03.01.2015 Views

Position Control of DC Servo Motor Using PD Controller - vsrd ...

Position Control of DC Servo Motor Using PD Controller - vsrd ...

Position Control of DC Servo Motor Using PD Controller - vsrd ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Available ONLINE www.<strong>vsrd</strong>journals.com<br />

VSRD-IJEECE, Vol. 2 (7), 2012, 538-544<br />

R E S E A R C H C O M M U N II C A T II O N<br />

<strong>Position</strong> <strong>Control</strong> <strong>of</strong> <strong>DC</strong> <strong>Servo</strong> <strong>Motor</strong><br />

<strong>Using</strong> <strong>PD</strong> <strong>Control</strong>ler<br />

1 Puneet Pahuja*, 2 Sandeep Singh, 3 Sushil Kr. Singh and 4 H.M. Rai<br />

ABSTRACT<br />

The technological explosion in the computational technology has resulted in tremendous advances in the control<br />

<strong>of</strong> <strong>DC</strong> servo motors. <strong>DC</strong> servo motors find large applications in complex control system <strong>of</strong> today. In this paper<br />

a procedure for stabilizing the transfer function <strong>of</strong> dc servo motor with communication delay using <strong>PD</strong><br />

controller is proposed. The performance is obtained in SIMULINK/MATLAB environment. The stability<br />

boundary in terms <strong>of</strong> proportional gain and derivative gain is computed and then these two variables are plotted<br />

on the same coordinates, thus obtaining the stability region for different controllers that may be used to stabilize<br />

the output position <strong>of</strong> <strong>DC</strong> <strong>Servo</strong> <strong>Motor</strong>.<br />

Keywords : <strong>Position</strong> <strong>Control</strong>, <strong>PD</strong> <strong>Control</strong>ler, SISO System.<br />

1. INTRODUCTION<br />

A <strong>DC</strong> servo motor which is usually a <strong>DC</strong> motor <strong>of</strong> low power rating is used as an actuator to drive a load. <strong>DC</strong><br />

servo motors have a high ratio <strong>of</strong> starting torque to inertia and therefore they have a faster dynamic response.<br />

The speed torque characteristic <strong>of</strong> this motor is flat over a wide range, as the armature reaction is negligible.<br />

Wound field <strong>DC</strong> motors can be controlled by either controlling the armature voltage or controlling the field<br />

current. The Figure 1 shows a field controlled <strong>DC</strong> servo motor.<br />

Fig. 1: Field <strong>Control</strong>led <strong>DC</strong> <strong>Servo</strong> <strong>Motor</strong><br />

____________________________<br />

1,2 Research Scholar, Department <strong>of</strong> Electrical Engineering, Singhania University, Jhunjhunu, Rajasthan, INDIA.<br />

3 Assistant Pr<strong>of</strong>essor, Department <strong>of</strong> Electrical Engineering, Hindu College <strong>of</strong> Engineering, Sonepat, Haryana, INDIA.<br />

4 Pr<strong>of</strong>essor, Department <strong>of</strong> Electrical Engineering, GITM, Kanipla, INDIA.<br />

*Correspondence : puneet_pahuja2004@yahoo.co.in


Puneet Pahuja et al / VSRD International Journal <strong>of</strong> Electrical, Electronics & Comm. Engg. Vol. 2 (7), 2012<br />

Where<br />

e<br />

f<br />

-applied field voltage(input),<br />

i<br />

f<br />

-field current,<br />

R -field resistance, L -field inductance,<br />

f<br />

f<br />

Ia<br />

-<br />

armature current which is held constant, - position <strong>of</strong> shaft (taken as output).<br />

To design feedback control for systems with time delay, it is necessary to consider the fact that the system’s<br />

future behaviors depend not only on the current value <strong>of</strong> the state variables, but also some past history <strong>of</strong> the<br />

state variables. The method proposed in this paper involves decomposing the plant frequency response into real<br />

and imaginary parts and computing the stabilizing parameters for each controller based on such decomposition.<br />

2. FINDING THE STABILITY BOUNDS FOR <strong>PD</strong> CONTROLLERS<br />

Consider the SISO system shown in Figure 2. The plant (<strong>DC</strong> <strong>Servo</strong> <strong>Motor</strong>) whose position is to be controlled is<br />

given by :<br />

G ( s) G( s)<br />

e <br />

p<br />

s<br />

… (1)<br />

Where is the communication (time) delay.<br />

+<br />

-<br />

<strong>Control</strong>ler<br />

G ( ) c<br />

s<br />

Plant (<strong>DC</strong><br />

servo motor)<br />

GP( s )<br />

The controller used is <strong>of</strong> <strong>PD</strong> type, so :<br />

Fig. 2: A SISO System with Unity Feedback<br />

G ( s)<br />

K K s<br />

c P d<br />

… (2)<br />

The problem is to find the values <strong>of</strong><br />

K<br />

P<br />

and<br />

Kd<br />

for which the closed-loop characteristic equation <strong>of</strong> the system<br />

