04.01.2015 Views

Gate-dependent spin-orbit coupling in multi-electron car - Niels Bohr ...

Gate-dependent spin-orbit coupling in multi-electron car - Niels Bohr ...

Gate-dependent spin-orbit coupling in multi-electron car - Niels Bohr ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Gate</strong>-<strong>dependent</strong> <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>coupl<strong>in</strong>g</strong> <strong>in</strong> <strong>multi</strong>-<strong>electron</strong> <strong>car</strong>bon<br />

nanotubes<br />

T. S. Jespersen 1∗† , K. Grove-Rasmussen 1,2∗† , J. Paaske 1 , K. Muraki 2 ,<br />

T. Fujisawa 3 , J. Nygård 1 , K. Flensberg 1 .<br />

1 <strong>Niels</strong> <strong>Bohr</strong> Institute & Nano-Science Center, University of Copenhagen,<br />

Universitetsparken 5, DK-2100 Copenhagen, Denmark<br />

2 NTT Basic Research Laboratories, NTT Corporation,<br />

3-1 Mor<strong>in</strong>osato-Wakamiya, Atsugi 243-0198, Japan<br />

3 Research Center for Low Temperature Physics, Tokyo Institute of Technology,<br />

Ookayama, Meguro, Tokyo 152-8551, Japan<br />

∗ To whom correspondence should be addressed; E-mail: tsand@fys.ku.dk, k grove@fys.ku.dk<br />

† Equal contribution<br />

Understand<strong>in</strong>g how the <strong>orbit</strong>al motion of <strong>electron</strong>s is coupled to the <strong>sp<strong>in</strong></strong> degree<br />

of freedom <strong>in</strong> nanoscale systems is central for applications <strong>in</strong> <strong>sp<strong>in</strong></strong>-based <strong>electron</strong>ics<br />

and quantum computation. We demonstrate this <strong>coupl<strong>in</strong>g</strong> of <strong>sp<strong>in</strong></strong> and <strong>orbit</strong> <strong>in</strong><br />

a <strong>car</strong>bon nanotube quantum dot <strong>in</strong> the general <strong>multi</strong>-<strong>electron</strong> regime <strong>in</strong> presence<br />

of f<strong>in</strong>ite disorder. Further, we f<strong>in</strong>d a strong systematic dependence of the <strong>sp<strong>in</strong></strong><strong>orbit</strong><br />

<strong>coupl<strong>in</strong>g</strong> on the <strong>electron</strong> occupation of the quantum dot. This dependence,<br />

which even <strong>in</strong>cludes a sign change is not demonstrated <strong>in</strong> any other system and<br />

follows from the curvature-<strong>in</strong>duced <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> split Dirac-spectrum of the underly<strong>in</strong>g<br />

graphene lattice. Our f<strong>in</strong>d<strong>in</strong>gs unambiguously show that the <strong>sp<strong>in</strong></strong>-<strong>orbit</strong><br />

<strong>coupl<strong>in</strong>g</strong> is a general property of nanotube quantum dots which provide a unique<br />

platform for the study of <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> effects and their applications.<br />

1


The <strong>in</strong>teraction of the <strong>sp<strong>in</strong></strong> of <strong>electron</strong>s with their <strong>orbit</strong>al motion has become a focus of attention<br />

<strong>in</strong> quantum dot research. On the one hand, this <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>in</strong>teraction (SOI) provides a route<br />

for <strong>sp<strong>in</strong></strong> decoherence, which is unwanted for purposes of quantum computation 1–3 . On the other<br />

hand, if properly controlled, the SOI can be utilized as a means of electrically manipulat<strong>in</strong>g the<br />

<strong>sp<strong>in</strong></strong> degree of freedom 4–7 .<br />

In this context, <strong>car</strong>bon nanotubes provide a number of attractive features, <strong>in</strong>clud<strong>in</strong>g large<br />

conf<strong>in</strong>ement energies, nearly nuclear-<strong>sp<strong>in</strong></strong>-free environment, and, most importantly, the details of<br />

the energy level structure is theoretically well understood and modeled, as well as experimentally<br />

highly reproducible. Remarkably, the SOI <strong>in</strong> nanotubes was largely overlooked <strong>in</strong> the first two<br />

decades of nanotube research and was only recently demonstrated by Kuemmeth et al. for the special<br />

case of a s<strong>in</strong>gle <strong>car</strong>rier <strong>in</strong> ultra-clean CNT quantum dots 3, 8, 9 . Except for these reports, the SOI<br />

<strong>in</strong> nanotubes is experimentally unexplored. Theoretically, the focus has exclusively been on the<br />

SOI-modified band structure of disorder-free nanotubes 10–14 . Therefore, two important questions<br />

rema<strong>in</strong>: how the effective SOI depends on <strong>electron</strong> fill<strong>in</strong>g and how it appears <strong>in</strong> the general case of<br />

quantum dots subject to disorder. Here we answer these two questions.<br />

Firstly, by low-temperature <strong>electron</strong> transport we demonstrate the presence of a significant SOI<br />

<strong>in</strong> a disordered CNT quantum dot hold<strong>in</strong>g hundreds of <strong>electron</strong>s. We identify and analyze the<br />

role of SOI <strong>in</strong> the energy spectrum for one, two, and three <strong>electron</strong>s <strong>in</strong> the four-fold degenerate<br />

CNT <strong>electron</strong>ic shells, thus describ<strong>in</strong>g shells at any <strong>electron</strong> fill<strong>in</strong>g. By rotat<strong>in</strong>g the sample, we<br />

present for the first time spectroscopy of the same charge-states for magnetic fields both parallel<br />

and perpendicular to the nanotube axis, thus controll<strong>in</strong>g the <strong>coupl<strong>in</strong>g</strong> to the <strong>orbit</strong>al magnetic<br />

moment. Remarkably, a s<strong>in</strong>gle-<strong>electron</strong> model tak<strong>in</strong>g <strong>in</strong>to account both SOI and disorder quantitatively<br />

describes all essential details of the <strong>multi</strong>-<strong>electron</strong> quantum dot spectra. Secondly, by<br />

chang<strong>in</strong>g the <strong>electron</strong> occupancy we are able to tune the effective SOI and even reverse its sign<br />

<strong>in</strong> accordance with the expected curvature-<strong>in</strong>duced <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> splitt<strong>in</strong>g of the underly<strong>in</strong>g graphene<br />

Dirac spectrum 1, 11–14 . Such systematic dependence has not been demonstrated <strong>in</strong> any other ma-<br />

2


terial system and may enable a new range of <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> related applications. This microscopic<br />

understand<strong>in</strong>g and detailed model<strong>in</strong>g is <strong>in</strong> stark contrasts to situations encountered <strong>in</strong> alternative<br />

strong-SOI quantum-dot materials, such as InAs or InSb nanowires, where the effective SOI arises<br />

from bulk crystal effects comb<strong>in</strong>ed with unknown contributions from surface effects, stra<strong>in</strong> and<br />

crystal defects 15 . These systems often exhibit semi-random fluctuations of, e.g., the g-factor as<br />

s<strong>in</strong>gle <strong>electron</strong>s are added 16, 17 . Thus, beyond fundamental <strong>in</strong>terest and the prospect of realiz<strong>in</strong>g recent<br />

proposals of SOI-<strong>in</strong>duced <strong>sp<strong>in</strong></strong> control <strong>in</strong> CNTs 1, 18 , our f<strong>in</strong>d<strong>in</strong>gs pave the way for new designs<br />

of experiments utiliz<strong>in</strong>g the SOI <strong>in</strong> quantum dots.<br />

Zero-field splitt<strong>in</strong>g of the four-fold degeneracy<br />

Our experimental setup is presented <strong>in</strong> Fig. 1a. We fabricate devices of s<strong>in</strong>gle-wall CNTs on highly<br />

doped Si substrates capped with an <strong>in</strong>sulat<strong>in</strong>g layer of SiO 2 (see Methods section). The size of the<br />

quantum dots is def<strong>in</strong>ed by the contact separation (400 nm) and the electrical properties are <strong>in</strong>vestigated<br />

<strong>in</strong> a voltage biased two-term<strong>in</strong>al configuration apply<strong>in</strong>g a voltage V sd between source-dra<strong>in</strong><br />

contacts and measur<strong>in</strong>g the result<strong>in</strong>g current I. The differential conductance dI/dV sd is measured<br />

by standard lock-<strong>in</strong> techniques. When biased with a voltage V g , the Si substrate acts as an electrostatic<br />

gate controll<strong>in</strong>g the <strong>electron</strong> occupancy of the dot. The devices are measured at T = 100 mK<br />

<strong>in</strong> a 3 He/ 4 He dilution refrigerator, fitted with a piezo-rotator allow<strong>in</strong>g <strong>in</strong>-plane rotations of the device<br />

<strong>in</strong> magnetic fields up to 9 T.<br />

Figure 1b shows a typical measurement of dI/dV sd vs. V sd and V g <strong>in</strong> the <strong>multi</strong>-<strong>electron</strong><br />

regime of a small-band-gap semiconduct<strong>in</strong>g nanotube. The pattern of diamond-shaped regions of<br />

low conductance is expected for a quantum dot <strong>in</strong> the Coulomb blockade regime and with<strong>in</strong> each<br />

diamond the quantum dot hosts a fixed number of <strong>electron</strong>s N, <strong>in</strong>creas<strong>in</strong>g one-by-one with <strong>in</strong>creas<strong>in</strong>g<br />

V g . The energy E add , required for add<strong>in</strong>g a s<strong>in</strong>gle <strong>electron</strong> appears as the diamond heights<br />

3


and has been extracted <strong>in</strong> Fig. 1c. The four-<strong>electron</strong> periodicity clearly observed <strong>in</strong> Fig. 1b and c<br />

reflects the near four-fold degeneracy <strong>in</strong> the nanotube energy spectrum 19, 20 ; one factor of 2 from<br />

the <strong>in</strong>tr<strong>in</strong>sic <strong>sp<strong>in</strong></strong> (↑, ↓) and one factor of 2 from the so-called iso<strong>sp<strong>in</strong></strong> (K, K ′ ) that stems from the<br />

rotational symmetry of the nanotube - <strong>electron</strong>s <strong>orbit</strong> the CNT <strong>in</strong> a clockwise or anticlockwise<br />

direction. As is generally observed 19–23 , the addition energy for the second <strong>electron</strong> <strong>in</strong> each quartet<br />

(yellow <strong>in</strong> Fig. 1c) exceeds those for one and three. This was previously <strong>in</strong>terpreted as a result<br />

of disorder-<strong>in</strong>duced <strong>coupl<strong>in</strong>g</strong> ∆ KK ′<br />

of the clockwise and anticlockwise states 21, 24 that splits the<br />

spectrum <strong>in</strong>to two <strong>sp<strong>in</strong></strong>-degenerate pairs of bond<strong>in</strong>g/antibond<strong>in</strong>g states separated by ∆ KK ′. As<br />

mentioned, Kuemmeth et al. showed recently that for the first <strong>electron</strong> <strong>in</strong> an ultra-clean suspended<br />

nanotube quantum dot, the splitt<strong>in</strong>g was <strong>in</strong>stead dom<strong>in</strong>ated by the <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>coupl<strong>in</strong>g</strong>. The first<br />

question we address here is whether SOI also appears <strong>in</strong> the many-<strong>electron</strong> regime and how it may<br />

be modified or masked by disorder.<br />

Model<strong>in</strong>g <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>coupl<strong>in</strong>g</strong> and disorder<br />

Perform<strong>in</strong>g level spectroscopy with a magnetic field B applied either parallel (B ‖ ) or perpendicular<br />

(B ⊥ ) to the nanotube axis proves to be a powerful tool to analyze the separate contributions from<br />

disorder and <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>coupl<strong>in</strong>g</strong>. This is illustrated <strong>in</strong> Figs. 2a-d, which show calculated s<strong>in</strong>gleparticle<br />

energy level spectra for four limit<strong>in</strong>g comb<strong>in</strong>ations of ∆ KK ′<br />

and the effective <strong>sp<strong>in</strong></strong>-<strong>orbit</strong><br />

<strong>coupl<strong>in</strong>g</strong> ∆ SO (all limits are relevant for nanotube devices depend<strong>in</strong>g on the degree of disorder<br />

and CNT structure 13, 14 ; details of the model are provided <strong>in</strong> the Supplementary Information). In<br />

all cases a parallel field separates the four states <strong>in</strong>to pairs of <strong>in</strong>creas<strong>in</strong>g (K-like states) and decreas<strong>in</strong>g<br />

(K ′ -like states) energies. The magnitude of the shift is given by the <strong>orbit</strong>al g-factor g orb<br />

reflect<strong>in</strong>g the <strong>coupl<strong>in</strong>g</strong> of B ‖ to the <strong>orbit</strong>al magnetic moment caused by motion around the CNT 25 .<br />

Further, each pair exhibits a smaller <strong>in</strong>ternal splitt<strong>in</strong>g due to the Zeeman effect. Figure 2b shows<br />

4


the disorder <strong>in</strong>duced <strong>coupl<strong>in</strong>g</strong> of K and K ′ states result<strong>in</strong>g <strong>in</strong> an avoided cross<strong>in</strong>g at B ‖ = 0 and<br />

the zero-field splitt<strong>in</strong>g discussed above. In the opposite limit with SOI only (Fig. 2c), the zerofield<br />

spectrum is also split <strong>in</strong>to two doublets, but the field dependence is markedly different and<br />

no avoided cross<strong>in</strong>g appears. In the simplest picture, this behavior orig<strong>in</strong>ates from <strong>coupl<strong>in</strong>g</strong> of the<br />

