24.01.2013 Views

Solar carbothermic production of zinc: Christian Wieckert (1.4 - SFERA

Solar carbothermic production of zinc: Christian Wieckert (1.4 - SFERA

Solar carbothermic production of zinc: Christian Wieckert (1.4 - SFERA

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>SFERA</strong> Winter School<br />

<strong>Solar</strong> Fuels & Materials Page 251<br />

<strong>Solar</strong> Carbothermic Production <strong>of</strong> Zinc<br />

<strong>Christian</strong> <strong>Wieckert</strong><br />

<strong>Solar</strong> Technology Laboratory, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland<br />

<strong>SFERA</strong> Winter School Zurich March 24,25 2011<br />

<strong>Solar</strong> Carbothermic Production <strong>of</strong> Zinc<br />

� Introduction<br />

Outline<br />

� Thermodynamic equilibrium and kinetic information<br />

� Overview Sol<strong>zinc</strong>-project<br />

� Laboratory scale solar reactor design and testing<br />

� Pilot plant for <strong>carbothermic</strong> solar Zn <strong>production</strong><br />

� Conceptual design demonstration plant<br />

� Conclusions<br />

<strong>SFERA</strong> Winter School Zurich March 24,25 2011/ <strong>Solar</strong> Carbothermic Production <strong>of</strong> Zinc<br />

2


<strong>SFERA</strong> Winter School<br />

<strong>Solar</strong> Fuels & Materials Page 252<br />

C<br />

(Coke, Coal,<br />

Biomass,..)<br />

Carbothermic ZnO reduction for solar energy storage<br />

<strong>Solar</strong> Zn Reactor<br />

1200ºC<br />

ZnO + C<br />

�<br />

Zn + CO<br />

Reactants<br />

CO 2<br />

e.g. gas motor<br />

Offgas<br />

(CO)<br />

Zn<br />

ZnO Recycling<br />

Electric Power<br />

Syngas<br />

H 2+CO<br />

<strong>SFERA</strong> Winter School Zurich March 24,25 2011/ <strong>Solar</strong> Carbothermic Production <strong>of</strong> Zinc<br />

Zinc/air fuel cell<br />

Zn + ½ O 2 � ZnO<br />

Electric Power<br />

Thermodynamic equilibrium composition<br />

<strong>SFERA</strong> Winter School Zurich March 24,25 2011/ <strong>Solar</strong> Carbothermic Production <strong>of</strong> Zinc<br />

Hydrogen<br />

Zn + H 2O � ZnO + H 2<br />

Zn + CO 2 � ZnO + CO<br />

1 mol ZnO + 1 mol C 1 mol ZnO + 0.9 mol C<br />

Zn(g), CO<br />

3<br />

4


<strong>SFERA</strong> Winter School<br />

<strong>Solar</strong> Fuels & Materials Page 253<br />

Temperature C<br />

Carbothermic reduction <strong>of</strong> ZnO:<br />

Tmin for “no ZnO” in thermodynamic equilibrium<br />

2000<br />

1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

ZnO -> Zn + ½ O 2<br />

ZnO + ½ C -> Zn + ½ CO 2<br />

ZnO<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

�=mol C/mol ZnO<br />

No ZnO<br />

<strong>SFERA</strong> Winter School Zurich March 24,25 2011/ <strong>Solar</strong> Carbothermic Production <strong>of</strong> Zinc<br />

C<br />

ZnO + C -><br />

Zn + CO<br />

For comparison: pyrometallurgical Zn-<strong>production</strong>: � � 4 (“Imperial Smelting Process”)<br />

Thermogravimetric analyses (dynamic runs with 10°C/min):<br />

ZnO + Coal/Coke (stoichiometry: C fix :ZnO=0.8)<br />

<strong>SFERA</strong> Winter School Zurich March 24,25 2011/ <strong>Solar</strong> Carbothermic Production <strong>of</strong> Zinc<br />

