04.01.2015 Views

Simulation of the Simbol-X telescope Maxime Chauvin - APC

Simulation of the Simbol-X telescope Maxime Chauvin - APC

Simulation of the Simbol-X telescope Maxime Chauvin - APC

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Simulation</strong> <strong>of</strong> <strong>the</strong> <strong>Simbol</strong>-X <strong>telescope</strong><br />

<strong>Maxime</strong> <strong>Chauvin</strong><br />

CESR/Université de Toulouse-CNRS<br />

© CNES 2007<br />

M.<strong>Chauvin</strong> <strong>Simbol</strong>-X Symposium December 2 – 5 2008


<strong>Simulation</strong> <strong>of</strong> <strong>the</strong> <strong>Simbol</strong>-X <strong>telescope</strong><br />

Introduction<br />

<strong>Simulation</strong> tool for any grazing incidence <strong>telescope</strong> with deformations<br />

Application to <strong>Simbol</strong>-X:<br />

• understand and predict <strong>the</strong> behavior <strong>of</strong> <strong>the</strong> instrument<br />

• optimize <strong>the</strong> configuration <strong>of</strong> <strong>the</strong> instrument and assess <strong>the</strong> performance <strong>of</strong> <strong>the</strong><br />

<strong>telescope</strong>:<br />

effective area<br />

angular resolution<br />

precision needed for <strong>the</strong> sensors<br />

tolerance on <strong>the</strong> drifts<br />

image reconstruction<br />

Outline <strong>of</strong> <strong>the</strong> presentation:<br />

I – Geometrical simulation<br />

II – Physical simulation<br />

III – Dynamical simulation<br />

IV – Performances<br />

© CNES 2007<br />

M.<strong>Chauvin</strong> <strong>Simbol</strong>-X Symposium December 2 – 5 2008


<strong>Simulation</strong> <strong>of</strong> <strong>the</strong> <strong>Simbol</strong>-X <strong>telescope</strong><br />

I – Geometrical simulation<br />

© CNES - GEKO 2007<br />

DSC<br />

20m<br />

<strong>Simbol</strong>-X <strong>telescope</strong><br />

MSC<br />

1 – Focal plane 2 – Mirror module<br />

M.<strong>Chauvin</strong> <strong>Simbol</strong>-X Symposium December 2 – 5 2008


<strong>Simulation</strong> <strong>of</strong> <strong>the</strong> <strong>Simbol</strong>-X <strong>telescope</strong><br />

I – Geometrical simulation<br />

1 – Focal plane model<br />

Only one <strong>of</strong> <strong>the</strong> 2 detectors is simulated (HED) with <strong>the</strong>se assumptions:<br />

• position <strong>of</strong> <strong>the</strong> detector at <strong>the</strong> focal length (20m)<br />

• matrix <strong>of</strong> 128 * 128 pixels with no gap<br />

• pixel size = 6.25 10 -4 m<br />

• perfect detection efficiency<br />

2 – Mirror module model<br />

• 100 concentric Wolter I shells<br />

(hyperbolic mirror + parabolic mirror)<br />

1)<br />

2)<br />

1 2<br />

20m<br />

0.7m<br />

0.6m<br />

• assembly and alignment errors (Harvey et al., optical engineering, 1996)<br />

• surface roughness<br />

• perfect mirror shapes<br />

M.<strong>Chauvin</strong> <strong>Simbol</strong>-X Symposium December 2 – 5 2008


<strong>Simulation</strong> <strong>of</strong> <strong>the</strong> <strong>Simbol</strong>-X <strong>telescope</strong><br />

I – Geometrical simulation<br />

3 – Ray tracing<br />

20m<br />

4<br />

3<br />

2<br />

1<br />

Detection<br />

Focalization<br />

Reflections<br />

Photon injection<br />

4<br />

3<br />

2<br />

1<br />

M.<strong>Chauvin</strong> <strong>Simbol</strong>-X Symposium December 2 – 5 2008


