05.01.2015 Views

Draft Guideline on Bioanalytical Method Validation in ... - NIHS

Draft Guideline on Bioanalytical Method Validation in ... - NIHS

Draft Guideline on Bioanalytical Method Validation in ... - NIHS

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Draft</str<strong>on</strong>g> <str<strong>on</strong>g>Guidel<strong>in</strong>e</str<strong>on</strong>g> <strong>on</strong> <strong>Bioanalytical</strong> <strong>Method</strong> Validati<strong>on</strong> <strong>in</strong><br />

Pharmaceutical Development<br />

(15 April 2013, MHLW, Japan)


Table of C<strong>on</strong>tents<br />

1. Introducti<strong>on</strong><br />

2. Scope<br />

3. Reference Standard<br />

4. Analytical <strong>Method</strong> Validati<strong>on</strong><br />

4.1. Full validati<strong>on</strong><br />

4.1.1. Selectivity<br />

4.1.2. Lower limit of quantificati<strong>on</strong><br />

4.1.3. Calibrati<strong>on</strong> curve<br />

4.1.4. Accuracy and precisi<strong>on</strong><br />

4.1.5. Matrix effect<br />

4.1.6. Recovery<br />

4.1.7. Carry-over<br />

4.1.8. Diluti<strong>on</strong> <strong>in</strong>tegrity<br />

4.1.9. Stability<br />

4.2. Partial validati<strong>on</strong><br />

4.3. Cross validati<strong>on</strong><br />

5. Analysis of Study Samples<br />

5.1. Validity and reproducibility of analytical method <strong>in</strong> analysis of study samples<br />

5.1.1. Calibrati<strong>on</strong> curve<br />

5.1.2. QC samples<br />

5.1.3. Incurred samples reanalysis (ISR)<br />

5.1.4. Carry-over<br />

5.2. Po<strong>in</strong>ts to note<br />

5.2.1. Calibrati<strong>on</strong> range<br />

5.2.2. Reanalysis<br />

5.2.3. Chromatogram Integrati<strong>on</strong><br />

5.2.4. System suitability<br />

6. Documentati<strong>on</strong> and Archives <br />

List of Relevant <str<strong>on</strong>g>Guidel<strong>in</strong>e</str<strong>on</strong>g>s<br />

Glossary<br />

Annex<br />

2


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

1. Introducti<strong>on</strong><br />

In the development of medic<strong>in</strong>al products, bioanalytical methods are used <strong>in</strong> cl<strong>in</strong>ical<br />

and n<strong>on</strong>-cl<strong>in</strong>ical pharmacok<strong>in</strong>etic studies (<strong>in</strong>clud<strong>in</strong>g toxicok<strong>in</strong>etic studies) to evaluate<br />

the efficacy and safety of drugs and their metabolites. Drug c<strong>on</strong>centrati<strong>on</strong>s determ<strong>in</strong>ed<br />

<strong>in</strong> biological samples are used for the assessment of characteristics such as <strong>in</strong> vivo<br />

pharmacok<strong>in</strong>etics (adsorpti<strong>on</strong>, distributi<strong>on</strong>, metabolism, and excreti<strong>on</strong>), bioavailability,<br />

bioequivalence, and drug-drug <strong>in</strong>teracti<strong>on</strong>.<br />

It is important that these bioanalytical methods are well characterized throughout the<br />

analytical procedures to establish their validity, reproducibility, and reliability.<br />

This guidel<strong>in</strong>e serves as a general guidance recommended for the validati<strong>on</strong> of<br />

bioanalytical methods to ensure adequate reproducibility and reliability. It also provides<br />

a framework for analyses of study samples by us<strong>in</strong>g validated methods to evaluate study<br />

results support<strong>in</strong>g applicati<strong>on</strong>s for drug market<strong>in</strong>g authorizati<strong>on</strong>.<br />

An applicable way with flexible adjustment and modificati<strong>on</strong> should be required <strong>in</strong><br />

case of us<strong>in</strong>g the specific type analytical method or depend<strong>in</strong>g <strong>on</strong> the <strong>in</strong>tended use of<br />

the result of analysis, such as the use of prospectively def<strong>in</strong>ed appropriate criteria, based<br />

