29.01.2015 Views

Vortex drag in a Thin-film Giaever transformer

Vortex drag in a Thin-film Giaever transformer

Vortex drag in a Thin-film Giaever transformer

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Vortex</strong> <strong>drag</strong> <strong>in</strong> a <br />

Th<strong>in</strong>-<strong>film</strong> <strong>Giaever</strong> <strong>transformer</strong><br />

Yue (Rick) Zou (Caltech) <br />

Gil Refael (Caltech) <br />

Jongsoo Yoon (UVA) <br />

Past collaboration: <br />

Victor Galitski (UMD) <br />

Matthew Fisher (station Q) <br />

T. Senthil (MIT)


Outl<strong>in</strong>e<br />

• Experimental background – SC-metal-<strong>in</strong>sulator <strong>in</strong> InO, TiN, Ta and MoGe.<br />

• Two paradigms:<br />

- <strong>Vortex</strong> condensation: <strong>Vortex</strong> metal theory.<br />

- Percolation paradigm<br />

• Th<strong>in</strong> <strong>film</strong> <strong>Giaever</strong> <strong>transformer</strong> – amorphous th<strong>in</strong>-<strong>film</strong> bilayer.<br />

• Predictions for the no-tunnel<strong>in</strong>g regime of a th<strong>in</strong>-<strong>film</strong> bilayer<br />

• Conclusions


Quantum vortex physics<br />

SC-<strong>in</strong>sulator transition<br />

• Th<strong>in</strong> <strong>film</strong>s: B tunes a SC-Insulator transition.<br />

I<br />

InO<br />

Ins<br />

B<br />

B<br />

V<br />

SC<br />

(Hebard, Paalanen, PRL 1990)


Observation of Superconductor-<strong>in</strong>sulator transition<br />

• Th<strong>in</strong> amorphous <strong>film</strong>s: B tunes a SC-Insulator transition.<br />

InO:<br />

• Saturation as T 0<br />

(Sambandamurthy,<br />

(Ste<strong>in</strong>er,<br />

Engel,<br />

Kapitulnik)<br />

Johansson, Shahar, PRL 2004)<br />

• Insulat<strong>in</strong>g peak different from sample to sample, scal<strong>in</strong>g different – log, activated.


<strong>Vortex</strong> Paradigm


X-Y model for superconduct<strong>in</strong>g <strong>film</strong>:<br />

Cooper pairs as Bosons<br />

• When the superconduct<strong>in</strong>g order is strong – ignore electronic excitations.<br />

• Standard model for bosonic SF-Ins transition – Bose-Hubbard model:<br />

H<br />

=<br />

'<br />

!&<br />

)!<br />

i<br />

%<br />

j<br />

+ cos( ( * )<br />

s<br />

j<br />

i<br />

+ Unˆ<br />

2<br />

i<br />

$<br />

#<br />

"<br />

[ nˆ,<br />

φ]<br />

= −i<br />

ρ S<br />

exp[ i(<br />

φ i<br />

−φ<br />

i+ 1)]<br />

Hopp<strong>in</strong>g:<br />

Charg<strong>in</strong>g<br />

energy:<br />

2<br />

Unˆ j<br />

• Large U - Mott <strong>in</strong>sulator<br />

(no charge fluctuations)<br />

• Large<br />

ρ s<br />

- Superfluid<br />

(<strong>in</strong>tense charge fluctuations,<br />

no phase fluctuations)<br />

<strong>in</strong>sulator<br />

superfluid<br />

ρ s<br />

/U


<strong>Vortex</strong> description of the SF-<strong>in</strong>sulator transition<br />

• <strong>Vortex</strong> hopp<strong>in</strong>g: (result of charg<strong>in</strong>g effects)<br />

