03.01.2015 Views

Lay-up Protection for Boilers and HRSGs - American Public Power ...

Lay-up Protection for Boilers and HRSGs - American Public Power ...

Lay-up Protection for Boilers and HRSGs - American Public Power ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Lay</strong>-<strong>up</strong> <strong>Protection</strong> <strong>for</strong> <strong>Boilers</strong><br />

<strong>and</strong> <strong>HRSGs</strong><br />

APPA E&O Conference<br />

APRIL 2005<br />

1


FOR SALE: 250 MW 2-on-1 Natural Gas Fired<br />

Combined Cycle Plant<br />

Completed in 2000, lightly used, left full of water<br />

with no lay-<strong>up</strong> or preservation.<br />

Make Offer<br />

2


Goals of Proper <strong>Lay</strong>-<strong>up</strong><br />

• Minimize Downtime<br />

Corrosion<br />

• Eliminate Corrosion Product<br />

Transport on Start<strong>up</strong><br />

• Reach Chemical Operating<br />

Limits Quickly<br />

3


<strong>Lay</strong>-<strong>up</strong> the Entire Steam<br />

Cycle!<br />

Vent<br />

HP Turbine<br />

IP<br />

Turbine<br />

LP<br />

Turbine<br />

Condenser<br />

Deaerator<br />

Vent<br />

Boiler<br />

HP<br />

Heaters<br />

LP<br />

Heaters<br />

Condensate<br />

Polisher<br />

4


<strong>Lay</strong>-<strong>up</strong> is Critical <strong>for</strong> HRSG’s<br />

• Cycle frequently<br />

• Faster heating cycles<br />

• Complex circulation<br />

• Often st<strong>and</strong>-alone (no source of aux.<br />

steam)<br />

• Chemical cleaning more complicated<br />

5


Your Choice<br />

Rust <strong>and</strong> Corrosion<br />

6


Your Choice<br />

Passivation <strong>and</strong> <strong>Protection</strong><br />

7


Failure Mechanisms Affected<br />

by Poor <strong>Lay</strong>-<strong>up</strong><br />

• Oxygen Pitting<br />

• Corrosion Fatigue<br />

• Under Deposit Corrosion<br />

– Hydrogen Damage<br />

– Caustic Gouging<br />

8


Oxygen Pitting<br />

Causes:<br />

• Downtime Oxygen<br />

• Dissolved oxygen on<br />

Start<strong>up</strong><br />

• Corrosion Products<br />

Location:<br />

• Anywhere where water<br />

<strong>and</strong> oxygen coexist<br />

9


Oxygen Pitting<br />

• Starts with a deposit<br />

• Driven by oxygen in the water/air versus<br />

no oxygen under the deposit<br />

• Heating increases corrosion rate<br />

• Chloride increases corrosion rate<br />

10


Normal Passivation<br />

Half Reactions<br />

Fe → Fe +2 + 2e - 1 / 2 O 2 + H 2 O + 2 e - → 2 OH -<br />

Fe +2 + 2 OH - Fe (OH) 2<br />

2 Fe(OH) 2 + O 2 Fe 2 O 3 + H 2 O (300 F)<br />

Fe 0 2e -<br />

Fe 2 O 3<br />

O 2 OH -<br />

Fe +2 Fe(OH) 2 Fe 3 O 4<br />

Anode<br />

Steel<br />

Cathode<br />

11


Normal Passivation<br />

R<strong>and</strong>om anodic <strong>and</strong> cathodic sites create a passivation layer<br />