<strong>on</strong> scientific judgment.<br />

2. Scope<br />

This guidel<strong>in</strong>e is applicable to the validati<strong>on</strong> of analytical methods applied to<br />

measure c<strong>on</strong>centrati<strong>on</strong>s of drugs and their metabolites <strong>in</strong> biological samples obta<strong>in</strong>ed <strong>in</strong><br />

toxicok<strong>in</strong>etic studies and cl<strong>in</strong>ical trials, as well as to the analyses of study samples us<strong>in</strong>g<br />

such methods. The <strong>in</strong>formati<strong>on</strong> <strong>in</strong> this guidel<strong>in</strong>e generally applies to the quantificati<strong>on</strong><br />

of low-molecular-weight drugs and metabolites, and to analytical methods such as<br />

liquid chromatography (LC) and gas chromatography (GC) used either al<strong>on</strong>e or <strong>in</strong><br />

comb<strong>in</strong>ati<strong>on</strong> with mass spectrometry (MS).<br />

This guidel<strong>in</strong>e is not <strong>in</strong>tended for analytical methods used <strong>in</strong> n<strong>on</strong>-cl<strong>in</strong>ical studies that<br />

are bey<strong>on</strong>d the scope of "M<strong>in</strong>isterial Ord<strong>in</strong>ance C<strong>on</strong>cern<strong>in</strong>g the Standards for the<br />

C<strong>on</strong>duct of N<strong>on</strong>-cl<strong>in</strong>ical Studies <strong>on</strong> the Safety of Drugs (M<strong>in</strong>istry of Health and Welfare<br />

ord<strong>in</strong>ance No. 21, dated March 26, 1997)" but could be used as a reference <strong>in</strong><br />

c<strong>on</strong>duct<strong>in</strong>g a method validati<strong>on</strong>.<br />

3. Reference Standard<br />

3


37<br />

38<br />

39<br />

40<br />

41<br />

42<br />

43<br />

44<br />

45<br />

46<br />

47<br />

48<br />

49<br />

50<br />

51<br />

52<br />

53<br />

54<br />

55<br />

56<br />

57<br />

58<br />

59<br />

60<br />

61<br />

62<br />

63<br />

64<br />

65<br />

66<br />

67<br />

68<br />

69<br />

70<br />

71<br />

72<br />

Reference standard serves as the standard <strong>in</strong> quantify<strong>in</strong>g an analyte, and is ma<strong>in</strong>ly<br />

used to prepare calibrati<strong>on</strong> standards and quality-c<strong>on</strong>trol (QC) samples, which are<br />

samples spiked with a known c<strong>on</strong>centrati<strong>on</strong> of the analyte of <strong>in</strong>terest. The quality of the<br />

reference material is critical, as the quality affect measurement data. Therefore, a<br />

material of known chemical structure from an authenticated source should be used as a<br />

reference standard.. A certificate of analysis that provides <strong>in</strong>formati<strong>on</strong> <strong>on</strong> lot number,<br />

expirati<strong>on</strong> date, c<strong>on</strong>tent (purity), and storage c<strong>on</strong>diti<strong>on</strong>s should accompany the standard.<br />

A certificate of analysis is not necessarily required for an <strong>in</strong>ternal standard, but the lack<br />

of analytical <strong>in</strong>terference with the analyte should be dem<strong>on</strong>strated before use as the<br />

<strong>in</strong>ternal standard.<br />

4. Analytical <strong>Method</strong> Validati<strong>on</strong><br />

4.1. Full validati<strong>on</strong><br />

A full validati<strong>on</strong> should be performed when establish<strong>in</strong>g a new bioanalytical method<br />

for quantificati<strong>on</strong> of an analyte. A full validati<strong>on</strong> should also be c<strong>on</strong>sidered when a new<br />

analyte, such as a metabolite, is added to an exist<strong>in</strong>g, fully validated analytical method.<br />

A full validati<strong>on</strong> is also required when us<strong>in</strong>g an analytical method that has been<br />

published <strong>in</strong> the literature.<br />

The objective of full validati<strong>on</strong> is to dem<strong>on</strong>strate selectivity, lower limit of<br />

quantificati<strong>on</strong> (LLOQ), calibrati<strong>on</strong> curve, accuracy, precisi<strong>on</strong>, matrix effect, recovery,<br />

carry-over, diluti<strong>on</strong> <strong>in</strong>tegrity, and stability. Generally, a full validati<strong>on</strong> should be<br />

performed for each species and matrix (ma<strong>in</strong>ly plasma, serum, whole blood, or ur<strong>in</strong>e) to<br />

be analyzed.<br />

The matrix used <strong>in</strong> analytical validati<strong>on</strong> should be as close as possible to the <strong>in</strong>tended<br />