−<br />

tV<br />

cos( ∇ ˆ θ )<br />

• <strong>Vortex</strong>-vortex <strong>in</strong>teractions:<br />

1 <br />

ρ ∑ s<br />

nV i<br />

⋅ nV j<br />

⋅ln | xi<br />

− x<br />

<br />

2<br />

i,<br />

j<br />

[ nˆ<br />

V<br />

, θ]<br />

= −i<br />

Condensed vortices<br />

= <strong>in</strong>sulat<strong>in</strong>g CPs<br />

j<br />

i<br />

j<br />

|<br />

φˆ<br />

θˆ<br />

Cooper-pairs:<br />

Vortices:<br />

<strong>in</strong>sulator<br />

<strong>Vortex</strong>:<br />

(Fisher, 1990)<br />

superfluid<br />

ρ s<br />

/U<br />

V-superfluid<br />

V- <strong>in</strong>sulator<br />

ρs / t V


Universal () resistance at SF-<strong>in</strong>sulator transition<br />

Assume that vortices and Cooper-pairs<br />

are self dual at transition po<strong>in</strong>t.<br />

• Current due to CP hopp<strong>in</strong>g:<br />

• EMF due to vortex hopp<strong>in</strong>g:<br />

<br />

Δφ <br />

2π<br />

= ΔV<br />

ΔV<br />

=<br />

2e<br />

2e τ<br />

2e<br />

I =<br />

τ<br />

2e<br />

I<br />

• Resistance:<br />

V 2π<br />

2e<br />

h<br />

R = = = = 6. 5kΩ<br />

2<br />

I 2eτ<br />

τ 4e<br />

In reality superconduct<strong>in</strong>g <strong>film</strong>s are not self dual:<br />

• vortices <strong>in</strong>teract logarithmically, Cooper-pairs <strong>in</strong>teract at most with power law.<br />

• Samples are very disordered and the disorder is different for cooper-pairs<br />

and vortices.


Magnetically tuned Superconductor-<strong>in</strong>sulator transition<br />

• Net vortex density:<br />

h<br />

2e<br />

n<br />

ˆV<br />

=<br />

B<br />

• Disorder p<strong>in</strong>s vortices for small field – superconduct<strong>in</strong>g phase.<br />

• Large fields some free vortices appear and condense – <strong>in</strong>sulat<strong>in</strong>g phase.<br />

• Larger fields superconductivity is destroyed – normal (unpaired) phase.<br />

R<br />

Disorder<br />

p<strong>in</strong>s vortices:<br />

Free vortices:<br />

Phase coherent<br />

SC<br />

<strong>Vortex</strong> SF<br />

<strong>in</strong>sulator<br />

Disorder localized<br />

Electrons:<br />

Normal (unpaired)<br />

B


Magnetically tuned Superconductor-<strong>in</strong>sulator transition<br />

• Net vortex density:<br />

h<br />

2e<br />

n<br />

ˆV<br />

=<br />

B<br />

Problems<br />

• Saturation of the resistance – metallic phase<br />

• Non-universal <strong>in</strong>sulat<strong>in</strong>g peak – completely different depend<strong>in</strong>g on disorder.<br />

R<br />

Metallic<br />

phase<br />

Disorder localized<br />

Electrons:<br />

Normal (unpaired)<br />

B


Two-fluid model for the SC-Metal-Insulator transition<br />

(Galitski, Refael, Fisher, Senthil, 2005)<br />

J CP<br />

+ J e<br />

Uncondensed vortices:<br />

Cooper-pair channel<br />

F<strong>in</strong>ite conductivity:<br />

<br />

j V<br />

= σV<br />

FV<br />

<br />

FV<br />

= zˆ×<br />

J<br />

<br />

z ˆ×<br />

E =<br />

j V<br />

CP<br />

1<br />

!<br />

V<br />

!<br />

E =<br />

!<br />

J<br />

CP<br />

Two channels <strong>in</strong> parallel:<br />

Disorder <strong>in</strong>duced Gapless QPs<br />

(electron channel)<br />

!<br />

J<br />

(delocalized core states)<br />

!<br />

J E<br />

!<br />

=!<br />

e<br />

e<br />

= ("<br />

+ "<br />

e<br />

!1<br />

V<br />

!<br />

) E


Transport properties of the vortex-metal<br />

Effective conductivity:<br />

σ<br />

eff<br />

−1<br />

= σ<br />

e<br />

+ σV<br />

• Assume:<br />

- grows from zero to . - grows from zero to <strong>in</strong>f<strong>in</strong>ity.<br />