<strong>electron</strong> <strong>sp<strong>in</strong></strong> to an effective magnetic field B SO = −(v × E)/c 2 experienced by the <strong>electron</strong> as<br />

it moves with velocity v <strong>in</strong> an electric field E. Here the speed of light, c, reflects the relativistic<br />

orig<strong>in</strong> of the effect. In nanotubes, the curvature of the graphene lattice generates an effective radial<br />

electric field, and s<strong>in</strong>ce the velocity is ma<strong>in</strong>ly circumferential (and opposite for K and K ′ ), B SO<br />

polarizes the <strong>sp<strong>in</strong></strong>s along the nanotube axis and favors parallel alignment of the <strong>sp<strong>in</strong></strong> and <strong>orbit</strong>al<br />

angular momentum. Thus, even <strong>in</strong> the absence of disorder, the spectrum splits <strong>in</strong>to two Kramers<br />

doublets (K ↓, K ′ ↑) and (K ↑, K ′ ↓) separated by ∆ SO . Interest<strong>in</strong>gly, s<strong>in</strong>ce a perpendicular field<br />

does not couple K and K ′ the doublets do not split along B ⊥ on the figure. As a consequence, the<br />

g-factor, when measured <strong>in</strong> a perpendicular field, will vary from zero when ∆ SO ≫ ∆ KK ′<br />

(Fig.<br />

2c) to 2 <strong>in</strong> the opposite limit (Fig. 2b).<br />

The f<strong>in</strong>al case, <strong>in</strong>clud<strong>in</strong>g both disorder and SOI, is of particular importance for the present<br />

study, and the calculated spectrum is displayed <strong>in</strong> Fig. 2d for ∆ KK ′<br />

> ∆ SO . Importantly, the<br />

effects of SOI are not masked despite the dom<strong>in</strong>at<strong>in</strong>g disorder: For parallel field, SOI rema<strong>in</strong>s responsible<br />

for an asymmetric splitt<strong>in</strong>g of the Kramers doublets (α, β) vs. (δ, γ), and the appearance<br />

of an additional degeneracy <strong>in</strong> the spectrum at f<strong>in</strong>ite field (δ and γ states). In a perpendicular field,<br />

the effect of SOI is to suppress the Zeeman splitt<strong>in</strong>g of the two doublets and s<strong>in</strong>ce the eigenstates<br />

of the SOI have <strong>sp<strong>in</strong></strong>s along the nanotube axis it couples the states with <strong>sp<strong>in</strong></strong>s polarized along B ⊥<br />

result<strong>in</strong>g <strong>in</strong> the avoided cross<strong>in</strong>g <strong>in</strong>dicated on the figure.<br />

5


Sp<strong>in</strong>-<strong>orbit</strong> <strong>in</strong>teraction revealed by spectroscopy<br />

With this <strong>in</strong> m<strong>in</strong>d we now focus on the quartet with 4N 0 ≈ 180 <strong>electron</strong>s highlighted <strong>in</strong> Fig. 1b<br />

and expanded <strong>in</strong> Fig. 3a. In order to <strong>in</strong>vestigate the level structure we perform cotunnel<strong>in</strong>g spectroscopy,<br />

as illustrated <strong>in</strong> the schematic Fig. 3b 26 : In Coulomb blockade, whenever e|V sd | matches<br />

the energy of a transition from the ground state α to an excited state (β, γ, δ), <strong>in</strong>elastic cotunnel<br />

processes, that leave the quantum dot <strong>in</strong> the excited state, become available for transport. This<br />

significantly <strong>in</strong>creases the current and gives rise to steps <strong>in</strong> the conductance. These appear as gate<strong>in</strong><strong>dependent</strong><br />

features <strong>in</strong> Fig. 3a (arrows) and are clearly seen <strong>in</strong> the <strong>in</strong>set show<strong>in</strong>g a trace through<br />

the center of the one-<strong>electron</strong> (4N 0 + 1) diamond along the dashed l<strong>in</strong>e. Thus follow<strong>in</strong>g the magnetic<br />

field dependence of this trace, as shown <strong>in</strong> Fig. 3c, maps out the level structure. The energies<br />

of the excitations are given by the <strong>in</strong>flection po<strong>in</strong>ts of the curve (i.e. peaks/dips of d 2 I/dV 2<br />

sd) 27 and<br />

the level evolution is therefore directly evident <strong>in</strong> Fig. 3d-i, which show color maps of the second<br />

derivative vs. V sd and B ⊥ , B ‖ for V g positioned <strong>in</strong> the center of the one, two, and three <strong>electron</strong><br />

charge states. As expla<strong>in</strong>ed below, the SOI is clearly expressed <strong>in</strong> all three spectra.<br />

Consider first the one-<strong>electron</strong> case: In a parallel field (Fig. 3d), the asymmetric splitt<strong>in</strong>g of<br />

the two doublets is evident (black vs. green arrows) and apply<strong>in</strong>g the field perpendicularly (Panel<br />

g), the SOI is directly expressed as the avoided cross<strong>in</strong>g <strong>in</strong>dicated on the figure. The measurement<br />

is <strong>in</strong> near-perfect agreement with the s<strong>in</strong>gle-particle excitation spectrum calculated by subtract<strong>in</strong>g<br />

the energies of Fig. 3b and shown by the solid l<strong>in</strong>es. The calculation depends on only three parameters:<br />

∆ SO = 0.15 meV set directly by the avoided cross<strong>in</strong>g, ∆ KK ′<br />

= 0.45 meV determ<strong>in</strong>ed<br />

from the zero-field splitt<strong>in</strong>g of the doublets (see Fig. 2d), and g orb = 5.7 set by the slopes of the<br />

excitation l<strong>in</strong>es from α to γ, δ <strong>in</strong> Panel d.<br />

Consider now the role of SOI for the doubly occupied CNT quartet. This situation is of particular<br />

importance for quantum computation as a paradigm for preparation of entangled states and<br />

a fundamental part of Pauli blockade <strong>in</strong> double quantum dots 28 . Figures 3e,h show the measured<br />

6


spectra <strong>in</strong> parallel and perpendicular fields. The model perfectly describes the measurement and<br />

now conta<strong>in</strong>s no free parameters s<strong>in</strong>ce these are fixed by one-<strong>electron</strong> measurement. Six states are<br />

expected: the ground state s<strong>in</strong>glet-like state ˜S 0 formed by the two <strong>electron</strong>s occupy<strong>in</strong>g the lowenergy<br />

Kramers doublet 29 , three triplet-like ˜T − , ˜T 0 , ˜T + and a s<strong>in</strong>glet-like state ˜S 1 , which all use<br />

one state from each doublet and the s<strong>in</strong>glet-like ˜S 2 with both <strong>electron</strong>s occupy<strong>in</strong>g the high-energy<br />

doublet. The ground state ˜S 0 does not appear directly <strong>in</strong> the measurement, but sets the orig<strong>in</strong> for<br />

the cotunnel<strong>in</strong>g excitations. The excitation to the high-energy ˜S 2 (dashed l<strong>in</strong>e) is absent <strong>in</strong> the<br />

experiment, s<strong>in</strong>ce it cannot be reached by promot<strong>in</strong>g only a s<strong>in</strong>gle <strong>electron</strong> from ˜S 0 . In Fig. 3h<br />

excitations to ˜T − and ˜T + are clearly observed, while ˜S 1 and ˜T 0 merge <strong>in</strong>to a s<strong>in</strong>gle high-<strong>in</strong>tensity<br />

peak show<strong>in</strong>g that any exchange splitt<strong>in</strong>g J is below the spectroscopic l<strong>in</strong>e width ≈ 100µeV 23 . In<br />

other quartets an exchange splitt<strong>in</strong>g is <strong>in</strong>deed observed (see Supplementary Information). In the<br />

two-<strong>electron</strong> spectra the SOI is directly expressed as the avoided cross<strong>in</strong>g at B ⊥ ≈ 4.5 T accompany<strong>in</strong>g<br />

the ˜S 0 ↔ ˜T − ground state transition 15, 30 . In quartets of yet stronger tunnel-<strong>coupl<strong>in</strong>g</strong> it is<br />

replaced by a s<strong>in</strong>glet-triplet Kondo resonance 31 (see Supplementary Information).<br />

F<strong>in</strong>ally, the spectrum of three <strong>electron</strong>s <strong>in</strong> the four-<strong>electron</strong> shell is equivalent to that of a<br />

s<strong>in</strong>gle hole <strong>in</strong> a full shell; at low fields the δ-state becomes the ground-state and γ the first excited<br />

state, while α and β then constitute the excited doublet. As seen by compar<strong>in</strong>g Fig. 2b and 2d<br />

SOI breaks the <strong>in</strong>tra-shell <strong>electron</strong>-hole symmetry of the nanotube spectrum. This is evident <strong>in</strong><br />

the experiment when compar<strong>in</strong>g Fig. 3d and 3f: In 3f, <strong>in</strong>creas<strong>in</strong>g B ‖ , the lowest excited state γ,<br />

barely separates from the ground state δ and at B ‖ = 1.1 T they cross aga<strong>in</strong>, caus<strong>in</strong>g a ground state<br />

transition. At the cross<strong>in</strong>g po<strong>in</strong>t, the <strong>sp<strong>in</strong></strong>-degenerate ground-state results <strong>in</strong> a zero-bias Kondo<br />

peak (see <strong>in</strong>set) 32 . Interest<strong>in</strong>gly, this degeneracy also forms the qubit proposed <strong>in</strong> Ref. 1. For the<br />

B ⊥ -dependence the one- and three-<strong>electron</strong> cases rema<strong>in</strong> identical and Fig. 3i exhibits aga<strong>in</strong> the<br />

SOI-<strong>in</strong>duced avoided cross<strong>in</strong>gs.<br />

7


<strong>Gate</strong>-<strong>dependent</strong> <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>coupl<strong>in</strong>g</strong><br />

Hav<strong>in</strong>g established the presence of SOI <strong>in</strong> the general many-<strong>electron</strong> disordered quantum dot, we<br />

now focus on the dependence of ∆ SO on the quantum dot occupation. To this end, we have repeated<br />

the spectroscopy of Fig. 3 for a large number of CNT quartets and <strong>in</strong> each case extracted<br />

∆ SO by fitt<strong>in</strong>g to the s<strong>in</strong>gle-particle model (all underly<strong>in</strong>g data are presented <strong>in</strong> the Supplementary<br />

Information). Figure 4a shows the result as a function of V g . An overall decrease of ∆ SO is observed<br />

as <strong>electron</strong>s are added to the conduction band and, <strong>in</strong>terest<strong>in</strong>gly, a negative value is found<br />

<strong>in</strong> the valence band (i.e. SOI favor<strong>in</strong>g anti-parallel rather than parallel <strong>sp<strong>in</strong></strong> and <strong>orbit</strong>al angular<br />

momentum, thus effectively <strong>in</strong>terchang<strong>in</strong>g the one and three-<strong>electron</strong> spectra).<br />

The magnitude of ∆ SO is given by the <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> splitt<strong>in</strong>g of the underly<strong>in</strong>g graphene band<br />

structure as we will now discuss.<br />

For flat graphene this splitt<strong>in</strong>g is very weak (∆ graphene<br />

SO<br />

1 µeV) 12 as it is second-order <strong>in</strong> the already weak atomic SOI of <strong>car</strong>bon ∆ C SO ∼ 8 meV. In<br />

nanotubes, however, the curvature <strong>in</strong>duces a <strong>coupl<strong>in</strong>g</strong> between the π- and σ-bands and generates<br />

a curvature-<strong>in</strong>duced <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> splitt<strong>in</strong>g, which is first order <strong>in</strong> the atomic SOI and thus greatly<br />

enhances ∆ SO . Around a Dirac-po<strong>in</strong>t of the Brillou<strong>in</strong> zone (e.g. K) the graphene band structure<br />

appears as on Fig. 4b 11–14 : The <strong>sp<strong>in</strong></strong>-up and <strong>sp<strong>in</strong></strong>-down Dirac cones are split by SOI both <strong>in</strong> energy<br />

and along k ⊥ , the momentum <strong>in</strong> the circumferential direction of the CNT. The schematic also<br />

highlights the CNT band structure (Fig. 4a upper <strong>in</strong>set) obta<strong>in</strong>ed by impos<strong>in</strong>g periodic boundary<br />

conditions on k ⊥ . In a f<strong>in</strong>ite-length CNT quantum dot also the wavevector along the nanotube axis,<br />

k ‖ , is quantized, and lett<strong>in</strong>g ɛ N denote the energy of the N th longitud<strong>in</strong>al mode the effective SOI<br />

for a small-gap CNT becomes<br />

∆ SO,± = E↑ K − E↓ K (1)<br />

√<br />

√<br />

= 2∆ 0 SO ± (∆ g + ∆ 1 SO) 2 + ɛ 2 N ∓ (∆ g − ∆ 1 SO) 2 + ɛ 2 N.<br />

Here the upper(lower) sign refers to the conduction(valence) band, ∆ g is the curvature <strong>in</strong>duced<br />

energy gap 33, 34 , and the two terms ∆ 0 SO and ∆ 1 SO are the band structure <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> parameters due to<br />

8<br />


curvature 11–14 . The separate contributions of the two terms are illustrated <strong>in</strong> the lower <strong>in</strong>set to Fig.<br />