study samples, <strong>in</strong>clud<strong>in</strong>g anticoagulant and additives. When an analytical method is to<br />

be established for a matrix of limited availability (rare matrix, e.g., tissue, cerebrosp<strong>in</strong>al<br />

fluid, bile), <strong>on</strong>e may encounter a problematic situati<strong>on</strong> where a sufficient amount of<br />

matrix cannot be obta<strong>in</strong>ed from an adequate number of sources (subjects or animals). In<br />

such a case, a surrogate matrix may be used to prepare calibrati<strong>on</strong> standards and QC<br />

samples. However, the use of a surrogate matrix should be rigorously justtified <strong>in</strong> the<br />

course of establish<strong>in</strong>g the analytical method.<br />

4.1.1. Selectivity<br />

4


73<br />

74<br />

75<br />

76<br />

77<br />

78<br />

79<br />

80<br />

81<br />

82<br />

83<br />

84<br />

85<br />

86<br />

87<br />

88<br />

89<br />

90<br />

91<br />

92<br />

93<br />

94<br />

95<br />

96<br />

97<br />

98<br />

99<br />

100<br />

101<br />

102<br />

103<br />

104<br />

105<br />

106<br />

107<br />

108<br />

Selectivity is the ability of an analytical method to measure and differentiate the<br />

analyte and the <strong>in</strong>ternal standard <strong>in</strong> the presence of other comp<strong>on</strong>ents <strong>in</strong> samples.<br />

Selectivity is evaluated us<strong>in</strong>g blank samples (matrix samples processed without<br />

additi<strong>on</strong> of an analyte or <strong>in</strong>ternal standard) obta<strong>in</strong>ed from at least 6 <strong>in</strong>dividual sources.<br />

The absence of <strong>in</strong>terference with each analyte and <strong>in</strong>ternal standard should be c<strong>on</strong>firmed.<br />

In case the matrix is of limited availability, it may be acceptable to use matrix samples<br />

obta<strong>in</strong>ed from less than 6 sources.<br />

The evaluati<strong>on</strong> should dem<strong>on</strong>strate that no resp<strong>on</strong>se attributable to <strong>in</strong>terfer<strong>in</strong>g<br />

comp<strong>on</strong>ents is observed with the blank samples or that a resp<strong>on</strong>se attributable to<br />

<strong>in</strong>terfer<strong>in</strong>g comp<strong>on</strong>ents is not more than 20% of the resp<strong>on</strong>se <strong>in</strong> the lower limit of<br />

quantificati<strong>on</strong> (LLOQ) for the analyte and 5% of the <strong>in</strong>ternal standard.<br />

4.1.2. Lower limit of quantificati<strong>on</strong><br />

The lower limit of quantificati<strong>on</strong> (LLOQ) is the lowest c<strong>on</strong>centrati<strong>on</strong> of an analyte at<br />

which the analyte can be quantified with reliable accuracy and precisi<strong>on</strong>.<br />

The analyte resp<strong>on</strong>se at the LLOQ should be at least 5 times the resp<strong>on</strong>se of a blank<br />

sample. Mean accuracy and precisi<strong>on</strong> at the LLOQ should be with<strong>in</strong> ±20% of the<br />

nom<strong>in</strong>al (theoretical) c<strong>on</strong>centrati<strong>on</strong> and not more than 20%, respectively.<br />

4.1.3. Calibrati<strong>on</strong> curve<br />

A calibrati<strong>on</strong> curve dem<strong>on</strong>strates the relati<strong>on</strong>ship between the theoretical<br />

c<strong>on</strong>centrati<strong>on</strong> and the resp<strong>on</strong>se of the analyte.<br />

A calibrati<strong>on</strong> curve needs to be prepared for each analyte. The calibrati<strong>on</strong> curve<br />

should be prepared us<strong>in</strong>g the same matrix as the <strong>in</strong>tended study samples, whenever<br />

possible, by spik<strong>in</strong>g the blank matrix with known c<strong>on</strong>centrati<strong>on</strong>s of the analyte. A<br />

calibrati<strong>on</strong> curve should be generated with a blank sample, a zero sample (blank sample<br />

spiked with <strong>in</strong>ternal standard)), and at least 6 c<strong>on</strong>centrati<strong>on</strong> levels of calibrati<strong>on</strong><br />

standards, <strong>in</strong>clud<strong>in</strong>g an LLOQ sample. In general, the simplest model that adequately<br />