σ<br />

e<br />

σ<br />

N<br />

σ V<br />

σ e<br />

σ V<br />

σ N<br />

B e<br />

B<br />

R eff<br />

<strong>Vortex</strong><br />

metal<br />

B V<br />

B<br />

Weak <strong>in</strong>sulators:<br />

−1<br />

σ e<br />

Ta, MoGe<br />

Weak InO<br />

B<br />

e<br />

< B V<br />

σ V<br />

B e<br />

B V<br />

Normal<br />

(unpaired)<br />

B


Transport properties of the vortex-metal<br />

Effective conductivity:<br />

σ<br />

eff<br />

−1<br />

= σ<br />

e<br />

+ σV<br />

Chargless sp<strong>in</strong>ons contribute to conductivity!<br />

• Assume:<br />

- grows from zero to . - grows from zero to <strong>in</strong>f<strong>in</strong>ity.<br />

σ<br />

e<br />

σ<br />

N<br />

σ V<br />

σ e<br />

σ V<br />

σ N<br />

B e<br />

B<br />

R eff<br />

<strong>Vortex</strong><br />

metal<br />

B V<br />

B<br />

Strong <strong>in</strong>sulators:<br />

TiN, InO<br />

B<br />

e<br />

> B V<br />

σ V<br />

B V<br />

Insulator<br />

B e<br />

−1<br />

σ e<br />

Normal<br />

(unpaired)<br />

B


More physical properties of the vortex metal<br />

Cooper pair tunnel<strong>in</strong>g<br />

• A superconduct<strong>in</strong>g STM can tunnel Cooper<br />

pairs to the <strong>film</strong>:<br />

G = G 2e<br />

+ G CP<br />

(Naaman, Tyzer, Dynes, 2001).


More physical properties of the vortex metal<br />

Cooper pair tunnel<strong>in</strong>g<br />

G<br />

CP<br />

• A superconduct<strong>in</strong>g STM can tunnel Cooper<br />

pairs to the <strong>film</strong>:<br />

<strong>Vortex</strong> metal phase:<br />

1<br />

2<br />

~ exp( −σ<br />

ln T )<br />

2 V<br />

T<br />

CP<br />

G = G 2e<br />

+ G CP<br />

Normal phase:<br />

G<br />

2<br />

2 e<br />

~ σ e<br />

CP<br />

<strong>Vortex</strong><br />

metal<br />

R eff<br />

e<br />

e<br />

G ≈ G CP<br />

strongly T<br />

dependent<br />

σ V<br />

B V<br />

Insulator<br />

B e<br />

−1<br />

σ e<br />

Normal<br />

(unpaired)<br />

B<br />

G ≈ G<br />

~ 1/ ln<br />

2e<br />

2<br />

T


Percolation Paradigm<br />

(Trivedi,<br />

Dubi, Meir, Avishai,<br />

Spivak, Kivelson,<br />

et al.)


Pardigm II: superconduct<strong>in</strong>g vs. Normal regions percolation<br />

• Strong disorder breaks the <strong>film</strong> <strong>in</strong>to superconduct<strong>in</strong>g and normal regions.<br />

SC<br />

NOR<br />

NOR<br />

R<br />

B


Pardigm II: superconduct<strong>in</strong>g vs. Normal regions percolation<br />

• Strong disorder breaks the <strong>film</strong> <strong>in</strong>to superconduct<strong>in</strong>g and normal regions.<br />

NOR<br />

SC<br />

SC<br />

SC<br />

SC<br />

SC<br />

R<br />

• Near percolation – th<strong>in</strong> channels of the disorder-localized normal phase.<br />

B


Pardigm II: superconduct<strong>in</strong>g vs. Normal regions percolation<br />

• Strong disorder breaks the <strong>film</strong> <strong>in</strong>to superconduct<strong>in</strong>g and normal regions.<br />

NOR<br />

R<br />

• Near percolation – th<strong>in</strong> channels of the disorder-localized normal phase.<br />

• Far from percolation – disordered localized normal electrons.<br />

B


Magneto-resistance curves <strong>in</strong> the percolation picture<br />

• Simulate <strong>film</strong> as a resistor network:<br />

(Dubi, Meir, Avishai, 2006)<br />

NOR island<br />

Nor-SC l<strong>in</strong>ks:<br />

SC island<br />

R<br />

T<br />

R e E G /<br />

~ Normal l<strong>in</strong>ks:<br />

SC-SC l<strong>in</strong>ks:<br />

0<br />

R<br />

~<br />

R e<br />

0<br />

(| ε | + | ε | + | ε −ε<br />

|)/ kT<br />

1<br />

2<br />

1<br />

2<br />

α<br />

R ~ T<br />

Reuslt<strong>in</strong>g MR:


