02.01.2015 Views

Size-dependent Conduction near the Superconductor/Insulator ...

Size-dependent Conduction near the Superconductor/Insulator ...

Size-dependent Conduction near the Superconductor/Insulator ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Size</strong>-<strong>dependent</strong> <strong>Conduction</strong> <strong>near</strong> <strong>the</strong> <strong>Superconductor</strong>/<strong>Insulator</strong><br />

Transition in thin TiN-Films<br />

Christoph Strunk<br />

David Kalok, Ante Bilušić, I. Schneider<br />

University of Regensburg, Germany<br />

Tatyana I. Baturina<br />

University of Regensburg, Germany and<br />

Institute of Semiconductor Physics,<br />

Novosibirsk, Russia<br />

Mikhail R. Baklanov<br />

Alessandra Satta<br />

IMEC, Belgium<br />

Valerii M. Vinokur<br />

Argonne National Laboratory, USA


Outline:<br />

• global conductance vs. conductivity<br />

as a probe of long-range interactions<br />

• collective charging energy in arrays of tunnel junctions<br />

resulting from 2-dim Coulomb interaction<br />

• size dependence of R(T), R(B) and I(V)<br />

• comparison to expectations from<br />

Berezinskii-Kosterlitz-Thouless transition<br />

In this talk, 'insulators' are characterized by<br />

an exponential R(T) dependence.


direct superconductor/insulator transition<br />

with Arrhenius-like conductance on <strong>the</strong> insulating side<br />

Bi<br />

A. Goldman ´89<br />

homogeneous TiN-films of 4-18 nm thickness<br />

show a disorder-induced SIT<br />

100M<br />

I3<br />

R<br />

( Ω )<br />

10M<br />

1M<br />

I4<br />

I3<br />

I2<br />

I1<br />

TiN<br />

1M<br />

I1<br />

I4<br />

100k<br />

10k<br />

R<br />

( Ω )<br />

10k<br />

S1<br />

I2<br />

0 5 10 15 20<br />

1/[T(K)]<br />

100<br />

S2<br />

S3<br />

R<br />

( kΩ )<br />

40<br />

20<br />

0<br />

I4<br />

I3<br />

S1<br />

S3<br />

0 1 2 3<br />

T (K)<br />

0,0 0,5 1,0<br />

T (K)


initially positive magnetoresistance in both: metallic<br />

and insulating state<br />

Qualitatively similar behavoir for<br />

insulating and superconducting films<br />

R<br />

( Ω )<br />

100M<br />

1M<br />

10k<br />

100<br />

1<br />

I1: 60 mK<br />

R<br />

( kΩ )<br />

S1: 60 mK<br />

35<br />

30<br />

I1: 700 mK<br />

25<br />

S1: 650 mK<br />

20<br />

0 4 8 12 16<br />

B (T)<br />

0 4 8 12 16<br />

B (T)<br />

Exponential decay of magnetoresistance<br />

at high fields:<br />

gradual suppression of<br />

superconducting OP<br />

Very similar behavior of insulating and<br />

superconducting films for T > 600 mK<br />

Superconductivity important for<br />

insulating behavior !<br />

quasi-metallic<br />

phase at high B<br />

low B:<br />

‚Cooper-pair‘ - insulator !<br />

T. Baturina, C.S. et al., PRL 99, 257003 (2007)


How to model <strong>the</strong> Cooper-pair insulator:<br />

• <strong>the</strong>rmally activated conductance<br />

expt.: Palaanen & Hebard, Ovadyahu, and many o<strong>the</strong>rs<br />

<strong>the</strong>ory: Fistul, Baturina, Vinokur, PRL 100 (2008)<br />

Feigel’man, Ioffe, Kravtsov, Cuevas,<br />

Ann. Physics 325, 1368 (2010);<br />

Feigelman, Ioffe, Mezard, PRB 82, 184534 (2010)<br />

• strongly non-monotonic magnetoresistance<br />

expt.:Gantmakher et al., Shahar et al., Baturina et al. and o<strong>the</strong>rs<br />

Theory: Dubi, Meir, Avishai, Nature 449 876 (2007)<br />

• non-li<strong>near</strong>ities in IV-characteristics<br />

expt. Baturina et al.; Ovadia et al.,<br />

<strong>the</strong>ory: Vinokur et al., Altshuler et al.<br />

emergent inhomogeneity in superconducting condensate<br />

exploit knowledge about Josephson junction array (JJAs)