4a. ∆ 1 SO was found already <strong>in</strong> the work of Ando 10 and accounts for the k ⊥ -separation of the Diraccones<br />

<strong>in</strong> Fig. 4b. For the CNT band structure this term acts equivalently to an Aharonov-Bohm flux<br />

from a parallel <strong>sp<strong>in</strong></strong>-<strong>dependent</strong> magnetic field, which changes the quantization conditions <strong>in</strong> the k ⊥ -<br />

direction. Characteristically, its contribution to ∆ SO decreases with the number of <strong>electron</strong>s <strong>in</strong> the<br />

dot (ɛ N ) and reverses sign for the valence band. This contrasts the ɛ N -<strong>in</strong><strong>dependent</strong> contribution<br />

from the recently predicted ∆ 0 SO-term 12–14 , which acts as an effective valley-<strong>dependent</strong> Zeeman<br />

term and accounts for the energy splitt<strong>in</strong>g of the Dirac-cones <strong>in</strong> Fig. 4b. For the nanotube studied<br />

<strong>in</strong> Kuemmeth et al. 8 ∆ SO has the same sign for <strong>electron</strong>s and holes, i.e., |∆ 0 SO| > |∆ 1 SO|. In our<br />

case, the negative values measured <strong>in</strong> the valence band demonstrate the opposite limit |∆ 0 SO| <<br />

|∆ 1 SO|. Thus, the measured gate-dependence of ∆ SO agrees with the <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> splitt<strong>in</strong>g of the<br />

graphene Dirac spectrum caused by the curvature of the nanotube, and fitt<strong>in</strong>g to Eq. 1 (Fig. 4a,<br />

dashed l<strong>in</strong>e) yields ∆ 0 SO = 10 ± 10 µeV and ∆ 1 SO = 220 ± 25 µeV 35 . Band structure models<br />

relate these parameters to the structure of the nanotube 12–14 : ∆ 0 SO = λ 0 ∆ C SO∆ g D and ∆ 1 SO =<br />

λ 1 ∆ C SO/D, where D is the nanotube diameter and λ 1,2 constants that depend on the CNT class<br />

(semiconduct<strong>in</strong>g, small-band-gap). Typically CVD-grown s<strong>in</strong>gle wall CNTs have diameters <strong>in</strong><br />

the range 1-3 nm, while obta<strong>in</strong><strong>in</strong>g D from the measured values of g 36 orb gives D ≈ 6 nm. Thus<br />

tak<strong>in</strong>g D = 1-6 nm we estimate λ 1 = 0.03-0.17 nm and λ 0 = 0.7-4 · 10 −6 (nm · meV) −1 . While<br />

λ 1 is consistent with the value quoted <strong>in</strong> the theoretical literature (0.095 nm) 14 , the calculated λ 0<br />

value −4·10 −3 (nm · meV) −1 does not match the experiment and similar deviations appear 14 when<br />

compar<strong>in</strong>g the theory to the SOI values measured <strong>in</strong> Ref. 8. The orig<strong>in</strong> of this discrepancy rema<strong>in</strong>s<br />

unknown, and further work on SOI <strong>in</strong> nanotubes with known chirality is needed to make further<br />

progress.<br />

9


Methods<br />

The devices are made on a highly doped Silicon wafer term<strong>in</strong>ated by 500 nm of SiO 2 . Alignment<br />

marks (Cr, 70 nm) are def<strong>in</strong>ed by <strong>electron</strong> beam lithography prior to deposition of catalyst<br />

islands made of Iron nitrate (Fe(NO 3 ) 3 ), Molybdenum acetate and Alum<strong>in</strong>a support particles 37 .<br />

The sample is then transferred to a furnace, where s<strong>in</strong>gle wall <strong>car</strong>bon nanotubes are grown by<br />

chemical vapor deposition at 850-900 ◦ C <strong>in</strong> an atmosphere of hydrogen, argon and methane gases.<br />

Pairs of electrodes consist<strong>in</strong>g of Au/Pd (40/10 nm) spaced by 400 nm are fabricated alongside<br />

the catalyst islands by standard <strong>electron</strong> beam lithography techniques.<br />

F<strong>in</strong>ally, bond<strong>in</strong>g pads<br />

(Au/Cr 150/10 nm) are made by optical lithography and the devices are screened by room- and<br />

low-temperature measurements.<br />

We measured the sample <strong>in</strong> an Oxford dilution refrigerator fitted with an Attocube ANRv51<br />

piezo rotator which allows high precision <strong>in</strong>-plane rotation of the sample <strong>in</strong> large magnetic fields.<br />

The rotator provides resistive feedback of the actual position measured by lock-<strong>in</strong> techniques. For<br />

electrical filter<strong>in</strong>g, room-temperature π-filters and low-temperature Thermocoax are used. The<br />

base temperature of the modified refrigerator is around 100 mK. The CNT measurement setup<br />

consists of a National Instrument digital to analog <strong>car</strong>d, custom made optically coupled amplifiers,<br />

a DL Instruments 1211 current to voltage amplifier and a Pr<strong>in</strong>ceton Applied Research 5210 Lock<strong>in</strong><br />

amplifier. Standard dc and lock-<strong>in</strong> techniques have been used to measure current and differential<br />

conductance dI/dV sd while d 2 I/dV 2<br />

sd is obta<strong>in</strong>ed numerically.<br />

10


References and Notes<br />

1. Bulaev, D., Trauzettel, B. & Loss, D. Sp<strong>in</strong>-<strong>orbit</strong> <strong>in</strong>teraction and anomalous <strong>sp<strong>in</strong></strong> relaxation <strong>in</strong><br />

<strong>car</strong>bon nanotube quantum dots. Phys. Rev. B 77, 235301 (2008).<br />

2. Fischer, J. & Loss, D. Deal<strong>in</strong>g with decoherence. Science 324, 1277–1278 (2009).<br />

3. Churchill, H. et al. Electron-nuclear <strong>in</strong>teraction <strong>in</strong> c-13 nanotube double quantum dots. Nat.<br />

Phys. 5, 321 – 326 (2009).<br />

4. Fl<strong>in</strong>dt, C., Sørensen, A. & Flensberg, K. Sp<strong>in</strong>-<strong>orbit</strong> mediated control of <strong>sp<strong>in</strong></strong> qubits.<br />

Phys. Rev. Lett. 97, 240501 (2006).<br />

5. Trif, M., Golovach, V. & Loss, D. Sp<strong>in</strong>-<strong>sp<strong>in</strong></strong> <strong>coupl<strong>in</strong>g</strong> <strong>in</strong> electrostatically coupled quantum<br />

dots. Phys. Rev. B 75, 085307 (2007).<br />

6. Nowack, K., Koppens, F., Nazarov, Y. & Vandersypen, L. Coherent control of a s<strong>in</strong>gle <strong>electron</strong><br />

<strong>sp<strong>in</strong></strong> with electric fields. Science 318, 1430 – 1433 (2007).<br />

7. Pfund, A., Shorubalko, I., Enssl<strong>in</strong>, K. & Leturcq, R. Suppression of <strong>sp<strong>in</strong></strong> relaxation <strong>in</strong> an <strong>in</strong>as<br />

nanowire double quantum dot. Phys. Rev. Lett. 99, 036801 (2007).<br />

8. Kuemmeth, F., Ilani, S., Ralph, D. & McEuen, P. Coupl<strong>in</strong>g of <strong>sp<strong>in</strong></strong> and <strong>orbit</strong>al motion of<br />

<strong>electron</strong>s <strong>in</strong> <strong>car</strong>bon nanotubes. Nature 452, 448 – 452 (2008).<br />

9. Kuemmeth, F., Churchill, H., Herr<strong>in</strong>g, P. & Marcus, C. Carbon nanotubes for coherent <strong>sp<strong>in</strong></strong>tronics.<br />

Mat. Today 13, 18–26 (2010).<br />

10. Ando, T. Sp<strong>in</strong>-<strong>orbit</strong> <strong>in</strong>teraction <strong>in</strong> <strong>car</strong>bon nanotubes. J. Phys. Soc. Jpn. 69, 1757 – 1763<br />

(2000).<br />

11. Chico, L., Lopez-Sancho, M. & Munoz, M. Sp<strong>in</strong> splitt<strong>in</strong>g <strong>in</strong>duced by <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>in</strong>teraction <strong>in</strong><br />

chiral nanotubes. Phys. Rev. Lett. 93, 176402 (2004).<br />

11


12. Huertas-Hernando, D., Gu<strong>in</strong>ea, F. & Brataas, A. Sp<strong>in</strong>-<strong>orbit</strong> <strong>coupl<strong>in</strong>g</strong> <strong>in</strong> curved graphene,<br />

fullerenes, nanotubes, and nanotube caps. Phys. Rev. B 74, 155426 (2006).<br />

13. Jeong, J. & Lee, H. Curvature-enhanced <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>coupl<strong>in</strong>g</strong> <strong>in</strong> a <strong>car</strong>bon nanotube. Phys. Rev. B<br />

80, 075409 (2009).<br />

14. Izumida, W., Sato, K. & Saito, R. Sp<strong>in</strong>-<strong>orbit</strong> <strong>in</strong>teraction <strong>in</strong> s<strong>in</strong>gle wall <strong>car</strong>bon nanotubes:<br />

Symmetry adapted tight-b<strong>in</strong>d<strong>in</strong>g calculation and effective model analysis. J. Phys. Soc. Jpn.<br />

78, 074707 (2009).<br />

15. Fasth, C., Fuhrer, A., Samuelson, L., Golovach, V. & Loss, D. Direct measurement of the<br />

<strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>in</strong>teraction <strong>in</strong> a two-<strong>electron</strong> <strong>in</strong>as nanowire quantum dot. Phys. Rev. Lett. 98, 266801<br />

(2007).<br />

16. Csonka, S. et al. Giant fluctuations and gate control of the g-factor <strong>in</strong> <strong>in</strong>as nanowire quantum<br />

dots. Nano Lett. 8, 3932–3935 (2008).<br />

17. Nilsson, H. et al. Giant, level-<strong>dependent</strong> g factors <strong>in</strong> <strong>in</strong>sb nanowire quantum dots. Nano Lett.<br />

9, 3151–3156 (2009).<br />

18. Flensberg, K. & Marcus, C. Bends <strong>in</strong> nanotubes allow electric <strong>sp<strong>in</strong></strong> control and <strong>coupl<strong>in</strong>g</strong>.<br />

Phys. Rev. B 81, 195418 (2010).<br />

19. Liang, W., Bockrath, M. & Park, H. Shell fill<strong>in</strong>g and exchange <strong>coupl<strong>in</strong>g</strong> <strong>in</strong> metallic s<strong>in</strong>glewalled<br />

<strong>car</strong>bon nanotubes. Phys. Rev. Lett. 88, 126801 (2002).<br />

20. Cobden, D. & Nygard, J. Shell fill<strong>in</strong>g <strong>in</strong> closed s<strong>in</strong>gle-wall <strong>car</strong>bon nanotube quantum dots.<br />

Phys. Rev. Lett. 89, 046803 (2002).<br />

21. Jarillo-Herrero, P. et al. Electronic transport spectroscopy of <strong>car</strong>bon nanotubes <strong>in</strong> a magnetic<br />

field. Phys. Rev. Lett. 94, 156802 (2005).<br />

12


22. Makarovski, A., An, L., Liu, J. & F<strong>in</strong>kelste<strong>in</strong>, G. Persistent <strong>orbit</strong>al degeneracy <strong>in</strong> <strong>car</strong>bon<br />

nanotubes. Phys. Rev. B 74, 155431 (2006).<br />

23. Moriyama, S., Fuse, T., Suzuki, M., Aoyagi, Y. & Ishibashi, K. Four-<strong>electron</strong> shell structures<br />

and an <strong>in</strong>teract<strong>in</strong>g two-<strong>electron</strong> system <strong>in</strong> <strong>car</strong>bon-nanotube quantum dots. Phys. Rev. Lett. 94,<br />

186806 (2005).<br />

24. Oreg, Y., Byczuk, K. & Halper<strong>in</strong>, B. Sp<strong>in</strong> configurations of a <strong>car</strong>bon nanotube <strong>in</strong> a nonuniform<br />

externalpotential. Phys. Rev. Lett. 85, 365–368 (2000).<br />

25. M<strong>in</strong>ot, E., Yaish, Y., Sazonova, V. & Mceuen, P. Determ<strong>in</strong>ation of <strong>electron</strong> <strong>orbit</strong>al magnetic<br />

moments <strong>in</strong> <strong>car</strong>bon nanotubes. Nature 428, 536 – 539 (2004).<br />

26. De Franceschi, S. et al. Electron cotunnel<strong>in</strong>g <strong>in</strong> a semiconductor quantum dot. Phys. Rev. Lett.<br />

86, 878–881 (2001).<br />

27. Paaske, J. et al. Non-equilibrium s<strong>in</strong>glet-triplet kondo effect <strong>in</strong> <strong>car</strong>bon nanotubes. Nat. Phys.<br />

2, 460–464 (2006).<br />

28. Hanson, R., Kouwenhoven, L., Petta, J., Tarucha, S. & Vandersypen, L. Sp<strong>in</strong>s <strong>in</strong> few-<strong>electron</strong><br />

quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).<br />

29. The states are not the conventional <strong>sp<strong>in</strong></strong> s<strong>in</strong>glets and triplets as the they are modified by SOI<br />

as emphasized by the tildes.<br />

30. From the high-field ground state ˜T − , excitations to ˜S 2 are actually allowed, however, the ˜S 0 ↔<br />

˜T − and ˜S 2<br />

↔ ˜T + avoided cross<strong>in</strong>gs occur simultaneously and as ˜T − to ˜T + excitations are<br />

forbidden the dashed l<strong>in</strong>e rema<strong>in</strong>s unseen <strong>in</strong> the experiment.<br />