Drag <strong>in</strong> a bilayer system


<strong>Giaever</strong> <strong>transformer</strong> – <strong>Vortex</strong> <strong>drag</strong><br />

Two type-II bulk superconductors:<br />

(<strong>Giaever</strong>, 1965)<br />

V 2<br />

i D<br />

I 1<br />

B<br />

B<br />

V 1<br />

Vortices tightly bound:<br />

V<br />

2<br />

= V 1<br />

R D<br />

=<br />

V<br />

I<br />

2<br />

1


Two th<strong>in</strong> electron gases:<br />

2DEG bilayers – Coulomb <strong>drag</strong><br />

V2<br />

R D<br />

=<br />

I<br />

V 2<br />

1<br />

i D<br />

I 1<br />

V 1<br />

• Coulomb force creates friction between the layers.<br />

• Inversely proportional to density squared:<br />

• Opposite sign to <strong>Giaever</strong>s vortex <strong>drag</strong>.<br />

R ∝<br />

D<br />

n<br />

1<br />

2<br />

e


Two th<strong>in</strong> electron gases:<br />

2DEG bilayers – Coulomb <strong>drag</strong><br />

V2<br />

R D<br />

=<br />

I<br />

V 2<br />

1<br />

i D<br />

I 1<br />

Example: ν = 1<br />

T<br />

V 1<br />

Excitonic condensate<br />

(Kellogg, Eisenste<strong>in</strong>, Pfeiffer, West, 2002)


Th<strong>in</strong> <strong>film</strong> <strong>Giaever</strong> <strong>transformer</strong><br />

V D<br />

d Ins<br />

~ 5nm<br />

Amorphous (SC) th<strong>in</strong> <strong>film</strong>s<br />

Percolation paradigm<br />

d SC<br />

~ 20nm<br />

I 1<br />

Insulat<strong>in</strong>g layer,<br />

Josephson tunnel<strong>in</strong>g:<br />

J = 0 or J > 0<br />

<strong>Vortex</strong> condensation paradigm<br />

• Drag is due to coulomb <strong>in</strong>teraction.<br />

• Electron density:<br />

n2d<br />

~ dSC<br />

⋅10<br />

( QH bilayers:<br />

cm<br />

→ 2⋅10<br />

20 −3<br />

14 −2<br />

10 −2<br />

n d<br />

~ 5⋅<br />

cm )<br />

2<br />

10<br />

Drag suppressed<br />

cm<br />

<br />

• Drag is due to <strong>in</strong>ductive current<br />

<strong>in</strong>teractions, and Josephson coupl<strong>in</strong>g.<br />

• <strong>Vortex</strong> density:<br />

n<br />

V<br />

~<br />

B<br />

φ<br />

0<br />

~ (10<br />

11<br />

⋅ B<br />

[ T ]<br />

Significant Drag<br />

) cm<br />

−2


<strong>Vortex</strong> <strong>drag</strong> <strong>in</strong> th<strong>in</strong> <strong>film</strong>s bilayers: <strong>in</strong>terlayer <strong>in</strong>teraction<br />

• <strong>Vortex</strong> current suppressed.<br />

e.g., Pearl penetration length:<br />

λ =<br />

eff<br />

2λ<br />

d<br />

2<br />

L<br />

SC<br />

r<br />

• <strong>Vortex</strong> attraction=<strong>in</strong>terlayer <strong>in</strong>duction.<br />

Also suppressed due to th<strong>in</strong>ness.<br />

U<br />

<strong>in</strong>ter<br />

2<br />

−qa<br />

( φ0<br />

e<br />

q)<br />

≈<br />

2<br />

−1<br />

2 −2qa<br />

2πλ<br />

q[(<br />

q + λ ) − e / λ<br />

2<br />

eff<br />

2<br />

∝ d SC<br />

eff<br />

eff<br />

]<br />

~<br />

2<br />

φ0<br />

4πλ<br />

~<br />

eff<br />

φ<br />

4λ<br />

2<br />

0<br />

2<br />

eff<br />

ln( r),<br />

r<br />

a<br />

2<br />

,<br />

r<br />

r<br />

> λ<br />

< a<br />

eff


<strong>Vortex</strong> <strong>drag</strong> <strong>in</strong> th<strong>in</strong> <strong>film</strong>s with<strong>in</strong> vortex metal theory<br />