( s) 1 G ( s) G ( s)<br />

is Hurwitz Stable. The characteristic equation in terms <strong>of</strong> j is :<br />

c<br />

P<br />

( j) 1 ( K jK )( R ( ) jI ( ))<br />

P d P P<br />

… (3)<br />

Expanding ( j)<br />

and setting it to zero produces :<br />

R ( ) I ( ) 0<br />

<br />

<br />

… (4)<br />

Where R ( ) 1 K<br />

PRP ( ) KdIP<br />

( )<br />

… (5)<br />

Page 539 <strong>of</strong> 544


Puneet Pahuja et al / VSRD International Journal <strong>of</strong> Electrical, Electronics & Comm. Engg. Vol. 2 (7), 2012<br />

And I( ) K<br />

PRP ( ) KdRP<br />

( )<br />

… (6)<br />

Setting the real and imaginary parts equal to zero gives :<br />

K ( R ( )) K ( I ( )) 1<br />

P P d P<br />

… (7)<br />

And K ( I ( )) K ( R<br />

( )) 0<br />

… (8)<br />

P P d P<br />

Hence, we need to solve the following system :<br />

RP<br />

( ) I<br />

P<br />

( ) KP<br />

1<br />

<br />

IP<br />

( ) RP<br />

( ) <br />

K<br />

<br />

d<br />

0<br />

<br />

<br />

… (9)<br />

Solving (9) for ω≠0, we obtain :<br />

K<br />

P<br />

( )<br />

<br />

R ( )<br />

P<br />

P<br />

G ( j)<br />

2<br />

… (10)<br />

IP<br />

( )<br />

Kd<br />

( )<br />

<br />

G ( j)<br />

P<br />

2<br />

… (11)<br />

Where<br />

P<br />

2 2 2<br />

P<br />

P<br />

G ( j) =(I ( )) +(R ( ))<br />

Solving (9) for ω=0, we find that K is arbitrary while :<br />

d<br />

K<br />

P<br />

1<br />

( )<br />

<br />

R (0)<br />

P<br />

… (12)<br />

And I<br />

P(0) 0<br />

… (13)<br />

The lower bound in (11) will be zero except for type –zero plants.<br />

Again, we need to find the upper bound<br />

c<br />

that is, the point where :<br />

K<br />

( ) K (0)<br />

P c P<br />

… (14)<br />

For a <strong>PD</strong> controller function when<br />

K (0) 0 , the amount <strong>of</strong> phase that this particular controller will add at<br />

P<br />

the critical frequency to the loop transfer function is anywhere from zero to 2<br />

radians which leaves a range <strong>of</strong><br />

Page 540 <strong>of</strong> 544


Puneet Pahuja et al / VSRD International Journal <strong>of</strong> Electrical, Electronics & Comm. Engg. Vol. 2 (7), 2012<br />

3<br />

,<br />

<br />

<br />

<br />

2 <br />

for the phase <strong>of</strong> the plant transfer function. Similarly, for a <strong>PD</strong> controller function when<br />

(0) 0<br />

<br />

K<br />

P<br />

, the amount <strong>of</strong> phase that this controller will add anywhere from to radians at the critical<br />

2<br />

frequency, which means that the phase <strong>of</strong> the plant transfer function at can be anywhere in the set<br />

3 <br />

, 2 <br />

2 <br />

.<br />

In the case where the plant transfer function is a type-one system or higher, K<br />

P(0) 0 will hold, resulting in<br />

the controller phase angle <strong>of</strong> 2<br />

radians at<br />

<br />

c<br />

and the plant transfer function phase <strong>of</strong><br />

c<br />

3<br />

2<br />

radians at the<br />

critical frequency. To design <strong>PD</strong> controllers that will satisfy specific gain and phase margins, a test function<br />

Ggp<br />

<br />

j<br />

Ae <br />

is inserted in the feed forward path as shown Figure 3. [1]<br />

…(15)<br />

Fig. 3 : A Basic <strong>Control</strong> System With A Test Function<br />

Then, G ( j) G( j) e Ae G( j)<br />

e<br />

P<br />

j j j <br />

… (16)<br />

Where G ( j) AG( j)<br />

… (17)<br />

And <br />

… (18)<br />

3. CASE STUDY<br />

The transfer function <strong>of</strong> the plant i.e. a typical <strong>DC</strong> servo motor taking shaft position as output and field voltage<br />

as input is[2];<br />

m( s) 1<br />

<br />

v<br />

f<br />

( s) s s<br />

1<br />

G(s) =<br />

… (19)<br />

For the communication delay <strong>of</strong> 1 :<br />

Page 541 <strong>of</strong> 544


Puneet Pahuja et al / VSRD International Journal <strong>of</strong> Electrical, Electronics & Comm. Engg. Vol. 2 (7), 2012<br />

s 1 1s<br />

Gp<br />

( s) G( s)<br />

e <br />

<br />

e<br />

s( s 1)<br />

… (20)<br />

We proceed with using equation (2) as the controller function. To obtain the values for<br />

K<br />

P<br />

and<br />

K<br />

d<br />

, we<br />

decompose equation (16) into real and imaginary parts and substitute them into equation (10) and (11) where<br />