describes the c<strong>on</strong>centrati<strong>on</strong>-resp<strong>on</strong>se relati<strong>on</strong>ship should be used for regressi<strong>on</strong> equati<strong>on</strong><br />

and weight<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong>s of the calibrati<strong>on</strong> curve. A multiple regressi<strong>on</strong> equati<strong>on</strong> may<br />

be used. Blank and zero samples should not be <strong>in</strong>cluded <strong>in</strong> the determ<strong>in</strong>ati<strong>on</strong> of the<br />

regressi<strong>on</strong> equati<strong>on</strong> for the calibrati<strong>on</strong> curve. The validati<strong>on</strong> report should <strong>in</strong>clude the<br />

regressi<strong>on</strong> equati<strong>on</strong> and correlati<strong>on</strong>/determ<strong>in</strong>ati<strong>on</strong> coefficient used.<br />

The accuracy of back calculated c<strong>on</strong>centrati<strong>on</strong>s of each calibrati<strong>on</strong> standard should be<br />

5


109<br />

110<br />

111<br />

112<br />

113<br />

114<br />

115<br />

116<br />

117<br />

118<br />

119<br />

120<br />

121<br />

122<br />

123<br />

124<br />

125<br />

126<br />

127<br />

128<br />

129<br />

130<br />

131<br />

132<br />

133<br />

134<br />

135<br />

136<br />

137<br />

138<br />

139<br />

140<br />

141<br />

142<br />

143<br />

144<br />

with<strong>in</strong> ±20% of the theoretical c<strong>on</strong>centrati<strong>on</strong> at the LLOQ, or ±15% at all other levels.<br />

At least 75% of the calibrati<strong>on</strong> standards, with a m<strong>in</strong>imum of 6 levels, <strong>in</strong>clud<strong>in</strong>g the<br />

LLOQ and the highest levels, should meet the above criteria.<br />

4.1.4. Accuracy and precisi<strong>on</strong><br />

Accuracy of an analytical method describes the degree of closeness between analyte<br />

c<strong>on</strong>centrati<strong>on</strong> determ<strong>in</strong>ed by the method and its theoretical c<strong>on</strong>centrati<strong>on</strong>. Precisi<strong>on</strong> of<br />

an analytical method describes variati<strong>on</strong> between <strong>in</strong>dividual c<strong>on</strong>centrati<strong>on</strong>s determ<strong>in</strong>ed<br />

<strong>in</strong> repeated measurements.<br />

Accuracy and precisi<strong>on</strong> are assessed by perform<strong>in</strong>g analysis with QC samples, i.e.,<br />

samples spiked with known amounts of the analyte. In the validati<strong>on</strong>, QC samples with<br />

a m<strong>in</strong>imum of 4 different c<strong>on</strong>centrati<strong>on</strong>s (LLOQ and low-, mid-, and high-levels) with<strong>in</strong><br />

the calibrati<strong>on</strong> range are prepared. The low-level should be with<strong>in</strong> 3 times the LLOQ,<br />

the mid-level is around the midpo<strong>in</strong>t <strong>on</strong> the calibrati<strong>on</strong> curve, and the high-level should<br />

be at least 75% of the upper limit of the calibrati<strong>on</strong> curve. With<strong>in</strong>-run accuracy and<br />

precisi<strong>on</strong> should be evaluated by replicate analysis of at least 5 times at each<br />

c<strong>on</strong>centrati<strong>on</strong> level <strong>in</strong> a s<strong>in</strong>gle analytical run. Between-run accuracy and precisi<strong>on</strong><br />

should be evaluated by the analysis <strong>in</strong> at least 3 analytical runs.<br />

The mean accuracy at each c<strong>on</strong>centrati<strong>on</strong> level should be with<strong>in</strong> ±15% of the<br />

theoretical c<strong>on</strong>centrati<strong>on</strong>, except at the LLOQ, where it should be with<strong>in</strong> ±20%.<br />

Precisi<strong>on</strong> of c<strong>on</strong>centrati<strong>on</strong>s determ<strong>in</strong>ed at each level should not exceed 15%, except at<br />

the LLOQ, where it should not exceed 20%.<br />

4.1.5. Matrix effect<br />

Matrix effect is an alterati<strong>on</strong> of the analyte resp<strong>on</strong>se due to matrix comp<strong>on</strong>ent(s) <strong>in</strong><br />

the sample. Matrix effect should be assessed when us<strong>in</strong>g mass spectrometric methods.<br />