AC<br />

AC<br />

AC<br />

Fe 0<br />

AC<br />

AC<br />

2e -<br />

AC<br />

AC<br />

AC<br />

AC<br />

AC AC AC<br />

AC AC<br />

AC<br />

AC<br />

AC<br />

AC<br />

AC<br />

AC<br />

AC<br />

A- Anode C- Cathode<br />

Steel<br />

12


Oxygen Pitting<br />

Deposits create a localized cathode <strong>and</strong> anode<br />

that <strong>for</strong>m a corrosion pit<br />

High dissolved oxygen<br />

Fe O 2 OH -<br />

2 O Oxygen-deficient area<br />

3<br />

Fe(OH) 2<br />

Anode<br />

Steel<br />

Cathode<br />

13


Corrosion Fatigue<br />

1. Stress cracks protective oxide<br />

2. Oxygen pits <strong>for</strong>m<br />

Fixed point<br />

14


Corrosion Fatigue<br />

Causes:<br />

• Oxygen plus Stress<br />

• DO on start<strong>up</strong><br />

Affects:<br />

• LP Economizer <strong>and</strong><br />

Evaporator<br />

• Fixed points, headers<br />

15


Under-deposit Corrosion<br />

Steam out<br />

Conc. chemicals<br />

Heat<br />

Boiler water in<br />

16


Underdeposit Corrosion<br />

Causes:<br />

• Deposits<br />

• High heat flux<br />

• Improper Chemistry<br />

17


<strong>Lay</strong>-<strong>up</strong> Considerations<br />

Not Time Dependent<br />

Good <strong>Lay</strong>-<strong>up</strong> must work<br />

<strong>for</strong> a day or a year<br />

18


<strong>Lay</strong>-<strong>up</strong> Considerations<br />

Quick return<br />

OR<br />

Scheduled return<br />

19


<strong>Lay</strong>-<strong>up</strong> Considerations<br />

Breech<br />

OR<br />

No Breech<br />

20


Corrosion Triangle<br />

21


Dry <strong>Lay</strong>-<strong>up</strong> — Exclude Water<br />

22


Wet <strong>Lay</strong>-<strong>up</strong> — Excludes Oxygen<br />

23


<strong>Lay</strong>-<strong>up</strong> Options<br />

• Dry <strong>Lay</strong>-<strong>up</strong><br />

– Hot Drain<br />

– Dehumidified Air<br />

– Desiccants<br />

• Wet <strong>Lay</strong>-<strong>up</strong><br />

– Nitrogen<br />

–Steam<br />

24


Design Issues Affecting <strong>Lay</strong><strong>up</strong><br />

• Can all headers <strong>and</strong> piping be drained<br />

completely<br />

• How quickly can it be done<br />

• How accessible are drain valves<br />

25


Design issues: headers<br />

Cannot be drained : Wet <strong>Lay</strong>-<strong>up</strong> only<br />

Dry <strong>Lay</strong>-<strong>up</strong> will work<br />

26


Dry <strong>Lay</strong>-<strong>up</strong><br />

Advantages<br />

• Only option when repairs are required<br />

• Requires less time <strong>and</strong> cost to<br />

maintain<br />

27


Dry <strong>Lay</strong>-<strong>up</strong><br />

Disadvantages<br />

• Need to get systems dry <strong>and</strong> keep<br />

them dry<br />

• Requires considerable time <strong>and</strong> water<br />

on start<strong>up</strong><br />

28


Steps <strong>for</strong> Dry <strong>Lay</strong>-<strong>up</strong><br />

• Drain HRSG hot (some drain<br />

under nitrogen pressure)<br />

• Drain out associated feedwater<br />

equipment <strong>and</strong> piping<br />

• Drain <strong>and</strong> dry out condenser<br />

• Make sure ALL drains are opened,<br />

including header drains<br />

29


Maintaining Dry <strong>Lay</strong>-<strong>up</strong><br />

• Use continuous dehumidified air<br />

circulation<br />

OR<br />

• Close drains/drums <strong>and</strong> use desiccant<br />

30


Dehumidified Air<br />

• Air must circulate though all equipment<br />

• High flows to achieve dew point of – 10F<br />

as quickly as possible<br />

• Continue to circulate 1% system volume<br />

per hour<br />

31


Silica Gel<br />

• Use 5 lbs. silica gel/100 ft 3 of panel volume<br />

• Place in each accessible drum<br />

• Use indicating type<br />

• Check regularly<br />

– At least twice during first week<br />

– Once per week <strong>for</strong> first month<br />

– Once per month thereafter<br />

32


Vapor Phase Inhibitors<br />

• Used on clean metal surfaces<br />

• Addition rate- ~3 lbs per 1000 gallons<br />

capacity<br />

33


Vapor Phase Inhibitors<br />

• Volatile at ambient temperatures<br />

• Destroyed in steam blow or operation<br />

• Treatment can be repeated if needed<br />

34


VPI Preservation<br />

After 30 days<br />

After 106 days<br />

35


Wet <strong>Lay</strong>-<strong>up</strong><br />

Advantages<br />

• Quick restart<br />

• Minimizes corrosion product transport<br />

36


Wet <strong>Lay</strong>-<strong>up</strong><br />

Disadvantages<br />

• Requires freeze protection<br />