Josephson arrays in <strong>the</strong> charging regime<br />

"Unbinding of Charge-Anti-Charge Pairs in<br />

Two-Dimensional arrays of small Tunnel Junctions"<br />

J. Mooij, B.J. van Wees, L.J. Geerlings, M. Peters, R. Fazio and G. Schön,<br />

Phys. Rev. Lett. 65, 645 (1990)<br />

consider JJ-arrays in <strong>the</strong><br />

limit E J < E C<br />

superconducting array<br />

turns insulating at much<br />

higher temperatures !<br />

H. v.d.Zant, R. Fazio<br />

Phys. Repts. 355, 235 (2001)


question: what energy scales are relevant in<br />

(disordered) Josephson junction arrays<br />

• <strong>the</strong>rmally activated conductance at T > E C /k B<br />

• collective Coulomb energy:<br />

T<br />

∆ 0 c =<br />

⎧EN<br />

c<br />

/ 2, 1D<br />

= ⎨<br />

⎩ Ec<br />

log N, 2D<br />

N : number of islands<br />

N<br />

=<br />

⎧<br />

min⎨<br />

⎩<br />

L<br />

d<br />

λ ⎫<br />

, ⎬<br />

d ⎭<br />

λ is <strong>the</strong> electrostatic<br />

screening length<br />

Fistul, Vinokur, Baturina, PRL 100, 086805 (2008)


origin of collective Coulomb energy:<br />

1 excess charge polarizes <strong>the</strong> whole array, if λ > L<br />

1dim<br />

−<br />

d<br />

2dim<br />

−<br />

C:<br />

capacitance<br />

between<br />

islands<br />

C 0 :<br />

capacitance<br />

to ground<br />

polarization cloud cut off by screening length λ = d(C/C 0 ) 1/2


charge/anti-charge pairs bound on adjacent islands<br />

cost much less energy:<br />

d<br />

−<br />

+<br />

C:<br />

capacitance<br />

between<br />

islands<br />

C 0 :<br />

capacitance<br />

to ground<br />

adjacent charges cost charging energy E C<br />

seperating charges costs collective charging energy ∆ C = E C /2 ln (L/d)<br />

logarithmic interaction between charges in array


How to check <strong>the</strong> relevance of JJ-array models<br />

and/or Coulomb charging effects experimentally<br />

Look for size dependence of transport properties:<br />

• size <strong>dependent</strong> activation energy <br />

• size <strong>dependent</strong> magnetoresistance <br />

• I(V) – characteristics


240 µm<br />

dependence of<br />

R on sample size:<br />

0.5 µm<br />

5 µm<br />

prepare squares<br />

between 0.5 and<br />

500 µm side length<br />

500 µm


characterization of <strong>the</strong> TiN films<br />

TiN films were formed by atomic layer chemical<br />

vapor deposition onto a Si/SiO 2 substrate at 350 0 C.<br />

thickness d = 5 nm carrier density n = 2-4 10 22 cm -3<br />

depending on stochiometry<br />

Composition:<br />

Ti N Cl<br />

1 0.94 0.035 ξ d ~ 9 nm superconducting coherence length


controlled oxidation of TiN films in air<br />

R <br />

at room temperature (kΩ)<br />

4<br />

3<br />

2<br />

1<br />

d=5 nm, superconducting at B=0<br />

SIT<br />

320<br />

305<br />

290<br />

250<br />

0 5 10 15 20 25 30<br />

time (min)<br />

T (°C)<br />

annealing<br />

temperature


Is <strong>the</strong>re granularity in TiN<br />

Two possiblities:<br />

structural granularity<br />

Stranski-Krastanov (island) growth<br />

mode: film closure at d = 4nm<br />

preferred oxidation at grains<br />

boundaries<br />

'self-induced' granularity<br />

disorder potential produces<br />

Josephson coupled SC 'droplets'<br />

Kowal & Ovadyahu, Sol.Stat. Comm '94<br />

Trivedi et al. PRL '98<br />

Sacepe et al. PRL 2008, Nat.Phys. 2011<br />

Bouadim, et al. Nat.Phys. 2011


R (T) is indeed size <strong>dependent</strong>:<br />

• sample insulating at B = 0<br />

10G<br />

• each point extracted from<br />

full IV-characteristic<br />

R <br />

[Ω]<br />

100M<br />

1M<br />

L [µm]<br />

500<br />

240<br />

20<br />

5<br />

2<br />

0.5<br />

• larger samples more<br />

insulating<br />

• saturation of R at low T,<br />

except for <strong>the</strong> largest<br />

samples<br />

10k<br />

0 10 20 30 40<br />

1/T [1/K]<br />

• Arrhenius behavior at<br />

higher temperature


magnetoresistance strongly depending on sample size<br />

R (Ω)<br />

1G<br />

100M<br />

10M<br />

1M<br />

T = 82 mK<br />

B sweeps up<br />

240 um<br />

20 um<br />

5 um<br />

2 um<br />

0.5 um<br />

100k<br />

10k<br />

0 5 10 15 20 25 30<br />

B (T)<br />

Measurement at High Magnetic Field Laboratory Nijmegen


size <strong>dependent</strong> IVs display cross-over from<br />

li<strong>near</strong> to nonli<strong>near</strong> behavior at low T<br />

I (A)<br />

100n<br />

10n<br />

1n<br />

100p<br />

10p<br />

1p<br />

100f<br />

10f<br />

T = 28 mK<br />

0.5 µm<br />

5 µm<br />

20 µm<br />

240 µm<br />

1f<br />

10m 100m 1 10<br />

V (mV)


