />

( x,<br />

y,<br />

t)<br />

9<br />

Per<strong>for</strong>mance Calculation<br />

Given: <strong>Heliostat</strong>, <strong>Heliostat</strong> Positions, Aim Points, Tower, Receiver, (Secondary)<br />

Task: calculate annual per<strong>for</strong>mance<br />

P<br />

inc<br />

( x,<br />

y,<br />

t)<br />

DNI ( t)<br />

FMir<br />

refl<br />

atmo<br />

( x,<br />

y)<br />

cos(<br />

x,<br />

y,<br />

t)<br />

b&<br />

• shading<br />

s<br />

( x,<br />

y,<br />

t)<br />

<br />

inc<br />

( x,<br />

y,<br />

t)<br />

10


<strong>SFERA</strong> Winter School<br />

Solar Fuels & Materials Page 20<br />

Per<strong>for</strong>mance Calculation<br />

Given: <strong>Heliostat</strong>, <strong>Heliostat</strong> Positions, Aim Points, Tower, Receiver, (Secondary)<br />

Task: calculate annual per<strong>for</strong>mance<br />

P<br />

inc<br />

( x,<br />

y,<br />

t)<br />

DNI ( t)<br />

FMir<br />

refl<br />

atmo<br />

( x,<br />

y)<br />

cos(<br />

x,<br />

y,<br />

t)<br />

b&<br />

• blocking<br />

s<br />

( x,<br />

y,<br />

t)<br />

<br />

inc<br />

( x,<br />

y,<br />

t)<br />

11<br />

Background<br />

Design and optimization of <strong>solar</strong> tower systems require the<br />

calculation of the reflected beam in the target plane<br />

12


<strong>SFERA</strong> Winter School<br />

Solar Fuels & Materials Page 21<br />

Background<br />

Design and optimization of <strong>solar</strong> tower systems require the<br />

calculation of the reflected beam in the target plane<br />

Deviations from ideal<br />

concentration:<br />

• non-parallel rays<br />

• alignment error<br />

• shape error<br />

• slope error<br />

• diffuse reflection<br />

• (off-axis-reflection)<br />

13<br />

Background<br />

statistical approach (ray-tracing)<br />

analytical approach (convolution)<br />

<br />

<br />

<br />

I M E S<br />

I( x,<br />

y)<br />

M ( x1 , y1)<br />

E(<br />

x2<br />

x1,<br />

y2<br />

y1)<br />

S(<br />

x x2,<br />

y y2)<br />

dx1dy1dx2dy2<br />

e<br />

I(<br />

x,<br />

y)<br />

<br />

2 2<br />

(<br />

x y )<br />

2<br />

/ 2<br />

<br />

<br />

i0 j0<br />

Cij<br />

Hi(<br />

x)<br />

H<br />

j<br />

( y)<br />

i!<br />

j!<br />

14


<strong>SFERA</strong> Winter School<br />

Solar Fuels & Materials Page 22<br />

HFLCAL Approach<br />

HFLCAL uses a simplified convolution approach:<br />

The reflected image of each heliostat is approximated by a circular normal<br />

distribution (“Gaussian”)<br />

F<br />

r ²<br />

1 <br />

2<br />

²<br />

( )<br />

r<br />

e<br />

2<br />

²<br />

<br />

2<br />

beam error<br />

<br />

2<br />

sun<br />

<br />

2<br />

beam quality<br />

0.035<br />

0.3<br />

0.030<br />

0.25<br />

0.025<br />

"Kuiper"<br />

probability [-]<br />

0.020<br />

0.015<br />

"Gaussian"<br />

0.2<br />

0.15<br />

0.010<br />

0.1<br />

0.005<br />

0.05<br />

0.000<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7<br />

r [mrad]<br />

sun<br />

0<br />

-5 -4 -3 -2 -1 0 1 2 3 4 5<br />

2<br />

mirror<br />

15<br />

Accuracy of Mathematical Model<br />

F<br />

r ²<br />

1 <br />

2<br />

²<br />

( )<br />

r<br />

e<br />

2<br />

²<br />

<br />

2<br />

beam error<br />

<br />

2<br />

sun<br />

<br />

2<br />

beam quality<br />

• Pettit, Vittitoe and Biggs (1983) found good agreement when beam error<br />

2 sun<br />

• Central Limit Theorem: „superposition of a great number of any distributions<br />