<strong>Simulation</strong> <strong>of</strong> <strong>the</strong> <strong>Simbol</strong>-X <strong>telescope</strong><br />

II – Physical simulation<br />

1 – Multilayer supermirrors reflection<br />

Model:<br />

• 250 bilayers <strong>of</strong> Pt / C<br />

• Depth graded multilayer (supermirror):<br />

(Joensen et al., applied optics, 1995)<br />

Reflection coefficient for E = 60 keV and = [ 0 – 20 ] arcmin:<br />

Monolayer mirror Multilayer mirror Multilayer supermirror<br />

M.<strong>Chauvin</strong> <strong>Simbol</strong>-X Symposium December 2 – 5 2008


<strong>Simulation</strong> <strong>of</strong> <strong>the</strong> <strong>Simbol</strong>-X <strong>telescope</strong><br />

II – Physical simulation<br />

2 – Sources<br />

• Point source<br />

• Source spectrum:<br />

single energy, ex: E = 30 keV<br />

linear range, ex: E = [ 0.5 – 80 ] keV<br />

power law, ex:<br />

• Multiple sources:<br />

1 <strong>telescope</strong> pointing in celestial coordinates<br />

1 list <strong>of</strong> sources in <strong>the</strong> FoV in celestial coordinates<br />

• Relative luminosity<br />

M.<strong>Chauvin</strong> <strong>Simbol</strong>-X Symposium December 2 – 5 2008


<strong>Simulation</strong> <strong>of</strong> <strong>the</strong> <strong>Simbol</strong>-X <strong>telescope</strong><br />

III – Dynamical simulation<br />

1 – In time Formation Flight<br />

© CNES 2007<br />

• Relative position degradation <strong>of</strong> <strong>the</strong> DSC express in TRF_M ( X, Y, Z )<br />

• Relative attitude degradation <strong>of</strong> DSC & MSC express in <strong>the</strong>ir reference frame ( X, Y, Z )<br />

Computed in <strong>the</strong> simulation by rotation matrix and reference frame changes<br />

Example <strong>of</strong> simulation:<br />

• 1 on axis source (200 000 photons)<br />

• 20 000 seconds<br />

• DSC movement from EADS Astrium enterprise<br />

lateral: [-0.5,0.5]cm, longitudinal: [-1.5,1.5]cm<br />

attitude: [-2,+2] arcmin<br />

• MSC movement<br />

attitude: [-20,+20] arcsec<br />

Useless data without image reconstruction…<br />

M.<strong>Chauvin</strong> <strong>Simbol</strong>-X Symposium December 2 – 5 2008


<strong>Simulation</strong> <strong>of</strong> <strong>the</strong> <strong>Simbol</strong>-X <strong>telescope</strong><br />

III – Dynamical simulation<br />

2 – Image reconstruction<br />

X<br />

Y<br />

Corrected position (blue) = Photon position (white) + corresponding X, Y <strong>of</strong> <strong>the</strong> detector<br />

Problem: only lateral drifts can be corrected<br />

<strong>Simulation</strong> <strong>of</strong> M22 FoV without corrections<br />

<strong>Simulation</strong> <strong>of</strong> M22 FoV with corrections<br />

M.<strong>Chauvin</strong> <strong>Simbol</strong>-X Symposium December 2 – 5 2008


<strong>Simulation</strong> <strong>of</strong> <strong>the</strong> <strong>Simbol</strong>-X <strong>telescope</strong><br />

III – Dynamical simulation<br />

3 – Sensors data<br />

Model:<br />

• Detector Spacecraft: 3 STR, 2 Lateral Sensors<br />

• Mirror Spacecraft: 3 STR, 3 targets for <strong>the</strong> Lateral Sensors<br />

Data simulated (angular positions) = real data + errors (bias + noise)<br />

Image reconstruction needs X, Y <strong>of</strong> <strong>the</strong> detector.<br />

computed by interferometry based on <strong>the</strong> Lateral Sensors data.<br />