31. Nygard, J., Cobden, D. & L<strong>in</strong>delof, P. Kondo physics <strong>in</strong> <strong>car</strong>bon nanotubes. Nature 408,<br />

342–346 (2000).<br />

13


32. Galp<strong>in</strong>, M., Jayatilaka, F., Logan, D. & Anders, F. Interplay between kondo physics and<br />

<strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>coupl<strong>in</strong>g</strong> <strong>in</strong> <strong>car</strong>bon nanotube quantum dots. Phys. Rev. B 81, 075437 (2010).<br />

33. Kane, C. & Mele, E. Size, shape, and low energy <strong>electron</strong>ic structure of <strong>car</strong>bon nanotubes.<br />

Phys. Rev. Lett. 78, 1932–1935 (1997).<br />

34. Kle<strong>in</strong>er, A. & Eggert, S. Band gaps of primary metallic <strong>car</strong>bon nanotubes. Phys. Rev. B 63,<br />

073408 (2001).<br />

35. The band-gap of the device E g ≈ 30 meV is measured directly as a large Coulomb diamond<br />

at V g ≈ 1 V and ɛ N ≈ 25 meV/V × V g is estimated from the level spac<strong>in</strong>g ∆E ≈ 3 meV and<br />

≈ 8 shells/V .<br />

36. With<strong>in</strong> the present theory the <strong>orbit</strong>al g-factor depends on <strong>electron</strong> fill<strong>in</strong>g g orb ≈<br />

(ev F D/2µ B )/ √ 1 + (ɛ n /∆ g ) 2 <strong>in</strong> agreement with the measurements (see SOM).<br />

37. Kong, J., Soh, H., Cassell, A., Quate, C. & Dai, H. Synthesis of <strong>in</strong>dividual s<strong>in</strong>gle-walled<br />

<strong>car</strong>bon nanotubes on patterned silicon wafers. Nature 395, 878–881 (1998).<br />

Acknowledgements<br />

We thank P. E. L<strong>in</strong>delof, J. Myg<strong>in</strong>d, H.I. Jørgensen, C.M. Marcus, and F. Kuemmeth for discussions<br />

and experimental support. T.S.J. acknowledges the Carlsberg Foundation and Lundbeck<br />

Foundation for f<strong>in</strong>ancial support. K.G.R. K.F. J.N. acknowledges The Danish Research Council<br />

and University of Copenhagen Center of Excellence.<br />

Author contributions<br />

T.S.J. and K.G.R. performed the measurements, analyzed the data and wrote the paper. T.S.J.<br />

designed the rotat<strong>in</strong>g sample stage. K.G.R. made the sample. K.M., T.F. and J.N. participated <strong>in</strong><br />

14


discussions and writ<strong>in</strong>g the paper. J.P. and K.F. developed the theory and guided the experiment.<br />

15


Figure 1<br />

Four-fold periodic nanotube spectrum. a, Schematic illustration of the device<br />

and setup. CNT quantum dots are measured at T = 100 mK <strong>in</strong> a standard two-term<strong>in</strong>al<br />

configuration <strong>in</strong> a cryostat modified to enable measurements <strong>in</strong> a high magnetic field at<br />

arbitrary <strong>in</strong>-plane angles θ to the CNT axis. b, Typical measurement of the differential<br />

conductance dI/dV sd vs. source-dra<strong>in</strong> bias V sd and gate voltage V g for a <strong>multi</strong>-<strong>electron</strong><br />

CNT quantum dot. c, Addition energy as a function of V g . In b and c the characteristic<br />

fill<strong>in</strong>g of four-<strong>electron</strong> shells is clearly seen.<br />

Figure 2<br />

Role of <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>in</strong>teraction and disorder for the nanotube energy spectrum.<br />

Calculated s<strong>in</strong>gle-particle energy spectrum as a function of magnetic field applied perpendicular<br />

(B ⊥ ) and parallel (B ‖ ) to the CNT axis <strong>in</strong> the limit<strong>in</strong>g cases of neither SOI nor<br />

disorder a, disorder alone b, SOI alone c, and the two comb<strong>in</strong>ed ∆ KK ′ > ∆ SO > 0 d.<br />

Depend<strong>in</strong>g on the CNT type, <strong>electron</strong> fill<strong>in</strong>g and degree of disorder, all four situations can<br />

occur.<br />

Figure 3<br />

Sp<strong>in</strong>-<strong>orbit</strong> <strong>in</strong>teraction <strong>in</strong> a disordered <strong>multi</strong>-<strong>electron</strong> nanotube quantum dot.<br />

a, Measurement of dI/dV sd vs. V sd and V g correspond<strong>in</strong>g to the consecutive addition of<br />

four <strong>electron</strong>s to an empty shell (<strong>in</strong>dicated on Fig. 1b). A strong tunnel <strong>coupl<strong>in</strong>g</strong> results<br />

<strong>in</strong> significant cotunnel<strong>in</strong>g which is evident as horizontal l<strong>in</strong>es truncat<strong>in</strong>g the diamonds<br />

(arrows). The black trace shows a cut along the dashed l<strong>in</strong>e. b, Schematic illustration<br />

of the relevant <strong>in</strong>elastic cotunnel<strong>in</strong>g processes. c, Traces along the dashed l<strong>in</strong>e <strong>in</strong> a for<br />

various B ‖ (red: B = 0, scale-bar: 0.1e 2 /h). d-f, The second derivative d 2 I/dV 2<br />

sd along the<br />

center of the N 0 + 1, N 0 + 2 and N 0 + 3 diamonds, respectively, as a function of a parallel<br />

magnetic field. Peaks/dips appear at <strong>in</strong>flection po<strong>in</strong>ts of the differential conductance and<br />

thus correspond to the energy difference between ground and excited states. In f the <strong>in</strong>set<br />

shows dI/dV sd vs. −0.3 < V sd < 0.3 mV and B ‖ = 0; 0.55; 1.1; 1.65 T (arrows) illustrat<strong>in</strong>g<br />

16


the splitt<strong>in</strong>g and SOI-<strong>in</strong>duced reappearance of a zero-bias Kondo resonance. g-i, As d-f<br />

but measured as a function of B ⊥ . The effective <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>coupl<strong>in</strong>g</strong> appears directly as<br />

the avoided cross<strong>in</strong>gs <strong>in</strong>dicated by ∆ SO . In d-i the black l<strong>in</strong>es results from the s<strong>in</strong>gleparticle<br />

model with parameters ∆ SO = 0.15 meV, ∆ KK ′<br />

= 0.45 meV, and g orb = 11.4. The<br />

dashed l<strong>in</strong>es <strong>in</strong> e,h correspond to the excitations to the two-<strong>electron</strong> s<strong>in</strong>glet-like ˜S 2 state<br />

which cannot be reached by promot<strong>in</strong>g a s<strong>in</strong>gle <strong>electron</strong> from the ground state ( ˜S 0 ) and<br />

therefore expected to be absent <strong>in</strong> the measurement.<br />

Figure 4<br />

Tun<strong>in</strong>g ∆ SO <strong>in</strong> accordance with the curvature-<strong>in</strong>duced <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> splitt<strong>in</strong>g of the<br />

nanotube Dirac-spectrum. a, Measured effective <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>coupl<strong>in</strong>g</strong> strength as a function<br />

of V g extracted from spectroscopy measurements like <strong>in</strong> Fig. 3, repeated for <strong>multi</strong>ple<br />

shells. The dashed l<strong>in</strong>e is a fit to the theory. Lower <strong>in</strong>set: Expected dependence of ∆ SO<br />

on ɛ N highlight<strong>in</strong>g the two SOI-contributions ∆ 0 SO and ∆ 1 SO. b, Graphene dispersion-cones<br />

around one K-po<strong>in</strong>t of the graphene Brillou<strong>in</strong> zone. Due to SOI the <strong>sp<strong>in</strong></strong>-up (blue) and<br />

<strong>sp<strong>in</strong></strong>-down (red) Dirac cones are split <strong>in</strong> both the vertical (E) and k ⊥ -direction. The cut<br />

shows the result<strong>in</strong>g CNT band structure also shown <strong>in</strong> the upper <strong>in</strong>set <strong>in</strong> a.<br />

17


Figure 1<br />

a<br />

b<br />

c<br />

V sd (mV)<br />

E add (meV)<br />

2<br />

0<br />

-2<br />

8<br />

3<br />

Fig. 3<br />

-8<br />

4N0~180<br />

+24<br />

-4<br />

+4 +12 +16 +20<br />

+8<br />

+28<br />

5.5 V g (V)<br />

6.5<br />

+32<br />

1<br />

0<br />

dI/dV sd (e 2 /h)


Figure 2<br />

a<br />

∆ KK' = 0<br />

∆ SO = 0<br />

E K' b ∆ KK' > 0<br />

∆ SO = 0<br />

K'<br />

E<br />

A<br />

A<br />

∆ KK'<br />

K'<br />

K<br />

K<br />

K<br />

B<br />

B<br />

B<br />

B ||<br />

B<br />

B ||<br />

c<br />

∆ KK' = 0<br />

∆ SO > 0<br />

E<br />

∆ SO<br />

K'<br />

K'<br />

K<br />

d<br />

∆ KK' > ∆ SO<br />

∆ SO > 0<br />

E<br />

2 2<br />

∆ KK' + ∆ SO<br />

∆ β<br />

SO<br />

δ<br />

γ<br />

K<br />

α<br />

B<br />

B ||<br />

B<br />

B ||


Figure 3<br />

a<br />

V sd (mV)<br />

2<br />

0<br />

-2<br />

3<br />

dI/dV sd (e 2 /h)<br />

0 0.75<br />

4N 0<br />

+1 +2 +3<br />

5.6 V g (V) 5.7<br />

b<br />

B<br />

∆ SO<br />

α<br />

B || = -3T<br />

B ||<br />

-3 3<br />

2∆ SO<br />

d 4N 0 + 1 e 4N 0 +2 f<br />

4N 0 +3<br />

E<br />

δ<br />

β γ<br />

c<br />

V sd (mV)<br />

B || = 3T<br />

1<br />

V sd (mV)<br />

0<br />

0<br />

V sd (mV)<br />

-3<br />

-3 B || (T)<br />

3 -3 B || (T) 3<br />

1.5<br />

g<br />

h<br />

~<br />

S 2<br />

V sd (mV)<br />

∆<br />

0<br />

SO<br />

~<br />

T +<br />

~<br />

T 0<br />

~<br />

T -<br />

~<br />

S 1<br />

-3 B || (T)<br />

3<br />

i<br />

∆ SO<br />

-1<br />

35<br />

-27<br />

d 2 2<br />

I/dV sd (mS/V)<br />

-1.5<br />

-7 B (T)<br />

7 -7 B (T)<br />

7 -7 B (T)<br />

7


Figure 4<br />

a<br />

0.3<br />

E<br />

Fig 3<br />

b<br />

E<br />

∆ SO<br />

∆ SO (meV)<br />

0.0<br />

k ||<br />

∆ SO<br />

k<br />

k ||<br />

Band gap<br />

2∆ 0<br />

2∆ 1<br />

-0.3<br />

-4 0 4 8<br />

V g (V)<br />

ε n


Supplementary Information<br />

<strong>Gate</strong>-<strong>dependent</strong> <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>coupl<strong>in</strong>g</strong> <strong>in</strong><br />

<strong>multi</strong>-<strong>electron</strong> <strong>car</strong>bon nanotubes<br />

T. S. Jespersen, K. Grove-Rasmussen, J. Paaske,<br />

K. Muraki, T. Fujisawa, J. Nygård, and K. Flensberg<br />

Abstract<br />

We here present the theory and additional experimental data support<strong>in</strong>g<br />

the conclusions <strong>in</strong> the article. First, the <strong>car</strong>bon nanotube dispersion<br />

relation <strong>in</strong>clud<strong>in</strong>g <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>in</strong>teraction is reviewed start<strong>in</strong>g from a modified<br />

Dirac Hamiltonian, and the s<strong>in</strong>gle-particle model used <strong>in</strong> the fitt<strong>in</strong>g<br />

procedure is expla<strong>in</strong>ed. Second, tunnel<strong>in</strong>g spectroscopy data and the correspond<strong>in</strong>g<br />

analysis used to extract the gate-<strong>dependent</strong> <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>coupl<strong>in</strong>g</strong><br />

strength are presented.<br />

Contents<br />

1 Carbon nanotube quantum dot with <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>in</strong>teraction and<br />

iso-<strong>sp<strong>in</strong></strong> mix<strong>in</strong>g 2<br />

1.1 The spectrum for parallel magnetic field . . . . . . . . . . . . . . 3<br />

1.2 Includ<strong>in</strong>g disorder . . . . . . . . . . . . . . . . . . . . . . . . . . 4<br />

1.3 Two-<strong>electron</strong> spectrum . . . . . . . . . . . . . . . . . . . . . . . . 4<br />

2 Supplementary data 4<br />

2.1 Conduction band . . . . . . . . . . . . . . . . . . . . . . . . . . . 5<br />

2.1.1 Sequential tunnel<strong>in</strong>g spectroscopy . . . . . . . . . . . . . 5<br />

2.1.2 Cotunnel<strong>in</strong>g spectroscopy . . . . . . . . . . . . . . . . . . 7<br />

2.2 Valence band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13<br />

i


1 Carbon nanotube quantum dot with <strong>sp<strong>in</strong></strong>-<strong>orbit</strong><br />

<strong>in</strong>teraction and iso-<strong>sp<strong>in</strong></strong> mix<strong>in</strong>g<br />