ASME J. <strong>Solar</strong> Energy Engineering 124 (2002), 55-62<br />

Carboreduction <strong>of</strong> ZnO: kinetics depends strongly on coal/coke-type<br />

ZnO + C Zn +CO<br />

�H = 350 kJ/mol<br />

Reduction mainly via<br />

solid-gas reactions:<br />

ZnO + CO Zn + CO2 C + CO2 2 CO<br />

Petcokes<br />

ASME J. <strong>Solar</strong> Energy Engineering 128 (2006), 8-15<br />

5<br />

6


<strong>SFERA</strong> Winter School<br />

<strong>Solar</strong> Fuels & Materials Page 254<br />

Major investigation <strong>of</strong> <strong>carbothermic</strong> ZnO reduction: EU-project SOLZINC<br />

Key project data<br />

6 project partners from 5 countries<br />

3 million € for 4 years<br />

250 person months<br />

SOLZINC project phases<br />

Kick-<strong>of</strong>f: Select solar process and solar reactor concept<br />

2002/3: Lab scale (5 kW solar input): Reactor and process optimization<br />

Lab-scale testing <strong>of</strong> Zn <strong>production</strong> from <strong>of</strong>fgas<br />

2003/4: Design, realisation, commissioning <strong>of</strong> pilot plant (300 kW solar input)<br />

2005/6: Pilot plant test operation<br />

Conceptual design <strong>of</strong> demonstration plant (5-8 MW solar input)<br />

Scenario and cost studies<br />

<strong>SFERA</strong> Winter School Zurich March 24,25 2011/ <strong>Solar</strong> Carbothermic Production <strong>of</strong> Zinc<br />

<strong>Solar</strong> Reactor Concepts for ZnO+C<br />

Two reactor designs tested experimentally:<br />

� “Two cavity reactor” (indirect heating, with window, batch, PSI)<br />

� “Annular reactor” (also tested without window,<br />

Weizmann Institute <strong>of</strong> Science)<br />

<strong>Solar</strong> Beam<br />

Quartz<br />

Window<br />

Water-cooled<br />

Flanges<br />

Thermocouple<br />

Ceramic Wall<br />

Condenser-<br />

Separator<br />

CPC<br />

Reactants:<br />

ZnO+C<br />

Outlet Tube<br />

Solid Zinc<br />

Filter<br />

Gas-inlet Tube<br />

for Window<br />

Flushing<br />

Inner Heating Wall<br />

CO+CO 2<br />

Chemistry in Britain 37 (2001), Nr. 5, pp. 30-32<br />

<strong>SFERA</strong> Winter School Zurich March 24,25 2011/ <strong>Solar</strong> Carbothermic Production <strong>of</strong> Zinc<br />

Concentrated solar radiation<br />

Upper cavity<br />

Quartz window<br />

Separation<br />

wall<br />

Lower cavity<br />

(reaction<br />

chamber)<br />

~1200ºC<br />

ZnO + C<br />

ASME J. <strong>Solar</strong> Energy Engineering 128 (2006), 8-15<br />

Two cavity design selected for upscaling<br />

in EU-SOLZINC project<br />

7<br />

Packed bed<br />

8


<strong>SFERA</strong> Winter School<br />

<strong>Solar</strong> Fuels & Materials Page 255<br />

Tests with<br />

ZnO/C:<br />

„2-cavity“ solar reactor: design evolution<br />

0 15cm<br />

8/2001 9-12/2001 4-6/2002<br />

Similar reaction rate in continuous and in batch operation -> focus on batch<br />

<strong>SFERA</strong> Winter School Zurich March 24,25 2011/ <strong>Solar</strong> Carbothermic Production <strong>of</strong> Zinc<br />

Two cavity laboratory batch reactor (from 8/2002)<br />

Zn-dust<br />

<strong>SFERA</strong> Winter School Zurich March 24,25 2011/ <strong>Solar</strong> Carbothermic Production <strong>of</strong> Zinc<br />