size <strong>dependent</strong> IVs display cross-over from<br />

li<strong>near</strong> to nonli<strong>near</strong> behavior at low T<br />

I /L (A/m)<br />

100m<br />

10m<br />

1m<br />

T = 28 mK<br />

100µ<br />

10µ<br />

0.5 µm<br />

1µ<br />

100n<br />

10n<br />

5 µm<br />

1n<br />

100p<br />

20 µm<br />

10p<br />

1p<br />

240 µm<br />

100f<br />

1 10 100<br />

V /L (V/m)<br />

1k


extract size <strong>dependent</strong> activation energy:<br />

10M<br />

(d)<br />

logarithmic increase<br />

of T 0 with size L<br />

R <br />

[Ω]<br />

1M<br />

1.5<br />

sample I<br />

100k<br />

T 0<br />

[K]<br />

1.0<br />

0 3 6<br />

1/T [1/K]<br />

0.5<br />

1 10 100<br />

L [µm]


extract network parameters governing activation energy:<br />

1.5<br />

sample I<br />

1.0<br />

T 0<br />

[K]<br />

0.5<br />

0.0<br />

0.01 0.1 1 10 100<br />

L [µm]


employ continuum model to extract dielectric constant:<br />

0<br />

-1<br />

-2<br />

electrostatic<br />

penetration depth<br />

-3<br />

-4<br />

-5<br />

-6<br />

0<br />

10µ 100µ 1m 10m 100m<br />

10 -4 10 -3 10 -2 10 -1 10 0<br />

15<br />

10<br />

5<br />

compatible with<br />

measured sizes<br />

L. V. Keldysh, JETP Lett. 29, 658 (1979)<br />

interaction energy between charge/anti-charge pair:<br />

for d


explanation for large values of ε <br />

a) localized Cooper-pairs for droplets in superconducting matrix:<br />

superconducting films (see B. Sacepe, Nat. Phys 2011)<br />

b) insulating droplets form percolating network wirh diverging ε<br />

at <strong>the</strong> percolation threshold<br />

superconductor/insulator transition<br />

c) superconducting droplets in insulating matrix<br />

Cooper-pair insulator<br />

to be verified experimentally!


ehavior not far from Efros-Shklovskii,<br />

R <br />

[Ω]<br />

100G<br />

10G<br />

1G<br />

100M<br />

10M<br />

1M<br />

100k<br />

B = 0 T<br />

L [µm]<br />

500<br />

240<br />

20<br />

5<br />

2<br />

0.5<br />

but deviations at<br />

• high temperature:<br />

~ exp (T 0 /T)<br />

• low temperature:<br />

−<br />

upturn in<br />

large samples<br />

− saturation in<br />

small samples<br />

0 2 4 6<br />

T -1/2 [K -1/2 ]<br />

see also tin/graphene granular films:<br />

A. Allain, Z. Han, and V. Bouchiat,<br />

Nature Materials 11, 590 (2012).


Charge Berezinskii-Kosterlitz-Thouless transition<br />

• Combine free motion of particles in 2d with<br />

logarithmic interaction potential<br />

competition between binding energy and entropy<br />

binding/un-binding transition of pairs of particles<br />

• applicable to superconducting (vortices) and<br />

insulating (charges) side of <strong>the</strong> transition<br />

E C : charging energy of single island


Charge-Berezinskii-Kosterlitz-Thouless transition<br />

• high temperature regime: T >> T BKT<br />

mobile charges with a density ~ exp (-∆ C /2k B T)<br />

<strong>the</strong>rmally activated conductance<br />

• low temperature regime: T ~ T BKT<br />

binding into (neutral) charge/anti-charge pairs<br />

very few residual mobile charges<br />

with density<br />

Fistul, Vinokur, Baturina PRL 100 (2008)<br />

• ξ(T) is a correlation length describing <strong>the</strong> distance<br />

between charged excitations<br />

J. E. Mooij et al., PRL. 65, (1990).


est fit: BKT-like 'square-root cusp formula'<br />

100G<br />

10G<br />

1G<br />

B = 0 T<br />

where<br />

R <br />

[Ω]<br />

100M<br />

10M<br />

1M<br />

100k<br />

L [µm]<br />

500<br />

240<br />

20<br />

5<br />

2<br />

0.5<br />

0 5 10 15<br />

(T-40 mK) - 1/2 [K - 1/2 ]<br />

and A and b are constants of order 1<br />

is <strong>the</strong> BKT-transition temperature<br />

extracted from <strong>the</strong><br />

size-dependence T 0 (L)<br />

Divergence of R(T) is expected to<br />

be cut-off at ξ(T) = L :<br />

Explanation of saturation of R(T) !