In this section, we discuss the theory for the spectrum of a <strong>car</strong>bon nanotube<br />

quantum dot and how it is modified by <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>coupl<strong>in</strong>g</strong> and iso-<strong>sp<strong>in</strong></strong> (valley)<br />

mix<strong>in</strong>g. The theory is used to fit the spectroscopic data and to extract the<br />

values of the <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>coupl<strong>in</strong>g</strong> and KK ′ iso-<strong>sp<strong>in</strong></strong> mix<strong>in</strong>g terms. Start<strong>in</strong>g from<br />

a clean, disorder-free nanotube (i.e. no valley mix<strong>in</strong>g), the Hamiltonian near<br />

the K and K ′ po<strong>in</strong>ts is [1, 2]<br />

H 0 = v ( τp x σ 1 + p y σ 2<br />

)<br />

+ ∆g σ 1 + τs y σ 1 ∆ 1 SO + τs y ∆ 0 SO + V (y), (1)<br />

where σ i , i = 1, 2, 3 are the Pauli matrices <strong>in</strong> the A-B graphene sub-lattice<br />

space, v is the Fermi velocity, and τ = ±1 the iso-<strong>sp<strong>in</strong></strong> <strong>in</strong>dex. Here p y is the<br />

momentum along the tube (coord<strong>in</strong>ate y), while p x is <strong>in</strong> the circumferential<br />

direction (coord<strong>in</strong>ate x). The <strong>sp<strong>in</strong></strong> is described by the Pauli matrix s y with<br />

eigenvalues s = ±1 for eigenstates with <strong>sp<strong>in</strong></strong>s aligned along the nanotube axis,<br />

and V (y) is the conf<strong>in</strong><strong>in</strong>g potential along the tube. The curvature <strong>in</strong>duced mass<br />

term ∆ g depends on the diameter D and the chiral angle η (def<strong>in</strong>ed to be 0<br />

for zigzag tube), see below. The <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>in</strong>teraction part of the Hamiltonian<br />

has two types of curvature <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> terms: one diagonal and one non-diagonal<br />

<strong>in</strong> A-B space. The strength of these are ∆ 0 SO and ∆1 SO , respectively. The<br />

curvature <strong>in</strong>duced <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>in</strong>teraction is proportional to 1/D and the <strong>in</strong>traatomic<br />

<strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>in</strong>teraction V so ≃ 6-8 meV [2, 3], while the diagonal part also<br />

depends on the chirality of the tube. Bandstructure calculations [2] give that<br />

∆ 1 SO = α 1<br />

V so<br />

D , α 1 ≈ 0.095 nm (2)<br />

∆ 0 SO = α 2<br />

V so<br />

D cos (3η) , α 2 ≈ −0.090 nm (3)<br />

∆ g = β D 2 cos (3η) , β ≈ 24 meV· nm2 (4)<br />

These values are results of a tight-b<strong>in</strong>d<strong>in</strong>g calculation, with <strong>in</strong>tra atomic <strong>sp<strong>in</strong></strong><strong>orbit</strong><br />

<strong>in</strong>teractions only, and should therefore be taken with some caution. In<br />

our experiment, we cannot determ<strong>in</strong>e D and η <strong>in</strong><strong>dependent</strong>ly, however, us<strong>in</strong>g<br />

an estimate for the diameter, one can compare with the measured value of ∆ 1 SO<br />

and the ratio ∆ 0 SO /∆ g as is done <strong>in</strong> the article.<br />

The eigenstates of H 0 are of the form<br />

ψ τ = e iKτ ·r e ik xx ϕ τs (y). (5)<br />

An external magnetic field B caus<strong>in</strong>g an Aharonov-Bohm flux Φ through a<br />

cross-section of the nanotube shifts the wave number by k Φ = 2Φ/DΦ 0 =<br />

eBD/4, with Φ 0 = h/e. By impos<strong>in</strong>g periodic boundary conditions along<br />

the circumferential direction the wave vector <strong>in</strong> the x-direction becomes k x =<br />

k Φ + 2ν/3D, where ν is 0 or ±1 depend<strong>in</strong>g on the type of tube. For small<br />

bandgap tubes, likely to be the situation <strong>in</strong> the experiment, one has ν = 0.<br />

ii


The longitud<strong>in</strong>al part of the envelope wave function ϕ τs (y) depends on the<br />

conf<strong>in</strong><strong>in</strong>g potential. Let us assume that there is a large region <strong>in</strong> the middle of<br />

the dot with a constant potential. In this region the wavefunction is a superposition<br />

of the two states ϕ τs<br />

± = A ± exp(±iky τs y), ky<br />

τs > 0 [4]. The constants<br />

A ± are determ<strong>in</strong>ed by the boundary conditions at the ends of dot y = 0 and<br />

L. For a sharp term<strong>in</strong>ation of the potential, we have A + ≈ −A − and hence<br />

ky τs ≈ Nπ/L, N = 1, 2, 3, ...<br />

Choos<strong>in</strong>g the <strong>sp<strong>in</strong></strong> quantization axis to be along the tube axis the Hamiltonian<br />

H 0 is then written as<br />

(<br />

0 v(τk<br />

H 0 =<br />

x − ik τs<br />

v(τk x + iky τs ) 0<br />

and the eigenenergies are<br />

E τs = sτ∆ 0 SO ±<br />

y )<br />

) (<br />

+<br />

sτ∆ 0 SO<br />

sτ∆ 1 SO + ∆ g<br />

sτ∆ 1 SO + ∆ g<br />

sτ∆ 0 SO<br />

)<br />

,<br />

(6)<br />

√<br />

(∆ g + τ∆ Φ + τs∆ 1 SO )2 + ϵ N 2<br />

, (7)<br />

with ϵ N = vNπ/L and the Aharonov-Bohm energy given as<br />

∆ Φ = vk Φ = evDB<br />

4<br />

= mω cvD<br />

. (8)<br />

4<br />

F<strong>in</strong>ally, <strong>in</strong> addition to the <strong>orbit</strong>al <strong>coupl<strong>in</strong>g</strong>, the magnetic field also couples to<br />

the <strong>sp<strong>in</strong></strong> degree of freedom by the Zeeman term<br />

H Z = − 1 2 µ sB · s, (9)<br />

where µ s = −gµ B and s i are the Pauli matrices <strong>in</strong> <strong>sp<strong>in</strong></strong> space. Us<strong>in</strong>g the above<br />

solutions <strong>in</strong> absence of H Z as basis states, the Hamiltonian (for each iso<strong>sp<strong>in</strong></strong>) is<br />

(<br />

E1,τ − 1<br />

H 0 + H Z =<br />

2 µ 1<br />

sB ∥ 2 µ )<br />

sB ⊥<br />

1<br />

2 µ sB ⊥ E −1,τ + 1 2 µ , (10)<br />

sB ∥<br />

which is readily diagonalized.<br />

1.1 The spectrum for parallel magnetic field<br />

For the magnetic field parallel to the tube axis the energy of the four states<br />

<strong>in</strong> the quantum dot is to l<strong>in</strong>ear order <strong>in</strong> B given by<br />

where<br />

and<br />

∆ SO = 2∆ 0 SO ±<br />

E τs = E 0 + τs ∆ SO<br />

2<br />

+ (τg orb,τs + 1 2 gs)µ BB ∥ , (11)<br />

√<br />

√<br />

(∆ g + ∆ 1 SO )2 + ϵ 2 N ∓ (∆ g − ∆ 1 SO )2 + ϵ 2 N , (12)<br />

g orb,sτ = evD<br />

( )<br />

∆g + τs∆ 1 SO<br />

√<br />

≈ evD ∆<br />

√ g<br />

. (13)<br />

2µ B<br />

(∆ g + τs∆ 1 SO )2 + ϵ<br />

2 2µ B N<br />

∆ 2 g + ϵ<br />

2 N<br />

Here the upper(lower) sign corresponds to the conduction (valence) band.<br />

iii


1.2 Includ<strong>in</strong>g disorder<br />

S<strong>in</strong>ce iso<strong>sp<strong>in</strong></strong> mix<strong>in</strong>g is an experimentally very important effect, this must<br />

be <strong>in</strong>cluded <strong>in</strong> the modell<strong>in</strong>g of the quantum dot spectrum to correctly describe<br />

the data. The microscopic nature of the sources to KK ′ mix<strong>in</strong>g is <strong>in</strong> general<br />

unknown, but several factors can contribute to the mix<strong>in</strong>g, e.g., <strong>coupl<strong>in</strong>g</strong>s to the<br />

substrate which breaks rotational <strong>in</strong>variance, a random distribution of defects<br />

<strong>in</strong> the tube, or end effects for non-adiabatic conf<strong>in</strong><strong>in</strong>g potentials. In our basis<br />

for the clean wire, these effects result <strong>in</strong> matrix elements ∆ KK ′ = ⟨sτ|H KK ′|s¯τ⟩<br />

(notice that <strong>sp<strong>in</strong></strong> is conserved, assum<strong>in</strong>g non-magnetic symmetry break<strong>in</strong>g only).<br />

Therefore, with KK ′ mix<strong>in</strong>g <strong>in</strong>cluded, the Hamiltonian with<strong>in</strong> a s<strong>in</strong>gle nanotube<br />

shell <strong>in</strong> a magnetic field hav<strong>in</strong>g an angle θ relative to the tube axis is (us<strong>in</strong>g the<br />

basis (K ↑ y , K ′ ↓ y , K ↓ y , K ′ ↑ y ))<br />

⎛<br />

H = E 0 + ⎜<br />

⎝<br />

+ 1 2 gµ BB ⎜<br />

⎝<br />

∆ KK ′ 0 0 E −1,1<br />

⎛<br />

cos θ 0 s<strong>in</strong> θ 0<br />

⎞<br />

⎞<br />

E 1,1 0 0 ∆ KK ′<br />

0 E −1,−1 ∆ KK ′ 0<br />

⎟<br />

0 ∆ KK ′ E 1,−1 0 ⎠<br />

0 − cos θ 0 s<strong>in</strong> θ<br />

s<strong>in</strong> θ − cos θ 0<br />

0 s<strong>in</strong> θ 0 cos θ<br />

⎟<br />

⎠ . (14)<br />

The energies <strong>in</strong> the diagonal E τ,s are taken as the expressions (11) and (13).<br />

After diagonaliz<strong>in</strong>g H we can thus fit the experimentally observed spectrum,<br />

us<strong>in</strong>g ∆ SO , ∆ KK ′ and g orb as fitt<strong>in</strong>g parameters.<br />

1.3 Two-<strong>electron</strong> spectrum<br />

In absence of exchange <strong>coupl<strong>in</strong>g</strong> the two-<strong>electron</strong> spectrum is simply given<br />

by fill<strong>in</strong>g up the one-<strong>electron</strong> states found above. We classify these accord<strong>in</strong>g<br />

to their spectroscopic nature, i.e., how they split <strong>in</strong> a magnetic field and denote<br />

them therefore as s<strong>in</strong>glet- and triplet-like states. They are not s<strong>in</strong>glets and<br />

triplets <strong>in</strong> the usual sense of <strong>sp<strong>in</strong></strong> s<strong>in</strong>glets and triplets.<br />

2 Supplementary data<br />

A central po<strong>in</strong>t of our work is that of Fig. 4a <strong>in</strong> the article, which shows the<br />

gate voltage-dependence of the effective <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>coupl<strong>in</strong>g</strong> strength ∆ SO . Each<br />

data po<strong>in</strong>t <strong>in</strong> the figure is obta<strong>in</strong>ed by fitt<strong>in</strong>g the s<strong>in</strong>gle-particle energy spectrum<br />

to magnetic field <strong>dependent</strong> tunnel<strong>in</strong>g spectroscopy measurements. This section<br />

presents the analysis of the underly<strong>in</strong>g data. We start by discuss<strong>in</strong>g results from<br />

the conduction band where both sequential- and cotunnel<strong>in</strong>g spectroscopy have<br />

been performed (Sec. 2.1). Subsequently, we present data from the valence band<br />

where a negative value of ∆ SO is found by cotunnel<strong>in</strong>g spectroscopy (Sec. 2.2).<br />

iv


2.1 Conduction band<br />

The <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> parameter ∆ SO has been extracted from 14 shells <strong>in</strong> the conduction<br />

band labeled A-N with shell A(N) correspond<strong>in</strong>g to the lowest(highest)<br />

positive gate voltage. Shell E at V g ≈ 5.6 − 5.7 V corresponds to the quartet for<br />

which the cotunnel<strong>in</strong>g spectroscopy was analyzed <strong>in</strong> Fig. 3 of the article. For<br />

lower gate voltages, the lead-nanotube Schottky barrier is larger, significantly<br />

decreas<strong>in</strong>g the cotunnel<strong>in</strong>g current and for shells A and B cotunnel<strong>in</strong>g spectroscopy<br />

is no-longer feasible. Instead we show <strong>in</strong> section 2.1.1 how sequential<br />

tunnel<strong>in</strong>g spectroscopy also yield the effective <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>coupl<strong>in</strong>g</strong> strength <strong>in</strong><br />

complete accordance with the s<strong>in</strong>gle-particle model. The additional 12 shells<br />