Product gas<br />

(CO, CO 2 , N 2 , H 2 )<br />

9<br />

10


<strong>SFERA</strong> Winter School<br />

<strong>Solar</strong> Fuels & Materials Page 256<br />

Temperature [°C]<br />

R<br />

1600<br />

solarin<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

Two-cavity laboratory batch reactor<br />

<strong>SFERA</strong> Winter School Zurich March 24,25 2011/ <strong>Solar</strong> Carbothermic Production <strong>of</strong> Zinc<br />

Typical laboratory test with 500 g ZnO/ beech charcoal mixture<br />

(0.9 mol C fix per mol ZnO)<br />

Production rate 0.6 kg Zn/h<br />

HP(<br />

T)<br />

�H<br />

( 298K)<br />

�thermal<br />

�<br />

� 20%<br />

Q<br />

[kW]<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Q solarin<br />

CO 2<br />

00:00 00:15 00:30 00:45 01:00 01:15 01:30<br />

Time [hh:mm]<br />

T separation wall<br />

T wall above packed bed<br />

<strong>SFERA</strong> Winter School Zurich March 24,25 2011/ <strong>Solar</strong> Carbothermic Production <strong>of</strong> Zinc<br />

CO<br />

T bottom <strong>of</strong> packed bed<br />

H 2<br />

Q solarin<br />

0.2<br />

0.18<br />

0.16<br />

0.14<br />

0.12<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

~1200ºC<br />

ZnO + C<br />

Gas flow rate [mol/min]<br />

11<br />

ASME J. <strong>Solar</strong> Energy Engineering 128 (2006), 8-15<br />

12


<strong>SFERA</strong> Winter School<br />

<strong>Solar</strong> Fuels & Materials Page 257<br />

Reaction rate in mol/m2/s<br />

0.175<br />

0.15<br />

0.125<br />

0.1<br />

0.075<br />

0.05<br />

0.025<br />

0<br />

<strong>Solar</strong> reactor modeling<br />

Effective reaction rate per bed surface area<br />

ZnO + different carbon-sources (stoichiometry C/ZnO=0.8)<br />

1100 1150 1200 1250 1300 1350<br />

Wall temperature above bed in °C<br />

Beech charcoal<br />

Kalzinat (Petcoke)<br />

<strong>SFERA</strong> Winter School Zurich March 24,25 2011/ <strong>Solar</strong> Carbothermic Production <strong>of</strong> Zinc<br />

• Solving unsteady energy equation<br />

• Coupling conduction/radiation heat<br />

transfer to chemical kinetics<br />

• Shrinking packed bed<br />

ZnO/C bed<br />

Doctoral theses Thomas Osinga, ETHZ 16180 (2005)<br />

<strong>SFERA</strong> Winter School Zurich March 24,25 2011/ <strong>Solar</strong> Carbothermic Production <strong>of</strong> Zinc<br />

Activated charcoal, solar furnace PSI<br />

Activated charcoal, solar simulator ETH<br />

Linear (Beech charcoal )<br />

ASME J. <strong>Solar</strong> Energy Engineering 126 (2004), 33-37<br />

Fixed bed<br />

top temperature<br />

Zn <strong>production</strong> rate<br />

13<br />

14


<strong>SFERA</strong> Winter School<br />

<strong>Solar</strong> Fuels & Materials Page 258<br />

Conclusions laboratory tests<br />

� <strong>Solar</strong> Zn-<strong>production</strong> realized with different coals/cokes<br />

• reaction rate depends on C-material<br />

• industrial beech charcoal selected as “standard”<br />

� Stoechiometry in two-cavity reactor<br />

• C/ZnO (molar) = 0.8-1: complete reaction (no C or ZnO left); CO 2 /CO about 0.05-0.3<br />

• For C/ZnO (molar)


<strong>SFERA</strong> Winter School<br />

<strong>Solar</strong> Fuels & Materials Page 259<br />

The Sol<strong>zinc</strong> pilot plant - optical system<br />

<strong>Solar</strong> facilities at Weizmann Institute <strong>of</strong> Science/Israel Secondary concentrator<br />