ough estimate of ξ 0 from saturation temperatures<br />

<strong>the</strong> condition ξ(T) = L<br />

leads to :<br />

L. Benfatto et al., PRB 80, 214506 (2009)<br />

ξ 0 represents a minimal<br />

distance of charge solitons<br />

(analog to size of vortex core)


BKT physics: I-V characteristics (vortices)<br />

Voltage, log(V)<br />

T > T BKT<br />

α = 1<br />

α > 3<br />

T < T BKT<br />

Current, log(I)<br />

V ∝ Ι α(Τ)<br />

A dual (I V) scenario<br />

is expected to hold in <strong>the</strong><br />

charge regime E C > E J<br />

28


strongly non-li<strong>near</strong> IV-characteristics at <strong>the</strong> lowest T:<br />

I [A]<br />

10n<br />

1n<br />

100p<br />

10p<br />

1p<br />

100f<br />

10f<br />

100 mK<br />

80 mK<br />

70 mK<br />

60 mK<br />

50 mK<br />

45 mK<br />

42 mK<br />

40 mK<br />

37 mK<br />

100 mK<br />

60 mK<br />

B ⊥<br />

= 0.9 T<br />

0.1 1 10<br />

V [mV]<br />

32 mK<br />

B ||<br />

= 1.5 T<br />

intermediate temperature:<br />

(50 mK < T < 300 mK):<br />

jump probably induced by electron<br />

heating<br />

see data in InO x (Weizmann)<br />

Sambandamurthy 150 et al. mK PRL (2005)<br />

Ovadia et al. PRL 100 102 (2009) mK<br />

Altshuler et al., PRL 80102 mK (2009)<br />

70 mK<br />

60 mK<br />

At <strong>the</strong> lowest T: 50 mK<br />

45 mK<br />

I(V) develops power 40 law mK behavior<br />

with exponent α(T) 35 mK<br />

30 mK<br />

random scatter of switching 26 mK voltage<br />

26 mK<br />

nature of insulating state<br />

150 mK<br />

α = 1<br />

0.1 1 10<br />

V [mV]


I [A]<br />

2.8 GΩ<br />

100f<br />

50f<br />

0<br />

Ano<strong>the</strong>r sample – insulating at B = 0<br />

1 TΩ<br />

0 3 6 9<br />

V [mV]<br />

T [mK]<br />

78.7<br />

69.5<br />

60.1<br />

50<br />

40<br />

32<br />

23<br />

70 mK<br />

L = 240 µm<br />

B = 0<br />

32 mK<br />

23 mK<br />

10p<br />

1p<br />

100f<br />

10f<br />

0.1 1 10 1f<br />

V [mV] α = 3<br />

I [A]<br />

α = 4


Charge-Berezhinski-Kosterlitz-<br />

Thouless-like transition<br />

smeared by disorder<br />

L. Benfatto et al., PRB 80 (2009)<br />

IV characteristics become<br />

non-li<strong>near</strong> below 60 mK<br />

power law<br />

α<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

with strongly T- <strong>dependent</strong><br />

exponent α(T)<br />

BKT transition usually<br />

assigned to α = 3<br />

1<br />

20<br />

T BKT<br />

100<br />

T [mK]<br />

very good agreement with<br />

in<strong>dependent</strong> estimate of<br />

T BKT from activation energies


Conclusions<br />

- dramatic size dependence of all transport properties<br />

<strong>near</strong> <strong>the</strong> SIT<br />

- this size dependence can be explained in terms of a<br />

charge-BKT-transition, i.e., a large electrostatic<br />

penetration depth and a diverging correlation length<br />

- non-li<strong>near</strong> I(V)-characteristics coincide very well with analysis of size<br />

dependence<br />

<strong>the</strong> conductance vanishing at finite T BKT supports <strong>the</strong> notion of a<br />

'superinsulator' Vinokur et al., Nature 452 (2008)<br />

Open Questions<br />

- direct measurement of dielectric constant<br />

- hyperactivated behavior<br />

- role of quantum phase slips, or analogous processes<br />

-role of electron heating effects

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!