(C-N) <strong>in</strong> the conduction band allow cotunnell<strong>in</strong>g spectroscopy as presented <strong>in</strong><br />

section 2.1.2.<br />

2.1.1 Sequential tunnel<strong>in</strong>g spectroscopy<br />

The <strong>electron</strong> fill<strong>in</strong>g of quantum states for smaller gate voltages than shown<br />

<strong>in</strong> Fig. 1b <strong>in</strong> the article is analyzed <strong>in</strong> Fig. S1a-b. They show the stability diagram<br />

(S1b) with relatively weak lead-dot tunnel-<strong>coupl<strong>in</strong>g</strong> and the correspond<strong>in</strong>g<br />

addition energies (S1a) extracted from the widths of the diamonds (and scaled<br />

by the gate <strong>coupl<strong>in</strong>g</strong> factor). The large addition energy for every fourth <strong>electron</strong><br />

(red data po<strong>in</strong>ts <strong>in</strong> Fig. S1a) clearly shows the regular four-<strong>electron</strong> shell fill<strong>in</strong>g,<br />

which persists over many <strong>electron</strong>ic shells. A zoom of the two shells labeled<br />

A and B is shown <strong>in</strong> Fig. S1c. Due to the weak <strong>coupl<strong>in</strong>g</strong>, gate-<strong>in</strong><strong>dependent</strong><br />

cotunnel<strong>in</strong>g steps are not observed. Instead, l<strong>in</strong>es parallel to the diamond edges<br />

represent<strong>in</strong>g sequential transport through excited states of the charge-state at<br />

which they term<strong>in</strong>ate are well resolved and can thus be used for spectroscopy.<br />

The l<strong>in</strong>ewidth ≈ 200-300 µeV is determ<strong>in</strong>ed by the tunnel <strong>coupl<strong>in</strong>g</strong> of the quantum<br />

dot to the leads and sets the energy resolution of the measurement. Figure<br />

S1d shows the transconductance dI/dV g vs. V sd and energy (V g ) around the<br />

4N 1 ∼ 120 <strong>electron</strong> charge state with N 1 completely filled four-<strong>electron</strong> shells<br />

as marked <strong>in</strong> Fig. S1c. The Coulomb diamonds are clearly observed and at the<br />

upper (lower) cross<strong>in</strong>g po<strong>in</strong>t one <strong>electron</strong> is added (removed) to the next empty<br />

(last filled) quartet. Note, that by measur<strong>in</strong>g transconductance (rather than<br />

dI/dV sd ), the l<strong>in</strong>es acquire an additional sign reflect<strong>in</strong>g levels enter<strong>in</strong>g(positive<br />

dI/dV g ) or leav<strong>in</strong>g(negative) the available bias w<strong>in</strong>dow [5]. This feature eases<br />

the identification of the relevant levels <strong>in</strong> Fig. S1e, where traces along the black<br />

l<strong>in</strong>e at fixed bias V sd = 4 mV are measured while vary<strong>in</strong>g B ∥ . Consider first<br />

the spectrum of the 4N 1 + 1 charge state (shell B). Increas<strong>in</strong>g B ∥ the doubly<br />

degenerate ground-state splits <strong>in</strong>to two states (α,β) while the excited states<br />

(γ, δ) steeply separates from the ground-state but are only discernably split at<br />

B ∥ ≈ 3 T as emphasized <strong>in</strong> the <strong>in</strong>set. As discussed <strong>in</strong> the article, this asymmetry<br />

is a direct consequence of SOI (see Fig. 2d <strong>in</strong> the article) and the measurements<br />

are accurately reproduced by the calculation overlaid on the B ∥ > 0 part of Fig.<br />

S1e with ∆ SO = 0.2 meV, ∆ KK ′ = 0.58 meV, and g orb = 7.8. Importantly, even<br />

though the SOI is masked <strong>in</strong> the low field regime by the dom<strong>in</strong>at<strong>in</strong>g disorder<br />

v


E add<br />

(meV)<br />

V sd (mV) V sd (mV)<br />

Energy (meV)<br />

15<br />

10<br />

6<br />

0<br />

-6<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

10<br />

0<br />

a<br />

-12<br />

b<br />

c<br />

-8<br />

4.0 4.1 V gate (V) 4.2 4.3<br />

4N 1 + 1<br />

(α,β)<br />

(γ,δ)<br />

4N 1<br />

4.0<br />

-4<br />

d<br />

4N 1 ~120<br />

+4<br />

+8<br />

+12<br />

+16<br />

A<br />

α<br />

w<br />

δ<br />

α β γ δ<br />

w<br />

γ<br />

β<br />

e<br />

4N 1<br />

+20<br />

+24<br />

4.5 B 5.0<br />

f<br />

+28<br />

g<br />

0.1<br />

0<br />

0.05<br />

0<br />

dI/dV sd (e 2 /h)<br />

dI/dV sd (e 2 /h)<br />

(α,β)<br />

(γ,δ)<br />

4N-1e<br />

-10 1 - 1 θ = 0 θ= π/2<br />

-5 0 5 -5 0 5 -6 0 6<br />

V sd (mV)<br />

B || (T)<br />

B (T)<br />

B = 3.25 T<br />

0 -π/2 π/2<br />

θ (rad.)<br />

3<br />

-3<br />

dI/dV gate (mS)<br />

Figure S1: a, Addition energy as a function of V gate extracted from the stability diagram<br />

<strong>in</strong> b reveal<strong>in</strong>g consecutive four-<strong>electron</strong> shell fill<strong>in</strong>g for a large number of shells. c, Charge<br />

stability diagram of the two shells (A & B) <strong>in</strong> which the sequential tunnel<strong>in</strong>g analysis is made<br />

for 3 and 1 <strong>electron</strong>s <strong>in</strong> the two shells, respectively. d, Transconductance dI/dV g vs. V g and<br />

V sd around a full <strong>electron</strong> shell 4N 1 ≈ 120. Upper(lower) arrow <strong>in</strong>dicates the first excited<br />

state of the first(last) <strong>electron</strong> <strong>in</strong> an otherwise empty(filled) shell. e, Transconductance along<br />

the dashed l<strong>in</strong>e <strong>in</strong> d at V sd = 4 mV measured as a function of parallel magnetic field. Inset<br />

shows a cut along the vertical l<strong>in</strong>e emphasiz<strong>in</strong>g the asymmetric splitt<strong>in</strong>g of the two doublets;<br />

(α, β) vs. (γ, δ) which is the consequence of SOI. Labels α, β, γ, δ refer to Fig. 2d <strong>in</strong> the<br />

article. f, As d but apply<strong>in</strong>g the magnetic field perpendicular to the axis; the doublets split<br />

equally. g, Measurements <strong>in</strong> a constant magnetic field B = 3.25 T while vary<strong>in</strong>g the angle<br />

θ between B and the CNT axis. In e-g the solid l<strong>in</strong>es are a s<strong>in</strong>gle fit to the theory with a<br />

total of only four parameters ∆ SO = 0.2 meV, g orb = 7.8 and ∆ KK ′ = 0.58(0.75) meV for<br />

the 4N 1 + 1(4N 1 − 1) charge state. The theory has been overlaid only for B > 0 not to mask<br />

the data. Dashed l<strong>in</strong>es <strong>in</strong> e and g are excitations belong<strong>in</strong>g to the 4N 1 + 1 charge state also<br />

anticipated by the model with a level-spac<strong>in</strong>g of 6 meV.<br />

vi


V sd (mV)<br />

V sd (mV)<br />

V sd (mV)<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

5.25<br />

6<br />

b<br />

3<br />

0<br />

-3<br />

-6 0<br />

5.8 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.5<br />

6<br />

3<br />

0<br />

-3<br />

a<br />

c<br />

-6<br />

0<br />

7.4 7.6 7.8 8.0 8.2 8.4<br />

Fig. 2, Shell E<br />

0<br />

5.3 5.4 5.5 5.6<br />

5.7<br />

5.8 5.9<br />

L2<br />

G2<br />

M2<br />

C1 D1 D2 E1 E2 E3 F1 F2 F3<br />

H2<br />

I2<br />

V gate (V)<br />

dI/dV sd<br />

(e 2 /h)<br />

2<br />

4<br />

2<br />

0<br />

-2<br />

J2<br />

d<br />

K2<br />

N2<br />

dI/dV sd<br />

(e 2 /h)<br />

1<br />

dI/dV sd<br />

(e 2 /h)<br />

2<br />

dI/dV sd<br />

(e 2 /h)<br />

1<br />

-4 0<br />

9.2 9.3 9.4<br />

Figure S2: a-d, Charge stability diagrams at higher gate voltages with the CNT quantum<br />

dot be<strong>in</strong>g <strong>in</strong> the cotunnel<strong>in</strong>g regime. Arrows po<strong>in</strong>t to charge states where cotunnel<strong>in</strong>g spectroscopy<br />

have been measured (see Figs. S3 and S4). The shell labeled E is analyzed <strong>in</strong> details<br />

<strong>in</strong> Fig. 3 of the article.<br />

and the limited spectroscopic resolution, it clearly stands out <strong>in</strong> the high field<br />

regime as the asymmetry of the splitt<strong>in</strong>g of the two doublets (α, β) vs. (γ, δ).<br />

The correspond<strong>in</strong>g evolution for the 4N 1 −1 charge state is similar (shell A), and<br />

is fitted with the same values for ∆ SO and g orb and tak<strong>in</strong>g ∆ KK ′ = 0.75 meV.<br />

Figure S1f shows the correspond<strong>in</strong>g measurement <strong>in</strong> a perpendicular field<br />

B ⊥ . The level structure is <strong>in</strong> complete agreement with the model which does<br />

not conta<strong>in</strong> any free parameters. S<strong>in</strong>ce ∆ SO is below the spectroscopic resolution<br />

the avoided cross<strong>in</strong>g cannot be clearly discerned <strong>in</strong> the measurement<br />

(unlike the case for the cotunnel<strong>in</strong>g measurements <strong>in</strong> Fig. 3 <strong>in</strong> the article). For<br />

completeness we show <strong>in</strong> Fig. S1g the spectrum for fixed B = 3.25 T while cont<strong>in</strong>uously<br />

vary<strong>in</strong>g the angle θ between the nanotube and the field. Here the<br />

presence of SOI is responsible for the angle dependence of the <strong>in</strong>ternal doublet<br />

splitt<strong>in</strong>gs (arrows), and aga<strong>in</strong> the model is <strong>in</strong> near-perfect agreement with the<br />

data without any free parameters.<br />

2.1.2 Cotunnel<strong>in</strong>g spectroscopy<br />

For higher gate voltages, as already mentioned, the tunnel <strong>coupl<strong>in</strong>g</strong> to the<br />

electrodes <strong>in</strong>creases, and allows for <strong>in</strong>elastic cotunnel<strong>in</strong>g spectroscopy. As shown<br />

<strong>in</strong> Fig. 3 <strong>in</strong> the article, the <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>coupl<strong>in</strong>g</strong> can <strong>in</strong> this case be directly readoff<br />

by avoided level cross<strong>in</strong>gs <strong>in</strong> perpendicular magnetic field for 1, 2, and 3<br />

vii


<strong>electron</strong>s. Moreover, the <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>coupl<strong>in</strong>g</strong> breaks the <strong>in</strong>tra-shell <strong>electron</strong>-hole<br />

symmetry, which can be probed by compar<strong>in</strong>g the 1 and 3 <strong>electron</strong> cases <strong>in</strong><br />

parallel field. Figures S2a-d show charge stability diagrams <strong>in</strong> the cotunnel<strong>in</strong>g<br />

regime, where arrows po<strong>in</strong>t to charge states for which field-<strong>dependent</strong> cotunnel<strong>in</strong>g<br />

spectroscopy has been performed. In Fig. S2b-d, the level broaden<strong>in</strong>g<br />

due to electrode-dot <strong>coupl<strong>in</strong>g</strong> is even stronger and the <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>coupl<strong>in</strong>g</strong> is<br />

extracted from the avoided cross<strong>in</strong>g (of magnitude 2∆ SO ) between the two<strong>electron</strong><br />

s<strong>in</strong>glet-like ˜S 0 and triplet-like ˜T − states <strong>in</strong> perpendicular field.<br />

Figure S3 shows cotunnel<strong>in</strong>g spectroscopy plots (d 2 I/dVsd 2 versus gate and<br />

magnetic field) of shells C, D and F <strong>in</strong> the cotunnel<strong>in</strong>g regime marked <strong>in</strong> Fig.<br />

S2a. The overall features reproduce Fig. 3 <strong>in</strong> the article and show excellent<br />

agreement with the model (black l<strong>in</strong>es). Parameters used <strong>in</strong> the fits are all<br />

summarized <strong>in</strong> Table S1. We now comment on the details observed <strong>in</strong> each<br />

shell, and on how the <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> strength and other parameters are found.<br />

Shell C is analyzed <strong>in</strong> Figs. S3a-b, which show cotunnel<strong>in</strong>g spectroscopy for 1<br />

<strong>electron</strong> <strong>in</strong> perpendicular and parallel magnetic fields. The <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>coupl<strong>in</strong>g</strong><br />

is directly estimated <strong>in</strong> Fig. S3a from the avoided cross<strong>in</strong>g at B = ±4.5 T<br />

yield<strong>in</strong>g ∆ SO ≃ 140 µeV. Furthermore, the <strong>orbit</strong>al <strong>coupl<strong>in</strong>g</strong> ∆ KK ′ ≃ 495 µeV<br />

and g orb ≃ 5.7 are chosen to produce the theoretical predicted excitations, which<br />

perfectly match the observed threshold of <strong>in</strong>elastic cotunnel<strong>in</strong>g (peaks and dips).<br />