Matrix effect is evaluated by calculat<strong>in</strong>g the matrix factor (MF). The MF is<br />

determ<strong>in</strong>ed by compar<strong>in</strong>g the analyte resp<strong>on</strong>se <strong>in</strong> the presence of matrix with that <strong>in</strong> the<br />

absence of matrix. MF should be calculated us<strong>in</strong>g matrix from at least 6 different<br />

sources. The MF may be normalized us<strong>in</strong>g an <strong>in</strong>ternal standard. The precisi<strong>on</strong> of the<br />

MF calculated should not exceed 15%.<br />

Matrix effect can also be evaluated by analyz<strong>in</strong>g QC samples, each prepared us<strong>in</strong>g<br />

matrix from at least 6 different sources. The precisi<strong>on</strong> of determ<strong>in</strong>ed c<strong>on</strong>centrati<strong>on</strong>s<br />

should not be greater than 15%.<br />

6


145<br />

146<br />

147<br />

148<br />

149<br />

150<br />

151<br />

152<br />

153<br />

154<br />

155<br />

156<br />

157<br />

158<br />

159<br />

160<br />

161<br />

162<br />

163<br />

164<br />

165<br />

166<br />

167<br />

168<br />

169<br />

170<br />

171<br />

172<br />

173<br />

174<br />

175<br />

176<br />

177<br />

178<br />

179<br />

180<br />

In case the matrix is of limited availability, it may be acceptable to use matrix<br />

obta<strong>in</strong>ed from less than 6 sources.<br />

4.1.6. Recovery<br />

Recovery is a measure of the efficiency at which an analytical method recovers the<br />

analyte through the sample-process<strong>in</strong>g step.<br />

The recovery is determ<strong>in</strong>ed by compar<strong>in</strong>g the analyte resp<strong>on</strong>se <strong>in</strong> a biological sample<br />

that was spiked with the analyte and processed, with the resp<strong>on</strong>se <strong>in</strong> a biological blank<br />

sample that was processed and then spiked with the analyte. Recovery is evaluated by<br />

replicate analysis of at least 3 times each at 3 c<strong>on</strong>centrati<strong>on</strong> levels (low-, mid-, and<br />

high-levels). It is important to dem<strong>on</strong>strate the reproducibility at each level, rather than<br />

to show a higher recovery rate.<br />

4.1.7. Carry-over<br />

Carry-over is an alterati<strong>on</strong> of the measured c<strong>on</strong>centrati<strong>on</strong> due to a leftover analyte <strong>in</strong><br />

the analytical <strong>in</strong>strument used.<br />

The carry-over should be evaluated by analyz<strong>in</strong>g a blank sample follow<strong>in</strong>g the<br />

highest c<strong>on</strong>centrati<strong>on</strong> calibrati<strong>on</strong> standard. The resp<strong>on</strong>se <strong>in</strong> the blank sample obta<strong>in</strong>ed<br />

after measurement of the highest c<strong>on</strong>centrati<strong>on</strong> standard should not be greater than 20%<br />

of the analyte resp<strong>on</strong>se at the LLOQ and 5% of the resp<strong>on</strong>se of <strong>in</strong>ternal standard.<br />

If these criteria cannot be met, the extent of carry-over needs to be exam<strong>in</strong>ed, and<br />

appropriate procedures should be taken to avoid any impact dur<strong>in</strong>g the analysis of actual<br />

study samples.<br />

4.1.8. Diluti<strong>on</strong> <strong>in</strong>tegrity<br />

If samples require diluti<strong>on</strong> before analysis, the diluti<strong>on</strong> procedure should be tested to<br />

c<strong>on</strong>firm the absence of any impact <strong>on</strong> the measured c<strong>on</strong>centrati<strong>on</strong> of the analyte.<br />

Diluti<strong>on</strong> <strong>in</strong>tegrity should be evaluated by the replicate analysis of at least 5 times per<br />

diluti<strong>on</strong> factor after dilut<strong>in</strong>g a sample with blank matrix to br<strong>in</strong>g the analyte<br />

c<strong>on</strong>centrati<strong>on</strong> with<strong>in</strong> the calibrati<strong>on</strong> range. Mean accuracy and precisi<strong>on</strong> <strong>in</strong> the<br />

measurements of diluted samples must be with<strong>in</strong> ±15% of the theoretical c<strong>on</strong>centrati<strong>on</strong><br />

and not more than 15%, respectively.<br />

If a different matrix is used for sample diluti<strong>on</strong>, the absence of impact <strong>on</strong> the<br />