X data <strong>of</strong> <strong>the</strong> DSC<br />

Y data <strong>of</strong> <strong>the</strong> DSC<br />

M.<strong>Chauvin</strong> <strong>Simbol</strong>-X Symposium December 2 – 5 2008


<strong>Simulation</strong> <strong>of</strong> <strong>the</strong> <strong>Simbol</strong>-X <strong>telescope</strong><br />

IV – Performances<br />

1 – Angular resolution with source <strong>of</strong>f axis<br />

F = 20 m, 100 shells Pt/C bilayers with assembly, alignment and surface errors,<br />

no MSC & DSC movements<br />

On axis source<br />

Off axis source (6 arcmin)<br />

Half Energy Width (HEW):<br />

Diameter <strong>of</strong> <strong>the</strong> circle which<br />

contains 50% <strong>of</strong> <strong>the</strong> photons<br />

HEW<br />

Degradation <strong>of</strong> HEW with <strong>of</strong>f axis:<br />

• 0.05 arcsec @ 3 arcmin<br />

• 0.1 arcsec @ 5 arcmin<br />

• 0.2 arcsec @ 6 arcmin<br />

HEW = 15 arcsec<br />

HEW = 15.2 arcsec<br />

M.<strong>Chauvin</strong> <strong>Simbol</strong>-X Symposium December 2 – 5 2008


<strong>Simulation</strong> <strong>of</strong> <strong>the</strong> <strong>Simbol</strong>-X <strong>telescope</strong><br />

IV – Performances<br />

2 – Effective area with source <strong>of</strong>f axis<br />

F = 20 m, 100 shells <strong>of</strong> 250 depth graded Pt/C bilayers, no spider attenuation (~10%),<br />

no <strong>the</strong>rmal filter attenuation<br />

On axis effective area (blue line):<br />

• 1280 cm @ 1 keV<br />

• 425 cm @ 30 keV<br />

• 170 cm @ 70 keV<br />

6 arcmin <strong>of</strong>f axis effective area<br />

(pink line):<br />

• 840 cm @ 1 keV<br />

• 205 cm @ 30 keV<br />

• 50 cm @ 70 keV<br />

M.<strong>Chauvin</strong> <strong>Simbol</strong>-X Symposium December 2 – 5 2008


<strong>Simulation</strong> <strong>of</strong> <strong>the</strong> <strong>Simbol</strong>-X <strong>telescope</strong><br />

IV – Performances<br />

3 – Angular resolution with defocus<br />

F = 20 m, 100 shells <strong>of</strong> Pt/C multilayer (inner diameter = 286.26 mm, outer diameter = 697 mm), with<br />

assembly, alignment and surface errors<br />

On axis source with HEW = 15” @ 1 keV<br />

Blurring due to a defocus can<br />

not be corrected.<br />

Delta HEW with defocus:<br />

• 0.5 arcsec @ 20 mm<br />

• 1 arcsec @ 30 mm<br />

• 2 arcsec @ 40 mm<br />

M.<strong>Chauvin</strong> <strong>Simbol</strong>-X Symposium December 2 – 5 2008


<strong>Simulation</strong> <strong>of</strong> <strong>the</strong> <strong>Simbol</strong>-X <strong>telescope</strong><br />

IV – Performances<br />

4 – Image reconstruction with accuracy <strong>of</strong> sensors<br />

On axis source with HEW = 15” @ 1 keV<br />

DSC + MSC movements, image reconstruction with noisy sensors (values given @ 1 sigma)<br />

Lateral blurring is corrected<br />

relying on <strong>the</strong> sensors accuracy.<br />

Delta HEW with sensor errors:<br />

• 0.2 arcsec @ 1 arcsec<br />

• 1.7 arcsec @ 3 arcsec<br />

• 4.3 arcsec @ 5 arcsec<br />

…more analysis in M.<strong>Chauvin</strong> poster<br />

M.<strong>Chauvin</strong> <strong>Simbol</strong>-X Symposium December 2 – 5 2008