Measurements of shell D is displayed <strong>in</strong> Figs. S3c-g which show a different<br />

behavior than shell C, because the <strong>orbit</strong>al <strong>coupl<strong>in</strong>g</strong> is smaller than the <strong>sp<strong>in</strong></strong><strong>orbit</strong><br />

<strong>coupl<strong>in</strong>g</strong>. The <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>coupl<strong>in</strong>g</strong> for this shell is extracted <strong>in</strong> Fig. S3d<br />

from the avoided cross<strong>in</strong>g between ˜S 0 and ˜T − states <strong>in</strong> case of the two-<strong>electron</strong><br />

cotunnel<strong>in</strong>g spectroscopy <strong>in</strong> perpendicular magnetic field. The theory matches<br />

the experimental data except <strong>in</strong> Fig. S3d, where some small deviations are<br />

observed at high fields. All other figures show good agreement between theory<br />

and experiment, most remarkably <strong>in</strong> Fig. S3g, where the sample is rotated to an<br />

angle of 22.5 degrees between the nanotube axis and the magnetic field. Note,<br />

that the theory l<strong>in</strong>es <strong>in</strong> Fig. S3e-g at negative biases are only plotted for low<br />

fields to clearly reveal the underly<strong>in</strong>g data.<br />

Shell F is presented <strong>in</strong> Figs. S3h-m, which show the magnetic field dependence<br />

<strong>in</strong> parallel and perpendicular magnetic fields for fill<strong>in</strong>gs 1-3 (as <strong>in</strong> Fig.<br />

3 <strong>in</strong> the article). The overall conductance <strong>in</strong> this shell is higher than for the<br />

shells analyzed above. Moreover, the zero-field threshold of <strong>in</strong>elastic cotunnel<strong>in</strong>g<br />

is seen to vary with fill<strong>in</strong>g, which is not fully accounted for <strong>in</strong> our model.<br />

The clear avoided cross<strong>in</strong>g for 2 <strong>electron</strong>s <strong>in</strong> perpendicular magnetic field (Fig.<br />

S3i), and the break<strong>in</strong>g of <strong>electron</strong>-hole symmetry <strong>in</strong> parallel magnetic field for<br />

<strong>electron</strong> fill<strong>in</strong>gs 1 and 3 (Figs. S3k,m) unambiguously reveal the <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>in</strong>teraction.<br />

Interest<strong>in</strong>gly, for 2 <strong>electron</strong>s, four (not three as <strong>in</strong> Fig. 3 <strong>in</strong> the article)<br />

excitation l<strong>in</strong>es are seen to emerge from the zero field peak at V sd = 0.25 meV<br />

<strong>in</strong> Fig. S3i. Such behavior is <strong>in</strong>deed expected <strong>in</strong> the presence of f<strong>in</strong>ite exchange<br />

<strong>in</strong>teraction (J > 0), which splits the ˜S 1 and ˜T states. The deviation between<br />

experiment and theory at large B || <strong>in</strong> Fig. S3l may be attributed to avoided<br />

cross<strong>in</strong>gs with states from the next shell. The fitt<strong>in</strong>g parameters are chosen to<br />

ma<strong>in</strong>ly match the <strong>in</strong>elastic cotunnel<strong>in</strong>g thresholds of Figs. S3h (not S3j) and<br />

viii


V sd (mV)<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

-1.5<br />

a<br />

C1<br />

-6 -4 -2 0 2 4<br />

6<br />

2<br />

b C1 ||<br />

1<br />

0<br />

-1<br />

-2<br />

-3 -2 -1 0 1 2<br />

3<br />

2<br />

-2<br />

dI 2 /dVsd 2 (mS/V)<br />

V sd (mV)<br />

V sd (mV)<br />

V sd (mV)<br />

V sd (mV)<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

-1.5<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

c<br />

D1<br />

0 1 2 3<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

-1.5<br />

0 -1 -2 -3 -4 -5 -6 -7 0 1 2 3 4 5 6 7<br />

3<br />

2<br />

e D1 || f D2 g<br />

2<br />

||<br />

D2 22.5deg<br />

1<br />

1<br />

0<br />

0<br />

-1<br />

-2<br />

-3<br />

d<br />

0 1 2 3<br />

1.5<br />

2<br />

h F1 i F2<br />

1.5 j F3<br />

1.0<br />

1<br />

1.0<br />

0.5<br />

0.5<br />

0.0<br />

0<br />

0.0<br />

-0.5<br />

-0.5<br />

-1<br />

-1.0<br />

-1.0<br />

-1.5<br />

-2<br />

-1.5<br />

0 1 2 3 4 5 6 7 -6 -4 -2 0 2 4 6 0 1 2 3 4 5 6 7<br />

3<br />

3<br />

2<br />

20<br />

2 k F1 ||<br />

2 l F2 || m F3 ||<br />

1<br />

1<br />

1<br />

0<br />

0<br />

0<br />

-1<br />

-1<br />

-1<br />

-2<br />

-2<br />

-3<br />

-3<br />

0 1 2 3 -3 -2 -1 0 1 2 3 0 1 2 3<br />

B (T) B (T) B (T)<br />

D2<br />

-1<br />

-2<br />

-2<br />

0 -1 -2 -3 -4 -5 -6 -7<br />

dI 2 /dVsd 2 (mS/V)<br />

5<br />

-5<br />

dI 2 /dVsd 2 (mS/V)<br />

-20<br />

Figure S3: Cotunnel<strong>in</strong>g spectroscopy d 2 I/dVsd 2 versus bias and magnetic field for shell C<br />

(a,b), D (c-g) and F (h-m). The labels <strong>in</strong>dicate shell and <strong>electron</strong> fill<strong>in</strong>g <strong>in</strong> correspondence<br />

with Fig. S2a as well as orientation of the field relative to the <strong>car</strong>bon nanotube axis. Data are<br />

acquired at gate voltages correspond<strong>in</strong>g to the center of the respective Coulomb diamond. The<br />

l<strong>in</strong>es display the excitation spectrum, (i.e., threshold of <strong>in</strong>elastic cotunnel<strong>in</strong>g) predicted by<br />

the s<strong>in</strong>gle- and two-particle model hav<strong>in</strong>g four <strong>in</strong><strong>dependent</strong> parameters, the <strong>orbit</strong>al <strong>coupl<strong>in</strong>g</strong><br />

(disorder) parameter ∆ KK ′, the <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>coupl<strong>in</strong>g</strong> ∆ SO , the <strong>orbit</strong>al g-factor g orb and the<br />

exchange <strong>in</strong>teraction J. Parameters are summarized <strong>in</strong> Table S1.<br />

ix


V sd (mV) V sd (mV)<br />

V sd (mV)<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

-1.5<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

-1.5<br />

1.5<br />

g<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

a G2 b H2 c<br />

d J2 e K2 f<br />

M2<br />

-1.0<br />

-1.5<br />

-20 20<br />

-100<br />

0 1 2 3 4 5 6 70 1 2 3 4 5 6 7<br />

B (T) B (T)<br />

Λ<br />

h<br />

N2<br />

2∆ SO<br />

100<br />

dI 2 /dV sd<br />

2 (mS/V)<br />

I2<br />

L2<br />

0 1 2 3 4 5 6 7<br />

B (T)<br />

Figure S4: a-h, Cotunnel<strong>in</strong>g spectroscopy dI 2 /dVsd 2 versus bias and perpendicular magnetic<br />

field at half fill<strong>in</strong>g for shells G-N (see stability diagrams <strong>in</strong> Fig. S2b-d). The <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>coupl<strong>in</strong>g</strong><br />

∆ SO is estimated from the avoided cross<strong>in</strong>g between the s<strong>in</strong>glet-like ˜S 0 and the triplet-like<br />

˜T − states as shown <strong>in</strong> Panel b. The zero field energy difference Λ between the ground and<br />

excited Kramers doublets allows the calculation of the <strong>orbit</strong>al <strong>coupl<strong>in</strong>g</strong> parameter ∆ KK ′ . The<br />

l<strong>in</strong>es represent the calculated spectrum of the two-particle model us<strong>in</strong>g the two parameters<br />

∆ SO and ∆ KK ′ as well as a f<strong>in</strong>ite exchange J. The deviations from the model is attributed<br />

to g-factor renormalization caused by Kondo correlation which are important <strong>in</strong> the strongly<br />

coupled regime (see text). Note, that the color-scale bar for shell N is different than for shells<br />

G-M.<br />

S3i. A more detailed analysis of CNT two-<strong>electron</strong> physics <strong>in</strong>clud<strong>in</strong>g exchange,<br />

disorder and <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>in</strong>teraction will be presented elsewhere.<br />

For shells G-N (Fig. S2) the lead-dot <strong>coupl<strong>in</strong>g</strong> is even stronger, lead<strong>in</strong>g to<br />

pronounced Kondo physics for 1 and 3 <strong>electron</strong> fill<strong>in</strong>gs and Kondo enhanced<br />

<strong>in</strong>elastic cotunnel<strong>in</strong>g at half fill<strong>in</strong>g [6]. Figure S4 shows two-<strong>electron</strong> cotunnel<strong>in</strong>g<br />

spectroscopy for perpendicular magnetic field. The <strong>orbit</strong>al <strong>coupl<strong>in</strong>g</strong> ∆ KK ′ is<br />

found from the zero-field splitt<strong>in</strong>g Λ between the two Kramers doublets (green<br />

arrows <strong>in</strong> Panel b), and the <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>coupl<strong>in</strong>g</strong> appears as the zero bias avoided<br />

cross<strong>in</strong>g between the ˜S and ˜T states (black arrows <strong>in</strong> Panel b). Given these<br />

two parameters for each shell the two-<strong>electron</strong> excitation spectrum is calculated<br />

as shown by the black l<strong>in</strong>es. Interest<strong>in</strong>gly, for shells H-M, the ˜S- ˜T avoided<br />

cross<strong>in</strong>gs occur at somewhat higher magnetic fields than predicted. This is<br />

consistent with correlation <strong>in</strong>duced renormalization (lower<strong>in</strong>g) of the g-factor<br />

[7]. As the <strong>coupl<strong>in</strong>g</strong> is decreased <strong>in</strong> case of shell N, the correspondence between<br />

the model and the experimental threshold of cotunnel<strong>in</strong>g is improved confirm<strong>in</strong>g<br />

x


that the effect is related to the <strong>coupl<strong>in</strong>g</strong> and not the <strong>electron</strong> fill<strong>in</strong>g. The g-<br />

factor renormalization is an <strong>in</strong>terest<strong>in</strong>g topic for detailed study and the good<br />

understand<strong>in</strong>g of the s<strong>in</strong>gle-particle spectrum of s<strong>in</strong>gle wall <strong>car</strong>bon nanotube<br />

<strong>electron</strong>ic shells constitutes an optimal start<strong>in</strong>g po<strong>in</strong>t for further explorations.<br />

xi


V sd (mV)<br />

V sd (mV) V sd (mV)<br />

V sd (mV)<br />

V sd (mV)<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

-3 -2 -1 0 1 2 3 0 1 2 3 -3 -2 -1 0 1 2<br />

1.5<br />

1.0<br />

h W1 i W2 j W3<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

-1.5<br />

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7<br />

3<br />

k W1 l m<br />

150<br />

2<br />

|| W2 || W3 ||<br />

1<br />

0<br />

-1<br />

-2<br />

a<br />

-2.8 -2.7<br />

V gate (V)<br />

-2.6 -2.5<br />

-1.5<br />

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7<br />

3<br />

2<br />

e W1 2<br />

|| f W2 || g W3 ||<br />

-3<br />

-3 -2 -1 0 1 2<br />

B (T)<br />

W1<br />

W2<br />

W3<br />

b c d<br />

W1 W2 W3<br />

3 0 1 2<br />

B (T)<br />

3 -3 -2 -1 0 1 2<br />

B (T)<br />

3<br />

3<br />

dI 2 /dV sd<br />

2 (mS/V)<br />

0<br />

dI 2 /dV sd<br />

2 (mS/V)<br />

-150<br />

Figure S5: a, Stability diagram show<strong>in</strong>g four-<strong>electron</strong> shell structure <strong>in</strong> the valence band,<br />

where the arrows <strong>in</strong>dicate <strong>electron</strong> fill<strong>in</strong>g 1-3 <strong>in</strong> shell W. We here consider <strong>electron</strong> fill<strong>in</strong>g <strong>in</strong><br />

the valence band shell <strong>in</strong>stead of hole fill<strong>in</strong>g to make easier comparison to the measurements<br />

analyzed <strong>in</strong> the conduction band. Measured dI/dV sd versus bias and perpendicular/parallel<br />

(b-d)/(e-g) magnetic field for <strong>electron</strong> fill<strong>in</strong>g 1, 2 and 3. Numerically obta<strong>in</strong>ed d 2 I/dVsd<br />