7


181<br />

182<br />

183<br />

184<br />

185<br />

186<br />

187<br />

188<br />

189<br />

190<br />

191<br />

192<br />

193<br />

194<br />

195<br />

196<br />

197<br />

198<br />

199<br />

200<br />

201<br />

202<br />

203<br />

204<br />

205<br />

206<br />

207<br />

208<br />

209<br />

210<br />

211<br />

212<br />

213<br />

214<br />

215<br />

216<br />

accuracy and precisi<strong>on</strong> should be dem<strong>on</strong>strated <strong>in</strong> the same manner.<br />

4.1.9. Stability<br />

Analyte stability is evaluated to ensure that the analyte c<strong>on</strong>centrati<strong>on</strong> is not affected<br />

as the samples move through each step of the process from sample collecti<strong>on</strong> to f<strong>in</strong>al<br />

analysis. The stability of the samples should be assessed under c<strong>on</strong>diti<strong>on</strong>s that is as<br />

close as possible to those under which the samples are actually stored or analyzed.<br />

Careful c<strong>on</strong>siderati<strong>on</strong> should be given to the solvent or matrix type, c<strong>on</strong>ta<strong>in</strong>er materials,<br />

and storage c<strong>on</strong>diti<strong>on</strong>s used <strong>in</strong> the stability-determ<strong>in</strong>ati<strong>on</strong> process.<br />

Validati<strong>on</strong> studies should determ<strong>in</strong>e analyte stability after freeze and thaw cycles,<br />

after short-term (at room temperature, <strong>on</strong> ice, or under refrigerati<strong>on</strong>) and l<strong>on</strong>g-term<br />

storage; stability <strong>in</strong> the processed samples should also be c<strong>on</strong>sidered. All stability<br />

experiments should be performed <strong>on</strong> samples that have been stored for a time that is<br />

l<strong>on</strong>ger than the actual storage period.<br />

Stability of the analyte <strong>in</strong> the stock and work<strong>in</strong>g soluti<strong>on</strong>s is usually evaluated us<strong>in</strong>g<br />

soluti<strong>on</strong>s near the highest and lowest c<strong>on</strong>centrati<strong>on</strong> levels. The evaluati<strong>on</strong> is performed<br />

by replicate analysis of at least 3 times at each level.<br />

Stability of the analyte <strong>in</strong> the studied matrix is evaluated us<strong>in</strong>g low- and high-level<br />

QC samples. The QC samples should be prepared us<strong>in</strong>g a matrix that is as close as<br />

possible to the actual study samples, <strong>in</strong>clud<strong>in</strong>g anticoagulant and additives. Stability is<br />

evaluated by replicate analysis of at least 3 times per c<strong>on</strong>centrati<strong>on</strong> level with QC<br />

samples before and after storage. The mean accuracy <strong>in</strong> the measurements at each level<br />

should be with<strong>in</strong> ±15% of the theoretical c<strong>on</strong>centrati<strong>on</strong>, <strong>in</strong> pr<strong>in</strong>ciple.<br />

4.2. Partial validati<strong>on</strong><br />

Partial validati<strong>on</strong> may be performed when m<strong>in</strong>or changes are made to an analytical<br />

method that has already been fully validated. A set of parameters to be evaluated <strong>in</strong> a<br />

partial validati<strong>on</strong> are determ<strong>in</strong>ed accord<strong>in</strong>g to the extent and nature of the changes made<br />

to the method.<br />

Typical bioanalytical method changes that are subject to a partial validati<strong>on</strong> are as<br />

follows: analytical method transfers between laboratories, changes <strong>in</strong> analytical<br />

<strong>in</strong>struments, changes <strong>in</strong> calibrati<strong>on</strong> range, changes <strong>in</strong> sample volume used for analysis,<br />

changes <strong>in</strong> anticoagulant, changes <strong>in</strong> sample-process<strong>in</strong>g procedures or analytical<br />

c<strong>on</strong>diti<strong>on</strong>s, changes <strong>in</strong> sample storage c<strong>on</strong>diti<strong>on</strong>s, c<strong>on</strong>firmati<strong>on</strong> of impact by<br />