• R D<br />

=<br />

V<br />

I<br />

2<br />

1<br />

I 1<br />

V 2<br />

• Perturbatively:<br />

R<br />

D =<br />

G<br />

<strong>drag</strong><br />

V<br />

~ [ j , j 1 2]<br />

A 1<br />

U e<br />

j1<br />

U e<br />

2<br />

j<br />

A 2<br />

(Kamenev, Oreg)<br />

• Expect:<br />

G<br />

<strong>drag</strong><br />

V<br />

∂ σσ<br />

∝<br />

σ∂σ<br />

⋅<br />

∝<br />

V1V<br />

1 ⋅<br />

V 2 V 2<br />

n∂<br />

Vn<br />

1V<br />

1 nV∂<br />

2n<br />

V 2<br />

∂R1<br />

∂B<br />

∂R<br />

⋅<br />

∂B<br />

∝<br />

2<br />

Drag generically<br />

proportional to MR slope.<br />

(Follow<strong>in</strong>g von Oppen, Simon, Stern, PRL 2001)<br />

• Answer:<br />

R<br />

D<br />

=<br />

G<br />

<strong>drag</strong><br />

V<br />

=<br />

2<br />

2<br />

e $<br />

0<br />

4<br />

8#<br />

T<br />

& R1<br />

& B<br />

& R<br />

& B<br />

2<br />

%<br />

d!<br />

%<br />

dq q<br />

3<br />

| U<br />

|<br />

2<br />

Im"<br />

1<br />

Im"<br />

2<br />

2<br />

s<strong>in</strong>h (!<br />

/ 2T<br />

)<br />

U – screened <strong>in</strong>ter-layer potential. χ - Density response function (diffusive FL)


<strong>Vortex</strong> <strong>drag</strong> <strong>in</strong> th<strong>in</strong> <strong>film</strong>s: Results<br />

R<br />

D<br />

=<br />

G<br />

<strong>drag</strong><br />

V<br />

=<br />

2<br />

2<br />

e $<br />

0<br />

4<br />

8#<br />

T<br />

& R1<br />

& B<br />

& R<br />

& B<br />

2<br />

%<br />

d!<br />

%<br />

dq q<br />

3<br />

| U<br />

|<br />

2<br />

Im"<br />

1<br />

Im"<br />

2<br />

2<br />

s<strong>in</strong>h (!<br />

/ 2T<br />

)<br />

• Our best chance (with no J tunnel<strong>in</strong>g) is the highly <strong>in</strong>sulat<strong>in</strong>g InO:<br />

• maximum <strong>drag</strong>:<br />

max<br />

R D<br />

~ 0. 1m!<br />

Note: similar analysis for SC-metal bilayer us<strong>in</strong>g a ground plane.<br />

Experiment: Mason, Kapitulnik (2001) Theory: Michaeli, F<strong>in</strong>kelste<strong>in</strong>, (2006)


Percolation picture: Coulomb <strong>drag</strong><br />

• Solve a 2-layer resistor network with <strong>drag</strong>.<br />

- Normal<br />

- SC<br />

• Can neglect <strong>drag</strong> with the SC islands:<br />

D<br />

D<br />

R SC<br />

, R ≈ 0<br />

−SC<br />

SC−NOR<br />

• Normal-Normal <strong>drag</strong> – use results for disorder localized electron glass:<br />

R<br />

D<br />

NOR −NOR<br />

=<br />

1<br />

2<br />

96π<br />

R1R<br />

/ e<br />

2<br />

2<br />

( e<br />

2<br />

n<br />

e<br />

2<br />

T<br />

a d<br />

<strong>film</strong><br />

)<br />

2<br />

1<br />

ln<br />

2x<br />

0<br />

(Shimshoni, PRB 1994)


Percolation picture: Results<br />

• Solution of the random resistor network:<br />

Compare to vortex <strong>drag</strong>:


Conclusions<br />

• <strong>Vortex</strong> picture and the puddle picture: similar s<strong>in</strong>gle layer predictions.<br />

• <strong>Giaever</strong> <strong>transformer</strong> bilayer geometry may qualitatively dist<strong>in</strong>guish:<br />

Large <strong>drag</strong> for vortices, small <strong>drag</strong> for electrons, with opposite signs.<br />

• Drag <strong>in</strong> the limit of zero <strong>in</strong>terlayer tunnel<strong>in</strong>g:<br />

R vortex<br />

D<br />

1<br />

percolation<br />

R D<br />

−11<br />

~ 0. mΩ vs. ~ 10 Ω<br />

• Intelayer Josephson should <strong>in</strong>crease both values, and enhance the effect.<br />

(future theoretical work)<br />

• Amorphous th<strong>in</strong>-<strong>film</strong> bilayers will yield <strong>in</strong>terest<strong>in</strong>g complementary<br />

<strong>in</strong>formation about the SIT.