Upper cavity above separation plates<br />

Upper part<br />

(stationary)<br />

Lower part<br />

Carrier gas inlet<br />

Lower cavity<br />

(reaction chamber)<br />

<strong>SFERA</strong> Winter School Zurich March 24,25 2011/ <strong>Solar</strong> Carbothermic Production <strong>of</strong> Zinc<br />

SOLZINC solar pilot furnace/reactor<br />

ZnO/C batch<br />

� 300 KW solar power input<br />

140 cm<br />

Quartz window<br />

Offgas pipe<br />

with heater<br />

Zn(g)+CO<br />

<strong>SFERA</strong> Winter School Zurich March 24,25 2011/ <strong>Solar</strong> Carbothermic Production <strong>of</strong> Zinc<br />

17<br />

Principle:<br />

- “2-cavity” reactor<br />

- fixed bed <strong>of</strong> ZnO/C-mixture<br />

- 1 batch per day, adapted to<br />

the availability <strong>of</strong> the sun<br />

Features:<br />

P solarin � 300 kW<br />

D reaction chamber inside = <strong>1.4</strong> m<br />

H bed � 0.5 m<br />

Capacity � 500 kg ZnO/C<br />

Standard C:<br />

industrial beech charcoal<br />

Lining: SiC plates<br />

Insulation: Al 2 O 3 -SiO 2<br />

Separation plates:<br />

graphite, SiC on graphite<br />

Lower part easy to lift down<br />

for refilling<br />

18


<strong>SFERA</strong> Winter School<br />

<strong>Solar</strong> Fuels & Materials Page 260<br />

2nd<br />

Chimney<br />

N 2<br />

Sol<strong>zinc</strong> Pilot Reactor open<br />

<strong>SFERA</strong> Winter School Zurich March 24,25 2011/ <strong>Solar</strong> Carbothermic Production <strong>of</strong> Zinc<br />

SOLZINC pilot plant: Major components<br />

<strong>Solar</strong> irradiation<br />

Quartz window<br />

<strong>Solar</strong> reactor<br />

Quench/Cooler<br />

50 Nm3 /h<br />

(Zn, CO, CO2 , H2 , N2 )<br />

Recycled <strong>of</strong>fgas to reactor (outer loop)<br />

Water<br />

10 Nm<br />

lock<br />

(emergency exit)<br />

3 /h<br />

Inner recycling loop<br />

350 Nm3 /h<br />

Cyclone<br />

Zn dust<br />

<strong>SFERA</strong> Winter School Zurich March 24,25 2011/ <strong>Solar</strong> Carbothermic Production <strong>of</strong> Zinc<br />

Fan<br />

Bag filter<br />

Zn fine dust<br />

19<br />

Chimney/<br />

burner<br />

25 Nm 3 /h<br />

(CO, CO 2 , H 2 , N 2 )<br />

20


<strong>SFERA</strong> Winter School<br />

<strong>Solar</strong> Fuels & Materials Page 261<br />

Sol<strong>zinc</strong> pilot plant in operation<br />

<strong>SFERA</strong> Winter School Zurich March 24,25 2011/ <strong>Solar</strong> Carbothermic Production <strong>of</strong> Zinc<br />

Typical pilot test with 100kg ZnO (Grillo 2011) and 16 kg beech charcoal (gravel, Pr<strong>of</strong>agus)<br />

°C<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

Temperature separation plates<br />

Temperature reaction<br />

chamber side wall<br />

11.02 h 12.14 h 13.26 h 14.38 h 15.50 h 17.02 h<br />

CO 2<br />

CO<br />

Bed bottom temperature<br />

kg Zn/h<br />

<strong>SFERA</strong> Winter School Zurich March 24,25 2011/ <strong>Solar</strong> Carbothermic Production <strong>of</strong> Zinc<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

kg/h ; Vol-%<br />

21<br />

22


<strong>SFERA</strong> Winter School<br />

<strong>Solar</strong> Fuels & Materials Page 262<br />

volume-%<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Overall Zn <strong>production</strong> rate as function <strong>of</strong> temperature above bed<br />