converges towards a normal distribution“<br />

200<br />

200<br />

180<br />

160<br />

ray-tracing<br />

HFLCAL<br />

180<br />

160<br />

ray-tracing<br />

HFLCAL<br />

140<br />

140<br />

120<br />

120<br />

100<br />

100<br />

80<br />

80<br />

60<br />

60<br />

40<br />

40<br />

20<br />

20<br />

0<br />

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5<br />

perfect mirror<br />

0<br />

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5<br />

realistic mirror<br />

16


<strong>SFERA</strong> Winter School<br />

Solar Fuels & Materials Page 23<br />

Accuracy of Mathematical Model<br />

F<br />

r ²<br />

1 <br />

2<br />

²<br />

( )<br />

r<br />

e<br />

2<br />

²<br />

<br />

2<br />

beam error<br />

<br />

2<br />

sun<br />

<br />

2<br />

beam quality<br />

How to chose the correct value <strong>for</strong> beam error<br />

<br />

10<br />

4.5%<br />

9<br />

4.0%<br />

8<br />

3.5%<br />

total sigma [mrad]<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

RMS (HFLCAL-RayTracing)<br />

3.0%<br />

2.5%<br />

2.0%<br />

1.5%<br />

1.0%<br />

1<br />

0.5%<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5<br />

slope error (normal) [mrad]<br />

0.0%<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5<br />

slope error (normal) [mrad]<br />

total sigma<br />

error<br />

17<br />

Accuracy of Mathematical Model<br />

tracking errors influence the amount of intercepted energy<br />

<br />

2<br />

beam error<br />

<br />

2<br />

sun<br />

<br />

2<br />

beam quality<br />

( 2<br />

track<br />

)<br />

2<br />

<br />

track<br />

<br />

<br />

<br />

axis1 axis2<br />

18


<strong>SFERA</strong> Winter School<br />

Solar Fuels & Materials Page 24<br />

Accuracy of Mathematical Model<br />

astigmatism influences the size and shape of the reflected beam<br />

<br />

2<br />

total<br />

<br />

2<br />

beam error<br />

<br />

2<br />

astigm<br />

H<br />

W<br />

t<br />

s<br />

d <br />

d <br />

SLR<br />

f<br />

SLR<br />

f<br />

cos <br />

;<br />

cos<br />

1;<br />

<br />

astigm<br />

<br />

1<br />

2<br />

<br />

H<br />

2<br />

t,<br />

hel<br />

facet<br />

W<br />

4<br />

SLR<br />

2<br />

s,<br />

hel<br />

facet<br />

<br />

19<br />

Accuracy of Mathematical Model<br />

astimgatism influences the size and shape of the reflected beam<br />

<br />

2<br />

total<br />

<br />

2<br />

beam error<br />

<br />

2<br />

astigm<br />

kW/m²<br />

21-24<br />

18-21<br />

15-18<br />

12-15<br />

9-12<br />

6-9<br />

3-6<br />

0-3<br />

[kW/m²]<br />

21-24<br />

18-21<br />

15-18<br />

12-15<br />

9-12<br />

6-9<br />

3-6<br />

0-3<br />

-2.4 -1.9 -1.4 -1.0 -0.5 0.0 0.5 1.0 1.4 1.9 2.4<br />

-2.4 -1.9 -1.4 -1.0 -0.5 0.0 0.5 1.0 1.4 1.9 2.4<br />

single mirror, incident angle 37.6° (left: HFLCAL, right: ray tracing)<br />

20


<strong>SFERA</strong> Winter School<br />

Solar Fuels & Materials Page 25<br />

Per<strong>for</strong>mance Calculation<br />

Given: <strong>Heliostat</strong>, <strong>Heliostat</strong> Positions, Aim Points, Tower, Receiver, (Secondary)<br />

Task: calculate annual per<strong>for</strong>mance<br />

P<br />

inc<br />

( x,<br />

y,<br />

t)<br />

DNI ( t)<br />

FMir<br />

refl<br />

atmo<br />

( x,<br />

y)<br />

cos(<br />

x,<br />

y,<br />

t)<br />

b&<br />

s<br />

( x,<br />

y,<br />

t)<br />

<br />

inc<br />

( x,<br />

y,<br />

t)<br />

• intercept<br />

<br />

inc<br />

<br />

1<br />

2<br />

2<br />

<br />

e<br />

aperture<br />

2<br />

<br />

<br />

2<br />

2<br />

2<br />

dd<br />

• aimpoint = center: analytical solution<br />

• aimpoint center: numerical solution<br />

21<br />

Per<strong>for</strong>mance Calculation<br />

Given: <strong>Heliostat</strong>, <strong>Heliostat</strong> Positions, Aim Points, Tower, Receiver, (Secondary)<br />