8


217<br />

218<br />

219<br />

220<br />

221<br />

222<br />

223<br />

224<br />

225<br />

226<br />

227<br />

228<br />

229<br />

230<br />

231<br />

232<br />

233<br />

234<br />

235<br />

236<br />

237<br />

238<br />

239<br />

240<br />

241<br />

242<br />

243<br />

244<br />

245<br />

246<br />

247<br />

248<br />

249<br />

250<br />

251<br />

252<br />

c<strong>on</strong>comitant drugs, and use of rare matrices. Changes <strong>in</strong> species and matrix may also<br />

fall <strong>in</strong>to this category.<br />

Acceptance criteria used <strong>in</strong> partial validati<strong>on</strong> should <strong>in</strong> pr<strong>in</strong>ciple be the same as those<br />

employed <strong>in</strong> the full validati<strong>on</strong>.<br />

4.3. Cross validati<strong>on</strong><br />

Cross validati<strong>on</strong> is primarily c<strong>on</strong>ducted when data are generated <strong>in</strong> multiple<br />

laboratories with<strong>in</strong> the same study or when compar<strong>in</strong>g analytical methods used <strong>in</strong><br />

different studies. In the cross validati<strong>on</strong> c<strong>on</strong>ducted after full or partial validati<strong>on</strong> <strong>in</strong> each<br />

laboratory or for each analytical method to be compared, the same set of QC samples<br />

spiked with the analyte or the same set of study samples is analyzed at both laboratories<br />

or by both analytical methods, and the mean accuracy at each c<strong>on</strong>centrati<strong>on</strong> level or the<br />

assay variability is evaluated.<br />

In the cross validati<strong>on</strong> between different laboratories with<strong>in</strong> the same study, the mean<br />

accuracy of QC samples (low-, mid-, and high-levels) at each level should be with<strong>in</strong><br />

±20% of the theoretical c<strong>on</strong>centrati<strong>on</strong>, c<strong>on</strong>sider<strong>in</strong>g the <strong>in</strong>termediate precisi<strong>on</strong> and<br />

reproducibility (<strong>in</strong>ter-laboratories precisi<strong>on</strong>). When us<strong>in</strong>g a set of study samples, the<br />

assay variability should be with<strong>in</strong> ±20% for at least two-thirds of the samples.<br />

In the cross validati<strong>on</strong> between different analytical methods, both validati<strong>on</strong><br />

procedure and acceptance criteria (i.e., acceptable assay variability) should be<br />

separately def<strong>in</strong>ed based <strong>on</strong> scientific judgment by c<strong>on</strong>sider<strong>in</strong>g the nature of the<br />

analytical methods.<br />

5. Analysis of Study Samples<br />

Study samples are biological specimens that are obta<strong>in</strong>ed from toxicok<strong>in</strong>etic studies<br />

and cl<strong>in</strong>ical trials for bioanalysis. Analysis of study samples should be carried out us<strong>in</strong>g<br />

an established analytical method that has been fully validated. In the analysis, study<br />

samples are handled under c<strong>on</strong>diti<strong>on</strong>s that have been validated for adequate stability,<br />

and analyzed with<strong>in</strong> a def<strong>in</strong>ed stability period, al<strong>on</strong>g with a blank sample, a zero sample,<br />

calibrati<strong>on</strong> standards at a m<strong>in</strong>imum of 6 c<strong>on</strong>centrati<strong>on</strong> levels, and QC samples.<br />

5.1. Validity and reproducibility of the analytical method <strong>in</strong> analysis of study samples<br />

Validity of the analytical method dur<strong>in</strong>g study sample analysis should be evaluated <strong>in</strong><br />

9


253<br />

254<br />

255<br />

256<br />

257<br />

258<br />

259<br />

260<br />

261<br />

262<br />

263<br />

264<br />

265<br />

266<br />

267<br />

268<br />

269<br />

270<br />

271<br />

272<br />

273<br />

274<br />

275<br />

276<br />

277<br />

278<br />

279<br />

280<br />

281<br />

282<br />

283<br />

284<br />

285<br />

286<br />

287<br />

288<br />

each analytical run by us<strong>in</strong>g the calibrati<strong>on</strong> curve and QC samples. In studies that use<br />

pharmacok<strong>in</strong>etic data as the primary endpo<strong>in</strong>t, reproducibility of the analytical method<br />

should be c<strong>on</strong>firmed for each representative study by different matrix by perform<strong>in</strong>g<br />