0<br />

kmol Zn/h<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

TLP1 K<br />

1493<br />

0.8<br />

1449 1408 1370 1333 1299<br />

50<br />

0.67 0.69 0.71 0.73 0.75 0.77<br />

1000/TLP1 1/K<br />

�����<br />

<strong>SFERA</strong> Winter School Zurich March 24,25 2011/ <strong>Solar</strong> Carbothermic Production <strong>of</strong> Zinc<br />

���<br />

������<br />

d um<br />

<strong>SFERA</strong> Winter School Zurich March 24,25 2011/ <strong>Solar</strong> Carbothermic Production <strong>of</strong> Zinc<br />

Linear (a=0.9)<br />

Main products: Zn-dusts (� 95% Zn + 5% ZnO)<br />

Apparent size distribution (volume in particles < d)<br />

bag filter dust<br />

d �m<br />

cyclone dust<br />

0.1 1 10 100<br />

40<br />

30<br />

20<br />

10<br />

0<br />

kg Zn/h<br />

23<br />

24


<strong>SFERA</strong> Winter School<br />

<strong>Solar</strong> Fuels & Materials Page 263<br />

Conclusions Pilot Plant<br />

� Successful operation processing ZnO mixed with beech charcoal<br />

(0.8-1 mol Cfix per mol ZnO)<br />

� Production rate at about 1150 °C: about 50 kg/h Zn-dust.<br />

� Thermal efficiency � thermal = Q sink/Q solarin � 30%<br />

� Main product: Zn-dust containing typically 95% Zn, 5% ZnO.<br />

Size in the range


<strong>SFERA</strong> Winter School<br />

<strong>Solar</strong> Fuels & Materials Page 264<br />

2.16 t/h<br />

ZnO<br />

Batch<br />

mixer<br />

0.32 t/h<br />

C<br />

Key input data:<br />

C fix :ZnO=0.8<br />

beech charcoal<br />

� thermal = 55%<br />

� gas motor = 40%<br />

m<br />

Y Axis Title<br />

200<br />

150<br />

100<br />

Option: Offgas system for Zn-dust <strong>production</strong><br />

Indicative mass and energy flows<br />

5.3 MW<br />

<strong>Solar</strong> irradiation<br />

Aperture<br />

<strong>Solar</strong> reactor<br />

Quench/Cooler<br />

1.7 t/h Zn(g)<br />

Recycled <strong>of</strong>fgas to reactor (outer loop)<br />

50<br />

Conceptual Design Sol<strong>zinc</strong> Demonstration Plant<br />

0<br />

50 m 2<br />

Inner recycling loop<br />

Cyclone<br />

1.6 t/h Zn dust<br />

<strong>SFERA</strong> Winter School Zurich March 24,25 2011/ <strong>Solar</strong> Carbothermic Production <strong>of</strong> Zinc<br />

Conceptual Design Sol<strong>zinc</strong> Demonstration Plant<br />

Layout heliostat field for Rehovot/Israel<br />

N<br />

-100 -50 0 50 100<br />

X Axis Title<br />

<strong>SFERA</strong> Winter School Zurich March 24,25 2011/ <strong>Solar</strong> Carbothermic Production <strong>of</strong> Zinc<br />