Task: calculate annual per<strong>for</strong>mance<br />

P<br />

inc<br />

( x,<br />

y,<br />

t)<br />

DNI ( t)<br />

FMir<br />

refl<br />

atmo<br />

( x,<br />

y)<br />

cos(<br />

x,<br />

y,<br />

t)<br />

b&<br />

s<br />

( x,<br />

y,<br />

t)<br />

<br />

inc<br />

( x,<br />

y,<br />

t)<br />

• intercept<br />

<br />

inc<br />

<br />

1<br />

2<br />

2<br />

<br />

e<br />

aperture<br />

2<br />

<br />

<br />

2<br />

2<br />

2<br />

dd<br />

• aimpoint = center: analytical solution<br />

• aimpoint center: semi-analytical solution<br />

22


<strong>SFERA</strong> Winter School<br />

Solar Fuels & Materials Page 26<br />

Per<strong>for</strong>mance Calculation<br />

Given: <strong>Heliostat</strong>, <strong>Heliostat</strong> Positions, Aim Points, Tower, Receiver, (Secondary)<br />

Task: calculate annual per<strong>for</strong>mance<br />

P<br />

inc<br />

( x,<br />

y,<br />

t)<br />

DNI ( t)<br />

FMir<br />

refl<br />

atmo<br />

( x,<br />

y)<br />

cos(<br />

x,<br />

y,<br />

t)<br />

b&<br />

s<br />

( x,<br />

y,<br />

t)<br />

<br />

inc<br />

( x,<br />

y,<br />

t)<br />

• intercept<br />

<br />

inc<br />

<br />

1<br />

2<br />

2<br />

<br />

e<br />

aperture<br />

2<br />

<br />

<br />

2<br />

2<br />

2<br />

dd<br />

• free <strong>for</strong>m: numerical solution<br />

23<br />

Per<strong>for</strong>mance Calculation<br />

Given: <strong>Heliostat</strong>, <strong>Heliostat</strong> Positions, Aim Points, Tower, Receiver, (Secondary)<br />

Task: calculate annual per<strong>for</strong>mance<br />

P<br />

rec<br />

( x,<br />

y,<br />

t)<br />

sec(<br />

x,<br />

y)<br />

P ( x,<br />

y,<br />

t)<br />

inc<br />

• secondary transmission<br />

<br />

<br />

24


<strong>SFERA</strong> Winter School<br />

Solar Fuels & Materials Page 27<br />

Per<strong>for</strong>mance Calculation<br />

Given: <strong>Heliostat</strong>, <strong>Heliostat</strong> Positions, Aim Points, Tower, Receiver, (Secondary)<br />

Task: calculate annual per<strong>for</strong>mance<br />

• <strong>solar</strong> <strong>field</strong> power<br />

• thermal power<br />

P<br />

<strong>field</strong><br />

( t)<br />

Pi<br />

( x,<br />

y,<br />

t)<br />

i<br />

Q<br />

thermal<br />

( t)<br />

P ( t)<br />

<br />

P ( t)<br />

<strong>field</strong><br />

conversion<br />

<br />

<strong>field</strong><br />

<br />

• annual per<strong>for</strong>mance<br />

E<br />

E<br />

<strong>field</strong><br />

thermal<br />

<br />

<br />

<br />

t<br />

w(<br />

t)<br />

P<br />

<br />

t<br />

<strong>field</strong><br />

w(<br />

t)<br />

Q<br />

( t)<br />

thermal<br />

( t)<br />

25<br />

Layout Calculation<br />

Given: <strong>Heliostat</strong>, Tower, Receiver, (Secondary)<br />

Task: calculate heliostat positions<br />

1. calculation of hypothetical heliostat positions<br />

• bilinear expansion<br />

• bilinear with central “gap”<br />

• slip planes<br />

• (heliostats in rows)<br />

• user defined algorithm<br />

26


<strong>SFERA</strong> Winter School<br />

Solar Fuels & Materials Page 28<br />

Layout Calculation<br />

Given: <strong>Heliostat</strong>, Tower, Receiver, (Secondary)<br />

Task: calculate heliostat positions<br />

1. calculation of hypothetical heliostat positions<br />

• bilinear expansion<br />

• bilinear with central “gap”<br />

• slip planes<br />

• (heliostats in rows)<br />

• user defined algorithm<br />

maximum density zone<br />

expand with u = au + r x bu<br />

slip plane: add heliostat to each gap<br />

27<br />

Layout Calculation<br />

Given: <strong>Heliostat</strong>, Tower, Receiver, (Secondary)<br />

Task: calculate heliostat positions<br />

2. calculation of <strong>field</strong> per<strong>for</strong>mance<br />

3. selection of best per<strong>for</strong>ming heliostats<br />

28


<strong>SFERA</strong> Winter School<br />

Solar Fuels & Materials Page 29<br />

Field Per<strong>for</strong>mance Matrix<br />

Given: <strong>Heliostat</strong>, <strong>Heliostat</strong> Positions, Tower, Receiver, (Secondary)<br />