<strong>Simulation</strong> <strong>of</strong> <strong>the</strong> <strong>Simbol</strong>-X <strong>telescope</strong><br />

Conclusion<br />

We have developed a simulation tool able to:<br />

• Study <strong>the</strong> current configuration <strong>of</strong> <strong>Simbol</strong>-X<br />

• Optimize <strong>the</strong> optics <strong>of</strong> <strong>Simbol</strong>-X<br />

• Optimize <strong>the</strong> configuration for <strong>the</strong> scientific requirements<br />

• Test o<strong>the</strong>r <strong>telescope</strong> configurations<br />

Next steps…<br />

• macroscopic shell deformations<br />

• reflection geometry as a function <strong>of</strong> energy (X Ray Scattering)<br />

• model <strong>of</strong> <strong>the</strong> LED and HED with energy response <strong>of</strong> <strong>the</strong> detectors<br />

M.<strong>Chauvin</strong> <strong>Simbol</strong>-X Symposium December 2 – 5 2008


<strong>Simulation</strong> <strong>of</strong> <strong>the</strong> <strong>Simbol</strong>-X <strong>telescope</strong><br />

Thank you for your attention<br />

maxime.chauvin@cesr.fr<br />

M.<strong>Chauvin</strong> <strong>Simbol</strong>-X Symposium December 2 – 5 2008


<strong>Simulation</strong> <strong>of</strong> <strong>the</strong> <strong>Simbol</strong>-X <strong>telescope</strong><br />

M.<strong>Chauvin</strong> <strong>Simbol</strong>-X Symposium December 2 – 5 2008


<strong>Simulation</strong> <strong>of</strong> <strong>the</strong> <strong>Simbol</strong>-X <strong>telescope</strong><br />

M.<strong>Chauvin</strong> <strong>Simbol</strong>-X Symposium December 2 – 5 2008


<strong>Simulation</strong> <strong>of</strong> <strong>the</strong> <strong>Simbol</strong>-X <strong>telescope</strong><br />

M.<strong>Chauvin</strong> <strong>Simbol</strong>-X Symposium December 2 – 5 2008


<strong>Simulation</strong> <strong>of</strong> <strong>the</strong> <strong>Simbol</strong>-X <strong>telescope</strong><br />

M.<strong>Chauvin</strong> <strong>Simbol</strong>-X Symposium December 2 – 5 2008


<strong>Simulation</strong> <strong>of</strong> <strong>the</strong> <strong>Simbol</strong>-X <strong>telescope</strong><br />

M.<strong>Chauvin</strong> <strong>Simbol</strong>-X Symposium December 2 – 5 2008


<strong>Simulation</strong> <strong>of</strong> <strong>the</strong> <strong>Simbol</strong>-X <strong>telescope</strong><br />

M.<strong>Chauvin</strong> <strong>Simbol</strong>-X Symposium December 2 – 5 2008


<strong>Simulation</strong> <strong>of</strong> <strong>the</strong> <strong>Simbol</strong>-X <strong>telescope</strong><br />

M.<strong>Chauvin</strong> <strong>Simbol</strong>-X Symposium December 2 – 5 2008


<strong>Simulation</strong> <strong>of</strong> <strong>the</strong> <strong>Simbol</strong>-X <strong>telescope</strong><br />

II – Physical simulation<br />

1 – Multilayer supermirrors reflection<br />

Model:<br />

• 250 bilayers <strong>of</strong> Pt / C<br />

• Depth graded multilayer:<br />

(Mao et al., applied optics, 1999)<br />

Computation:<br />

with<br />

(Joensen et al., applied optics, 1995)<br />

Parameters <strong>of</strong> <strong>the</strong> plot:<br />

E = 60 keV<br />

= [ 0 – 20 ] arcmin<br />

Range <strong>of</strong> <strong>Simbol</strong>-X:<br />

E = [ 0.5 – 80 ] keV<br />

= [ 0 – 27 ] arcmin<br />

M.<strong>Chauvin</strong> <strong>Simbol</strong>-X Symposium December 2 – 5 2008

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!