<br />

<br />

0, c<br />

<br />

.<br />

Now we find the set <strong>of</strong> all stabilizing <strong>PD</strong> controllers for the <strong>DC</strong> <strong>Servo</strong> <strong>Motor</strong> such that the gain margin is greater<br />

than or equal to 2 and the phase margin is greater than or equal to 4<br />

. The frequency response is for the motor<br />

input voltage to the shaft angular position. The magnitude and phase plots <strong>of</strong> the motor are displayed in Figure<br />

4.<br />

40<br />

20<br />

Bode Diagram<br />

Magnitude (dB)<br />

0<br />

-20<br />

-40<br />

-60<br />

-80<br />

Phase (deg)<br />

-90<br />

-135<br />

-180<br />

-225<br />

-270<br />

-315<br />

-360<br />

System: <strong>DC</strong><strong>Servo</strong><strong>Motor</strong><br />

Frequency (rad/sec): 2.02<br />

Phase (deg): -270<br />

10 -2 10 -1 10 0 10 1<br />

Frequency (rad/sec)<br />

System: <strong>DC</strong><strong>Servo</strong><strong>Motor</strong><br />

Frequency (rad/sec): 0.863<br />

Phase (deg): -180<br />

Fig. 4 : Bode plot <strong>of</strong> <strong>DC</strong> <strong>Servo</strong> <strong>Motor</strong><br />

The general stability boundary locus is first computed, i.e., the locus when A=1 and θ=0. To design the<br />

controllers that satisfy the gain margin condition, set A=2 and θ=0 in equation (16). Then, from the given<br />

frequency response, extract the real and imaginary values at each ω and substitute it into equations (10) and<br />

(11) to obtain the stability boundary. To satisfy the criterion for the phase margin, repeat the procedure, but<br />

<br />

with A=1 and θ= . The results are shown in Figure 5.<br />

4<br />

Page 542 <strong>of</strong> 544


Puneet Pahuja et al / VSRD International Journal <strong>of</strong> Electrical, Electronics & Comm. Engg. Vol. 2 (7), 2012<br />

2<br />

1.8<br />

1.6<br />

GM = 1; PM = 0<br />

GM = 1, PM = /4<br />

GM = 2, PM = 0<br />

1.4<br />

1.2<br />

K p<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-1 -0.5 0 0.5 1 1.5 2 2.5<br />

K d<br />

Fig. 5 : Stability Region For Required Gain And Phase Margin<br />

To verify the results use the closed loop simulation <strong>of</strong> Figure 6. We chose<br />

K<br />

P<br />

=0.4 and<br />

K<br />

d<br />

=0.5 and tested the<br />

0<br />

response <strong>of</strong> the motor to a step input <strong>of</strong> 45 . From Figure 7 we find that the closed-loop system is indeed stable.<br />

Fig. 6 : Simulation Diagram To Verify The Results<br />

50<br />

45<br />

40<br />

Angular <strong>Position</strong>(degrees)<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 5 10 15 20 25 30<br />

Time(Seconds)<br />

Fig. 7 : Step Response <strong>of</strong> the <strong>DC</strong> <strong>Servo</strong> <strong>Motor</strong> with desired values <strong>of</strong> Gain and Phase Margin<br />

Page 543 <strong>of</strong> 544


Puneet Pahuja et al / VSRD International Journal <strong>of</strong> Electrical, Electronics & Comm. Engg. Vol. 2 (7), 2012<br />

4. CONCLUSION<br />

After a number <strong>of</strong> repeated simulations in Matlab it is found that the given values <strong>of</strong> ( K , K ) stabilize the<br />

transfer function <strong>of</strong> the given <strong>DC</strong> servo motor. The case study is done. The results are useful to make the<br />

controller design for the <strong>Position</strong> control <strong>of</strong> <strong>DC</strong> <strong>Servo</strong> <strong>Motor</strong>.<br />

p<br />

d<br />

5. FUTURE SCOPE<br />

The same procedure can be used to find gains for PID controller, for controller design <strong>of</strong> Positon control <strong>of</strong> <strong>DC</strong><br />

<strong>Servo</strong> <strong>Motor</strong>. The work can be extended to design the robust PID controllers.<br />

6. REFERENCES<br />

[1] Tan., N. (2005): Computation <strong>of</strong> stabilizing PI and PID controllers for the processes with time delay, ISA<br />

Transactions, vol. 44.<br />

[2] Houpis, C. H. and Rasmussen, Steven J (1999): Quantitive Feedback Theory Fundamentals and<br />

Applications, Marcel Dekker Inc. New york Bassel.<br />

[3] Rai,, H.M. (2003):<strong>Control</strong> System Engineering, Satya Prakashan .<br />

[4] Silva, Guillermo J., Datta, Aniruddha, and Bhattacharya, S.P. (2005): PID controllers for Time-Delay<br />

Systems, Birkhauser.<br />

[5] Sujoldzic,S. and Watkins, J.M.(2005): Stabilization <strong>of</strong> an arbitrary order transfer function with time delsy<br />

using PID controllers, Proc. Of IEEE conf. on Decision and <strong>Control</strong>.<br />

<br />

Page 544 <strong>of</strong> 544

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!