Task: calculate <strong>field</strong> efficiency <strong>for</strong> any sun angle<br />

29<br />

Optimization<br />

Given: <strong>Heliostat</strong>, Positioning Alg., Tower, Receiver-Type, (Secondary)<br />

Task: optimize layout parameters<br />

distribute heliostats<br />

calculate all time points<br />

chose best heliostats<br />

optimization<br />

algorithm<br />

manipulates<br />

system<br />

parameters<br />

optimize <strong>for</strong><br />

-power per m² reflective area<br />

-least cost of thermal receiver power<br />

30


<strong>SFERA</strong> Winter School<br />

Solar Fuels & Materials Page 30<br />

Optimization <strong>for</strong> Power Generation vs. Chemical<br />

Processes<br />

Power Generation<br />

Typical temperatures below 1300 K<br />

Typical <strong>solar</strong> concentration 1000 suns<br />

Use of secondary concentrators<br />

Process temperature defined by<br />

chemical process<br />

Process temperature depends on <strong>solar</strong><br />

power to receiver (changes over time!)<br />

Reactor model and chemical<br />

reaction characteristics<br />

impact <strong>field</strong> <strong>design</strong><br />

31<br />

Assumptions to estimate theoretical upper limit<br />

the reactor temperature is uni<strong>for</strong>m<br />

convection and conduction heat losses are neglected<br />

transient heat losses during start-up and shut-down are neglected<br />

reaction achieves completion, e.g. there are no chemical side products<br />

considered<br />

no purge gases are used<br />

32


<strong>SFERA</strong> Winter School<br />

Solar Fuels & Materials Page 31<br />

Two Example Reactions..<br />

ZnO dissociation (2000K)<br />

ZnO Zn + 0.5O2<br />

Coal gasification (1400K)<br />

C + H2O CO + H2<br />

Simplified Model Approach<br />

P<br />

P<br />

0<br />

P<br />

thermallosses<br />

<strong>solar</strong>,in<br />

reaction<br />

<br />

T<br />

<br />

P<br />

reaction<br />

T<br />

<br />

4<br />

T<br />

<br />

A T<br />

aperture<br />

P<br />

thermallosses<br />

T<br />

<br />

T<br />

<br />

( T ) <br />

H<br />

r<br />

( T ) cpdT<br />

<br />

<br />

T<br />

in <br />

Ea<br />

<br />

Areaction<br />

k0<br />

exp<br />

<br />

RT <br />

Target function <strong>for</strong> optimization<br />

<br />

<strong>solar</strong>tochemical<br />

<br />

<br />

all time steps<br />

(T)H<br />

<br />

P<br />

<strong>solar</strong>, in<br />

all time steps<br />

r<br />

( T )<br />

33<br />

Parameters<br />

<strong>Heliostat</strong> size 10 / 120 m²<br />

Beam Quality<br />

3.3; 3.0; 2.7 mrad<br />

incl. sunshape<br />

Design power<br />

to reactor<br />

1; 10; 100 MW<br />

<strong>Heliostat</strong> spacing<br />

Tower Height<br />

1 MW 40m<br />

10 MW 120m<br />

100 MW 250m<br />

34


<strong>SFERA</strong> Winter School<br />

Solar Fuels & Materials Page 32<br />

Multimodal objective function:<br />

Different configurations lead to very similar optima<br />

Case 1 Case 2<br />

reflectivity<br />

0.87 0.87<br />

cosine<br />

0.8873 0.8863<br />

blockin&shading<br />

0.9075 0.8888<br />

attenuation<br />

0.9654 0.9688<br />

0.8339 0.8625<br />

int ercept<br />

secondary<br />

0.9146 0.9228<br />

receiver<br />

0.5868 0.5686<br />

0.3026836 0.3026597<br />

total<br />

35<br />

Results<br />

Comparison of <strong>field</strong>s (10MW – 10m²)<br />

reference <strong>field</strong> optimized <strong>for</strong><br />

<strong>design</strong> point concentration of<br />

500 suns<br />

<strong>field</strong> = 69,27 %<br />

optimization target: chemical<br />

yield Coal gasification.<br />

<strong>field</strong> = 61,8 %<br />