m<br />

0.5 MW<br />

Electric<br />

power<br />

Fan<br />

Bag filter<br />

0.1 t/h Zn<br />

fine dust<br />

Chimney<br />

Gas<br />

motor<br />

95% Zn, 5% ZnO<br />

27<br />

186 heliostats à 54m 2<br />

Total reflective area: 10063 m 2<br />

ASME J. <strong>Solar</strong> Energy Engineering 130 (2008), 014505<br />

28


<strong>SFERA</strong> Winter School<br />

<strong>Solar</strong> Fuels & Materials Page 265<br />

5 m<br />

Conceptual Design Sol<strong>zinc</strong> Demonstration Plant<br />

Optical system with several secondary concentrators (CPC’s)<br />

Demo-plant:<br />

surface area 285 m 2<br />

height 59 m<br />

Second focal point<br />

Heliostat field<br />

Hyperboloidal mirror<br />

<strong>Solar</strong> Receiver reactor<br />

7 Secondary<br />

concentrators<br />

<strong>SFERA</strong> Winter School Zurich March 24,25 2011/ <strong>Solar</strong> Carbothermic Production <strong>of</strong> Zinc<br />

<strong>SFERA</strong> Winter School Zurich March 24,25 2011/ <strong>Solar</strong> Carbothermic Production <strong>of</strong> Zinc<br />

Heliostat field<br />

ASME J. <strong>Solar</strong> Energy Engineering 130 (2008), 014505<br />

Conceptual Design Sol<strong>zinc</strong> Demonstration Plant<br />

252 cm height<br />

5 MW solar reactor – design proposal<br />

One reactor with 7 quartz windows,<br />

each below a secondary concentrator (“CPC”)<br />

Separation wall<br />

Graphite/SiC plates on SiC-rods<br />

ASME J. <strong>Solar</strong> Energy Engineering 130 (2008), 014505<br />

29<br />

30


<strong>SFERA</strong> Winter School<br />

<strong>Solar</strong> Fuels & Materials Page 266<br />

Industrial plant for <strong>carbothermic</strong> ZnO reduction<br />

Estimates for 30 MW plant<br />

Approximate plant data:<br />

Area heliostats: 60000 m 2<br />

Area land: 0.15 km 2<br />

<strong>Solar</strong> power in reactor 30 MW<br />

Coke (0.8 stoichiometry) 2 t/h (14 MW)<br />

Zinc <strong>production</strong>: 11 t/h (16 MW)<br />

25000 t/a<br />

Energy content <strong>of</strong>fgas: 8 MW<br />

Total investment cost: �18 M€<br />

Building<br />

Tower Reflector<br />

Tower<br />

Secondary<br />

Concentrator<br />

Reactor<br />

If cyclic process to electricity:<br />

Power from Zn: 11 MW el (2300 h/a)<br />

<strong>SFERA</strong> Winter School Zurich March 24,25 2011/ <strong>Solar</strong> Carbothermic Production <strong>of</strong> Zinc<br />

Heliostat Field<br />

Power from <strong>of</strong>fgas: 3.2 MW el and 3.2 MW low-T heat<br />

(gas engine)<br />

Conclusions<br />

� <strong>Solar</strong> <strong>carbothermic</strong> reduction <strong>of</strong> ZnO has been successfully<br />

demonstrated on laboratory and pilot scale, opening interesting options for<br />

- <strong>production</strong> <strong>of</strong> Zn from ZnO with very low CO2-emissions - <strong>production</strong> <strong>of</strong> Zn as energy carrier for the flexible storage <strong>of</strong> solar<br />

energy, suited for on-demand <strong>production</strong> <strong>of</strong><br />

- electricity in Zn-air fuel cells/batteries or<br />

- hydrogen via reaction <strong>of</strong> the Zn with steam<br />

- syngas via reaction <strong>of</strong> the Zn with steam and CO2-mixtures � Zn-dust <strong>production</strong> was demonstrated. Production <strong>of</strong> bulk-Zn or <strong>of</strong> Znpowder<br />

is possible, as well<br />

� Beech charcoal has been used as reductant. Other coals/coke might be<br />

used, as well<br />

� A 5 MW demonstration plant has been conceptually designed<br />

<strong>SFERA</strong> Winter School Zurich March 24,25 2011/ <strong>Solar</strong> Carbothermic Production <strong>of</strong> Zinc<br />

31<br />

32

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!