Conclusions<br />

• What <strong>in</strong>duces the gigantic resistance and the SC-<strong>in</strong>sulat<strong>in</strong>g transition<br />

• What is the nature of the <strong>in</strong>sulat<strong>in</strong>g state Exotic vortex physics<br />

Phenomenology:<br />

• <strong>Vortex</strong> picture and the puddle picture: similar s<strong>in</strong>gle layer predictions.<br />

Experimental suggestion:<br />

• <strong>Giaever</strong> <strong>transformer</strong> bilayer geometry may qualitatively dist<strong>in</strong>guish:<br />

Large <strong>drag</strong> for vortices, small <strong>drag</strong> for electrons.


Observation of a metallic phase<br />

• MoGe:<br />

(Mason, Kapitulnik, PRB 1999)


Observation of a metallic phase<br />

• Ta:<br />

(Q<strong>in</strong>, Vicente, Yoon, 2006)<br />

• Saturation at ~100mK: New metalic phase (or saturation of electrons temperature)


Universal () resistance at SF-<strong>in</strong>sulator transition<br />

Assume that vortices and Cooper-pairs<br />

are self dual at transition po<strong>in</strong>t.<br />

• Current due to CP hopp<strong>in</strong>g:<br />

• EMF due to vortex hopp<strong>in</strong>g:<br />

<br />

Δφ <br />

2π<br />

= ΔV<br />

ΔV<br />

=<br />

2e<br />

2e τ<br />

2e<br />

I =<br />

τ<br />

2e<br />

I<br />

• Resistance:<br />

V 2π<br />

2e<br />

h<br />

R = = = = 6. 5kΩ<br />

2<br />

I 2eτ<br />

τ 4e<br />

In reality superconduct<strong>in</strong>g <strong>film</strong>s are not self dual:<br />

• vortices <strong>in</strong>teract logarithmically, Cooper-pairs <strong>in</strong>teract at most with power law.<br />

• Samples are very disordered and the disorder is different for cooper-pairs<br />

and vortices.


More physical properties of the vortex metal<br />

Cooper pair tunnel<strong>in</strong>g<br />

• A superconduct<strong>in</strong>g STM can tunnel Cooper<br />

pairs to the <strong>film</strong>:<br />

G = G 2e<br />

+ G CP<br />

(Naaman, Tyzer, Dynes, 2001).


More physical properties of the vortex metal<br />

Cooper pair tunnel<strong>in</strong>g<br />

G<br />

CP<br />

• A superconduct<strong>in</strong>g STM can tunnel Cooper<br />

pairs to the <strong>film</strong>:<br />

<strong>Vortex</strong> metal phase:<br />

1<br />

2<br />

~ exp( −σ<br />

ln T )<br />

2 V<br />

T<br />

CP<br />

G = G 2e<br />

+ G CP<br />

Normal phase:<br />

G<br />

2<br />

2 e<br />

~ σ e<br />

CP<br />

<strong>Vortex</strong><br />

metal<br />

R eff<br />

e<br />

e<br />

G ≈ G CP<br />

strongly T<br />

dependent<br />

σ V<br />

B V<br />

Insulator<br />

B e<br />

−1<br />

σ e<br />

Normal<br />

(unpaired)<br />

B<br />

G ≈ G<br />

~ 1/ ln<br />

2e<br />

2<br />

T


Two th<strong>in</strong> electron gases:<br />

2DEG bilayers – Coulomb <strong>drag</strong><br />

V2<br />

R D<br />

=<br />

I<br />

V 2<br />

1<br />

i D<br />

I 1<br />

Example: ν = 1<br />

T<br />

V 1<br />

Excitonic condensate<br />

(Kellogg, Eisenste<strong>in</strong>, Pfeiffer, West, 2002)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!