2<br />

versus bias and perpendicular/parallel (h-j)/(k-m) magnetic field. The green arrows <strong>in</strong> e, k,<br />

g, m po<strong>in</strong>t to the threshold of <strong>in</strong>elastic cotunnel<strong>in</strong>g <strong>in</strong>volv<strong>in</strong>g the ground- and first excited<br />

states. The blue arrows <strong>in</strong>dicate the magnetic field for which this threshold is zero. This occurs<br />

for B || ≃ 1 T and B || = 0 T for fill<strong>in</strong>gs 1 and 3, respectively, thereby reveal<strong>in</strong>g a negative <strong>sp<strong>in</strong></strong><strong>orbit</strong><br />

<strong>coupl<strong>in</strong>g</strong>. The parameters used <strong>in</strong> the calculated spectrum (l<strong>in</strong>es <strong>in</strong> (h-m)) are given <strong>in</strong><br />

Table S1.<br />

xii


2.2 Valence band<br />

For negative gate voltages transport is <strong>car</strong>ried by holes <strong>in</strong> the valence band<br />

of the small-band-gap semiconduct<strong>in</strong>g <strong>car</strong>bon nanotube. The <strong>coupl<strong>in</strong>g</strong> to the<br />

electrodes is significantly stronger than for the conduction band and Kondo<br />

physics dom<strong>in</strong>ates as seen <strong>in</strong> Fig. S5a. Cotunnel<strong>in</strong>g spectroscopy <strong>in</strong> perpendicular<br />

and parallel magnetic field is measured for 1, 2 and 3 <strong>electron</strong>s <strong>in</strong> one of<br />

the weakest coupled shell W (see arrows). For completeness, both differential<br />

conductance dI/dV sd (S5b-g) and its derivative d 2 I/dVsd 2 (S5h-m) are shown.<br />

Due to significant level broaden<strong>in</strong>g of the cotunnel<strong>in</strong>g features, the (avoided)<br />

cross<strong>in</strong>g <strong>in</strong> perpendicular magnetic field for two <strong>electron</strong>s results <strong>in</strong> a s<strong>in</strong>glettriplet<br />

Kondo resonance as seen <strong>in</strong> Figs. S5c,i [8], and the <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>coupl<strong>in</strong>g</strong><br />

cannot be directly extracted as the case for weaker <strong>coupl<strong>in</strong>g</strong> (Fig. S4). Instead,<br />

we focus on the parallel magnetic field dependence for <strong>electron</strong> fill<strong>in</strong>g 1 and 3.<br />

In presence of <strong>orbit</strong>al <strong>coupl<strong>in</strong>g</strong> (∆ KK ′ > 0) and positive <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>coupl<strong>in</strong>g</strong><br />

(∆ SO > 0) as discussed <strong>in</strong> the article, the l<strong>in</strong>es correspond<strong>in</strong>g to the lowest excitation<br />

cross zero bias only at B = 0 for <strong>electron</strong> fill<strong>in</strong>g 1, while a cross<strong>in</strong>g also<br />

occurs at f<strong>in</strong>ite parallel magnetic fields for fill<strong>in</strong>g 3 (see Fig. 3d,f <strong>in</strong> the article<br />

and Fig. S3k,m). Similar behavior is seen for shell W <strong>in</strong> Fig. S5k, m where the<br />

one and three <strong>electron</strong> behavior now is <strong>in</strong>terchanged: the cotunnel<strong>in</strong>g threshold<br />

correspond<strong>in</strong>g to the lowest excitation (green arrows <strong>in</strong> Fig. S5e, k) cross at<br />

f<strong>in</strong>ite fields for fill<strong>in</strong>g 1 (blue arrow). This shows that the <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>coupl<strong>in</strong>g</strong><br />

∆ SO is negative thus favor<strong>in</strong>g antiparallel rather than parallel orientation of the<br />

<strong>orbit</strong>al and <strong>sp<strong>in</strong></strong> angular momentum (see Fig. S6 for the effect of negative ∆ SO<br />

on the level structure). The theoretically expected cotunnel<strong>in</strong>g thresholds are<br />

<strong>in</strong>dicated by the black l<strong>in</strong>es <strong>in</strong> Fig. S4 with the values of the <strong>orbit</strong>al <strong>coupl<strong>in</strong>g</strong><br />

and the <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>coupl<strong>in</strong>g</strong> listed <strong>in</strong> Table S1. As discussed <strong>in</strong> the article, a<br />

negative <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>coupl<strong>in</strong>g</strong> is <strong>in</strong>deed consistent with the expectation from the<br />

Dirac band structure, and our f<strong>in</strong>d<strong>in</strong>gs illustrate a different regime than previously<br />

reported, which found a positive <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>coupl<strong>in</strong>g</strong> for the (first) <strong>car</strong>riers<br />

a b<br />

∆ E<br />

SO > 0 ∆ SO < 0<br />

∆ KK' > ∆ SO<br />

∆ KK' > |∆ SO |<br />

B<br />

B ||<br />

B<br />

E<br />

B ||<br />

Figure S6: Energy spectrum of quartet with positive (a) and negative (b) <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>coupl<strong>in</strong>g</strong><br />

result<strong>in</strong>g <strong>in</strong> an <strong>in</strong>terchange of the two Kramers doublets (red arrows).<br />

xiii


V sd (mV)<br />

0.75<br />

0<br />

-0.75<br />

1.5<br />

a Z1 Z3 Y1 Y3<br />

B ||=0T<br />

-3.30 -3.25 -3.20 -3.15 -3.10 -3.05<br />

V gate (V)<br />

b Y1 || c Y3 ||<br />

dI/dV sd (e 2 /h)<br />

1.1<br />

0<br />

V sd (mV)<br />

0<br />

-1.5<br />

1.5<br />

d Z1 || e Z3 ||<br />

dI 2 /dV sd<br />

2 (mS/V)<br />

50<br />

V sd (mV)<br />

0<br />

-50<br />

V sd (mV)<br />

-1.5<br />

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3<br />

f B || (T)<br />

B || (T)<br />

1.0<br />

Z1 Z3 Y1 Y3 X1 X3<br />

0.5<br />

0<br />

-0.5<br />

~200µV<br />

~290µV<br />

0.8<br />

B ||=2T<br />

-1.0<br />

-3.30 -3.25 -3.20 -3.15 -3.10 -3.05 -3.00 -2.95 0<br />

V gate (V)<br />

dI/dV sd (e 2 /h)<br />

Figure S7: a, Stability diagram of shells Y and Z <strong>in</strong> the valence band from a different<br />

cooldown of the same sample. b-e, Cotunnel<strong>in</strong>g spectroscopy d 2 I/dVsd 2 versus V sd and parallel<br />

magnetic field of shell Y and Z show<strong>in</strong>g the break<strong>in</strong>g of <strong>electron</strong>-hole symmetry reflect<strong>in</strong>g a<br />

negative <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>coupl<strong>in</strong>g</strong> strength, i.e., the lowest excitation l<strong>in</strong>es cross at respectively<br />

f<strong>in</strong>ite and zero field for b,d and c,e. The black l<strong>in</strong>es are the expected excitations given the<br />

parameters <strong>in</strong> Table S1. (f) Stability diagram at B || = 2 T show<strong>in</strong>g shells X, Y, and Z. The<br />

<strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>in</strong>teraction is revealed by a difference <strong>in</strong> splitt<strong>in</strong>g of the Kondo resonance for 1 and<br />

3 <strong>electron</strong>s <strong>in</strong> a shell (yellow and blue arrows). A negative <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>in</strong>teraction of similar<br />

strength is therefore <strong>in</strong>ferred also for shell X.<br />

<strong>in</strong> both the conduction and valence band [3].<br />

The analysis is repeated for shells Y and Z at larger negative gate voltages<br />

xiv


presented <strong>in</strong> Fig. S7a, where the asymmetry between the 1 and 3 <strong>electron</strong> behavior<br />

is observed <strong>in</strong> Figs. S7b-e. By compar<strong>in</strong>g to theory (black l<strong>in</strong>es) we f<strong>in</strong>d<br />

a <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>coupl<strong>in</strong>g</strong> strength ∼ −75 µV for both shells. F<strong>in</strong>ally, we show that<br />

the <strong>sp<strong>in</strong></strong>-obit <strong>coupl<strong>in</strong>g</strong> also is observed <strong>in</strong> stability diagrams as an asymmetric<br />

splitt<strong>in</strong>g of the 1 and 3 <strong>electron</strong> Kondo resonances <strong>in</strong> parallel magnetic fields.<br />

This is illustrated <strong>in</strong> Fig. S7f show<strong>in</strong>g a stability diagram of the three shells X,<br />

Y and Z at B || = 2 T, where an asymmetric splitt<strong>in</strong>g of the Kramers doublets<br />

for fill<strong>in</strong>g 1 and 3 is clearly revealed. The alternat<strong>in</strong>g behavior of small and large<br />

splitt<strong>in</strong>g is highlighted by pairs of yellow and blue arrows. In the case of shell<br />

Y the difference <strong>in</strong> splitt<strong>in</strong>gs is ∼ 90 µV, consistent with the <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>coupl<strong>in</strong>g</strong><br />

strength deduced above. We therefore conclude that also shell X has a negative<br />

<strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>coupl<strong>in</strong>g</strong> <strong>in</strong> the same order as shell Y and Z.<br />

References<br />

[1] J. Jeong and H. Lee, Phys. Rev. B 80 (2009).<br />

[2] W. Izumida, K. Sato, and R. Saito, J. Phys. Soc. Jpn. 78, 074707 (2009).<br />

[3] F. Kuemmeth, et al., Nature 452, 448 (2008).<br />

[4] D. V. Bulaev, B. Trauzettel, and D. Loss, Phys. Rev. B 77, 235301 (2008).<br />

[5] L. Kouwenhoven, D. Aust<strong>in</strong>g, and S. Tarucha, Rep. Prog. Phys. 64, 701<br />

(2001).<br />

[6] J. Paaske, et al., Nature Physics 2, 460 (2006).<br />

[7] A. C. Hewson, J. Bauer, and W. Koller, Phys. Rev. B 73, 045117 (2006).<br />

[8] J. Nygård, D. H. Cobden, and P. E. L<strong>in</strong>delof, Nature 408, 342 (2000).<br />

xv


Shell # V gate (V) Λ(µeV) ∆ SO (µeV) ∆ KK ′(µeV) J(µeV) g orb<br />

A 4.12 775 200 750 - 7.8<br />

B 4.25 615 200 580 - 7.8<br />

C 5.40 515 140 495 - 5.7<br />

D 5.55 200 185 75 0 5.5<br />

E (Fig. 3) 5.68 475 150 450 0 5.7<br />

F 5.78 560 100 550 450 5.4<br />

G 6.04 195 115 155 - -<br />

H 6.30 315 65 310 - -<br />

I 6.57 190 95 165 - -<br />

J 7.09 245 125 210 100 -<br />

K 7.36 390 60 385 - -<br />

L 7.56 435 60 430 - -<br />

M 7.69 410 60 405 - -<br />

N 9.34 330 65 325 - -<br />

W -2.67 225 -100 200 0 ≃ 4.4<br />

X -2.98 - ≃ −75 - - -<br />

Y -3.14 ≃ 605 ≃ −75 ≃ 600 - ≃ 5.8<br />

Z -3.25 ≃ 705 ≃ −75 ≃ 700 - ≃ 5.8<br />

Table S1: Parameters extracted for each measured shell <strong>in</strong> the conduction (A-N) and valence<br />

(W-Z) band. Shells A and B are the only shells analyzed <strong>in</strong> the sequential tunnel<strong>in</strong>g regime<br />

(Fig. S1), while C-F are <strong>in</strong> the weak cotunnel<strong>in</strong>g regime (Fig. S3 and Fig. 3). As the levelbroaden<strong>in</strong>g<br />

<strong>in</strong>creases even further (G-N), the <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>coupl<strong>in</strong>g</strong> ∆ SO and the energy splitt<strong>in</strong>g<br />

between the two Kramers doublets Λ is estimated at half fill<strong>in</strong>g by the zero-bias avoided<br />

cross<strong>in</strong>g at f<strong>in</strong>ite magnetic field and the zero-field <strong>in</strong>elastic cotunnel<strong>in</strong>g<br />

√<br />

threshold, respectively<br />

(see Fig. S4b). The <strong>orbit</strong>al <strong>coupl<strong>in</strong>g</strong> is related as ∆ KK ′ = Λ 2 − ∆ 2 SO , and <strong>in</strong> some cases<br />

a ˜S 0 - ˜T splitt<strong>in</strong>g caused by exchange <strong>in</strong>teraction J can be observed (J = 0 means that the<br />

exchange <strong>in</strong>teraction is smaller than the spectroscopic l<strong>in</strong>e width <strong>in</strong> the shell). In the valence<br />

band, the <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>coupl<strong>in</strong>g</strong> is observed by the break<strong>in</strong>g of <strong>electron</strong>-hole symmetry for 1 and<br />

3 <strong>electron</strong>s <strong>in</strong> a parallel magnetic field (S5 and S7). The uncerta<strong>in</strong>ty of the <strong>sp<strong>in</strong></strong>-<strong>orbit</strong> <strong>coupl<strong>in</strong>g</strong><br />

strength is shown <strong>in</strong> Fig. 4 <strong>in</strong> the article. The dashes <strong>in</strong>dicate that measurement have not<br />

been made to extract the correspond<strong>in</strong>g parameter. Note, that the decreas<strong>in</strong>g values of g orb<br />

versus gate voltage (fill<strong>in</strong>g) <strong>in</strong> the conduction band is consistent with Eq. (13). As expected<br />

the <strong>orbit</strong>al <strong>coupl<strong>in</strong>g</strong> ∆ KK ′ shows no gate voltage correlation.<br />

xvi

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!