• More time <strong>and</strong> cost to maintain properly<br />

37


Wet <strong>Lay</strong>-<strong>up</strong><br />

Hot<br />

or<br />

Cold<br />

•Uses Auxiliary<br />

Steam<br />

• Reduces Thermal<br />

Cycling Stresses<br />

•Faster Starts<br />

• Nitrogen<br />

•Simple to maintain<br />

•No fuel costs<br />

38


Nitrogen Cap<br />

Cap should be applied to:<br />

• Steam Drum(s)<br />

• Deaerator (if separate)<br />

• Condenser<br />

39


Danger:Nitrogen<br />

• Nitrogen lay-<strong>up</strong> is designed to prevent<br />

oxygen from entering the boiler<br />

• Nitrogen will NOT s<strong>up</strong>port life<br />

• All confined spaces MUST be clearly<br />

marked<br />

• Confined Space Entry Procedures<br />

MUST be followed<br />

40


Nitrogen Addition Points<br />

Vent<br />

HP Turbine<br />

IP<br />

Turbine<br />

LP<br />

Turbine<br />

Condenser<br />

Deaerator<br />

Vent<br />

Boiler<br />

HP<br />

Heaters<br />

LP<br />

Heaters<br />

41


LP SH<br />

IP SH<br />

DA<br />

LP Drum<br />

Feedwater Preheater<br />

From HP FW Pump<br />

42<br />

HP Economizer<br />

IP Economizer<br />

HP Economizer<br />

LP Evaporator<br />

IP Drum<br />

To IP Turbine<br />

To LP Turbine<br />

HP Evaporator<br />

HP Econmizer<br />

IP Evaporator<br />

HP Drum<br />

--Nitrogen Addition Points<br />

Drain<br />

Drain<br />

To HP Turbine<br />

HP SH


Nitrogen Cap- Drums<br />

• Enters the drum through<br />

connection on vent line<br />

• Nitrogen feed started while drum<br />

is still hot (~212°F)<br />

• Less than 5 psig of pressure is<br />

applied<br />

43


Nitrogen Cap - Condenser<br />

• Addition starts while while steam<br />

turbine is still spinning down<br />

• Added quickly at first, then slowly<br />

as the vacuum approaches zero<br />

• Constant flow of 20 SCFH is<br />

maintained while the unit is down<br />

44


Wet Chemical <strong>Lay</strong>-<strong>up</strong><br />

• pH of water 9.8 with ammonia or<br />

amines<br />

• Hydrazine or other scavenger may be<br />

added<br />

• Need to circulate <strong>and</strong> test<br />

45


LP SH<br />

IP SH<br />

DA<br />

LP Drum<br />

Feedwater Preheater<br />

From HP FW Pump<br />

46<br />

HP Economizer<br />

IP Economizer<br />

HP Economizer<br />

LP Evaporator<br />

IP Drum<br />

To IP Turbine<br />

To LP Turbine<br />

HP Evaporator<br />

HP Econmizer<br />

IP Evaporator<br />

HP Drum<br />

--Nitrogen Addition Points<br />

--Chemical Sampling Points<br />

Drain<br />

Drain<br />

To HP Turbine<br />

HP SH


Wet Chemical <strong>Lay</strong>-<strong>up</strong><br />

• Requires significant amounts of chemical<br />

• Must add nitrogen or steam provide adequate<br />

protection above the water line<br />

• May create an environmental issue if you<br />

have to drain the HRSG (particularly if<br />

hydrazine is used)<br />

47


Transitions<br />

Dry To Wet<br />

• Need a source of deoxygenated water<br />

• Add chemical treatment during fill<br />

• Cap with Nitrogen<br />

48


Transitions<br />

Wet to Dry (Cold)<br />

• Drain under nitrogen pressure<br />

• Continue to blow nitrogen until water is<br />

gone<br />

• Dry out with dehumidified air<br />

• Use dry air or silica gel to maintain<br />

49


Transitions<br />

Wet to Dry (Better)<br />

• Fire boiler to 25 psig<br />

• Drain under nitrogen pressure<br />

• Dry out with dehumidified air<br />

• Use dry air or silica gel to maintain<br />

50


Start<strong>up</strong> Chemistry<br />

Dry <strong>Lay</strong>-<strong>up</strong><br />

Boiler/HRSG fill-water should be:<br />

•Hot<br />

• Deaerated<br />

• Chemically Treated<br />

51


• Feedwater<br />

Start<strong>up</strong> Chemistry<br />

Treatments<br />

–Amine<br />

– Scavenger<br />

• Boiler<br />

– Phosphate<br />

– Caustic (if needed)<br />

52


Start<strong>up</strong> Chemistry<br />

Wet <strong>Lay</strong>-<strong>up</strong> (Nitrogen)<br />

• Chemistry from the lay-<strong>up</strong> predominates<br />

• Treat with a heavier than normal dose<br />

of amine <strong>and</strong> scavenger to account <strong>for</strong><br />

high make-<strong>up</strong> rates<br />

53


Reference Document<br />

ASME CRTD-Vol. 66<br />

Consensus <strong>for</strong> the <strong>Lay</strong>-<strong>up</strong> of <strong>Boilers</strong>,<br />

Turbines, Turbine Condensers <strong>and</strong><br />

Auxiliary Equipment<br />

Available at the www.asme.org<br />

54

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!