<strong>solar</strong>-chemical =39,1%<br />

peak concentration = 2555 suns<br />

mean concentration = 2107 suns<br />

optimization target: chemical<br />

yield zinc oxide dissociation<br />

<strong>field</strong> = 55 %<br />

<strong>solar</strong>-chemical =30,6%<br />

peak concentration = 4798 suns<br />

mean concentration = 3679 suns<br />

36


<strong>SFERA</strong> Winter School<br />

Solar Fuels & Materials Page 33<br />

Efficiencies [%] Reactor operating conditions<br />

Average Peak<br />

Flux<br />

Operating Operating<br />

ZnO dissociation Field Intercept Secondary Optical Reactor Total<br />

Density<br />

Temperature Temperature<br />

[MW/m²]<br />

[K]<br />

[K]<br />

1 MW<br />

10m2 <strong>Heliostat</strong><br />

10 MW<br />

120m2 <strong>Heliostat</strong><br />

100 MW; 3 cavities<br />

120m² <strong>Heliostat</strong><br />

66.7 86.4 92.1 53,1 55.5 29.5 1910 2014 4.5<br />

67.3 86.0 92.2 53.4 55.9 29.8 1912 2013 4.6<br />

63.7 88.7 91.7 51.8 57.0 29.2 1920 2017 4.8<br />

Efficiencies [%]<br />

Coal gasification Field Intercept Secondary Optical Reactor Total<br />

Reactor operating conditions<br />

Average Peak<br />

Flux<br />

Operating Operating<br />

Density<br />

Temperature Temperature<br />

[MW/m²]<br />

[K]<br />

[K]<br />

1 MW<br />

10m2 <strong>Heliostat</strong><br />

69.9 95.4 92.9 61.9 66.0 40.9 1308 1469 2.2<br />

10 MW<br />

120m2 <strong>Heliostat</strong><br />

69.4 95.2 93.1 61.5 66.3 40.8 1307 1470 2.9<br />

100 MW; 3 cavities<br />

120m² <strong>Heliostat</strong><br />

65.4 96.2 93.1 58.6 66.8 39.9 1308 1483 2.5<br />

37<br />

Comparison to <strong>solar</strong> electric systems<br />

Thermal Receiver<br />

500 kW/m²<br />

1MW<br />

10m² <strong>Heliostat</strong><br />

Efficiencies [%]<br />

Field Intercept Secondary Optical Reactor Total<br />

72.4 96.5 - 69.9 - -<br />

Reactor operating conditions<br />

10MW<br />

120m² <strong>Heliostat</strong><br />

70.0 97.5 - 68.2 -<br />

n/a<br />

100MW; North<strong>field</strong><br />

120m² <strong>Heliostat</strong><br />

64.5 99.5 - 64.2 - -<br />

Chemical conversion through electrolysis:<br />

Assume rec<br />

=0.92 ,<br />

cycle<br />

=0.45 ,<br />

electrolys<br />

=0.8<br />

tot<br />

=0.699 *0.92* 0.45 * 0.8 = 0.23<br />

38


<strong>SFERA</strong> Winter School<br />

Solar Fuels & Materials Page 34<br />

Sensitivity Analysis: Impact of beam quality<br />

a) d)<br />

The perfect<br />

mirror<br />

ZnO<br />

The perfect<br />

mirror<br />

C-Gasif.<br />

39<br />

Sensitivity Analysis: Impact of tower height<br />

b) e)<br />

ZnO<br />

C-Gasif.<br />

40


<strong>SFERA</strong> Winter School<br />

Solar Fuels & Materials Page 35<br />

Sensitivity Analysis: Impact heat recovery / inlet<br />

temp.<br />

a) b)<br />

ZnO<br />

C-Gasif.<br />

41<br />

Summary<br />

Optimization methodology of heliostat <strong>field</strong>s <strong>for</strong> <strong>solar</strong> tower applied to hightemperature<br />

chemical reactions<br />

Application to dissociation of Zinc oxide and coal gasification with optimum<br />

estimation:<br />

Zinc oxide dissociation: 2000 K and 5000 suns<br />

Coal gasification:<br />

1400 K and 2000 suns<br />

Excellent secondary optics are required to achieve these conditions<br />

Penalties up to 25 % in <strong>field</strong> efficiencies due to need of high temperature heat of<br />

chemical reactions<br />

Systems still show efficiency benefits over <strong>solar</strong> electrochemical concepts<br />

High temperature reaction concepts very sensitive to beam quality and tower<br />

height<br />

42

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!