<strong>in</strong>curred sample reanalysis (ISR: reanalysis of <strong>in</strong>curred samples <strong>in</strong> separate analytical<br />

runs <strong>on</strong> different day to determ<strong>in</strong>e whether the orig<strong>in</strong>al analytical results are<br />

reproducible).<br />

If carry-over is a c<strong>on</strong>cern for the study samples analyzed, the evaluati<strong>on</strong> of validity<br />

should also <strong>in</strong>clude carry-over.<br />

5.1.1. Calibrati<strong>on</strong> curve<br />

A calibrati<strong>on</strong> curve is used to determ<strong>in</strong>e the c<strong>on</strong>centrati<strong>on</strong> of the analyte of <strong>in</strong>terest <strong>in</strong><br />

study samples. A calibrati<strong>on</strong> curve used <strong>in</strong> study sample analysis should be generated<br />

for each analytical run by us<strong>in</strong>g the validated analytical method. The same model as <strong>in</strong><br />

the bioanalytical method validati<strong>on</strong> is used for the regressi<strong>on</strong> equati<strong>on</strong> and weight<strong>in</strong>g<br />

c<strong>on</strong>diti<strong>on</strong>s of the calibrati<strong>on</strong> curve.<br />

The accuracy of back calculated c<strong>on</strong>centrati<strong>on</strong>s of calibrati<strong>on</strong> standards at each level<br />

should be with<strong>in</strong> ±20% of the theoretical c<strong>on</strong>centrati<strong>on</strong> at the LLOQ, or ±15% at all<br />

other levels. At least 75% of the calibrati<strong>on</strong> standards, with a m<strong>in</strong>imum of 6 levels, must<br />

meet the above criteria.<br />

In case the calibrati<strong>on</strong> standard at the LLOQ or the highest level did not meet the<br />

criteria <strong>in</strong> study sample analysis, the next lowest/highest-level calibrati<strong>on</strong> standard may<br />

be used as the LLOQ or the highest level of the calibrati<strong>on</strong> curve. In that case, the<br />

modified calibrati<strong>on</strong> range should cover at least 3 different QC sample levels (low-,<br />

mid-, and high-levels).<br />

5.1.2. QC samples<br />

QC samples are analyzed to assess the validity of the analytical method used for<br />

calibrati<strong>on</strong> curve and study sample analysis. <br />

QC samples with a m<strong>in</strong>imum of 3 different c<strong>on</strong>centrati<strong>on</strong> levels (low-, mid-, and<br />

high-levels) with<strong>in</strong> the calibrati<strong>on</strong> range are analyzed <strong>in</strong> each analytical run. Usually,<br />

the low-level is with<strong>in</strong> 3 times the LLOQ, the mid-level is <strong>in</strong> the midrange of the<br />

calibrati<strong>on</strong> curve, and the high-level needs to be at least 75% of the upper limit of the<br />

calibrati<strong>on</strong> curve. The analysis requires 2 QC samples at each c<strong>on</strong>centrati<strong>on</strong> level or at<br />

least 5% of the total number of study samples <strong>in</strong> the analytical run, whichever is the<br />

10


289<br />

290<br />

291<br />

292<br />

293<br />

294<br />

295<br />

296<br />

297<br />

298<br />

299<br />

300<br />

301<br />

302<br />

303<br />

304<br />

305<br />

306<br />

307<br />

308<br />

309<br />

310<br />

311<br />

312<br />

313<br />

314<br />

315<br />

316<br />

317<br />

318<br />

319<br />

320<br />

321<br />

322<br />

323<br />

324<br />

greater. QC samples should be analyzed before and after study sample analysis at a<br />

m<strong>in</strong>imum.<br />

The accuracy <strong>in</strong> the measurements of QC samples should be with<strong>in</strong> ±15% of the<br />

theoretical c<strong>on</strong>centrati<strong>on</strong>s. At least two-thirds of the QC samples and at least 50% at<br />

each c<strong>on</strong>centrati<strong>on</strong> level should meet these criteria.<br />

5.1.3. Incurred samples reanalysis (ISR)<br />

In bioanalysis, it is not uncomm<strong>on</strong> that the results of analyses of study samples are<br />

not reproducible, even when the bioanalytical method validati<strong>on</strong> has been successfully<br />

c<strong>on</strong>ducted and the validity of at each analytical run was c<strong>on</strong>firmed by us<strong>in</strong>g calibrati<strong>on</strong><br />

standards and QC samples. Such a failure could be attributed to various factors,<br />

<strong>in</strong>clud<strong>in</strong>g <strong>in</strong>homogeneity of study samples, c<strong>on</strong>tam<strong>in</strong>ati<strong>on</strong> and other operati<strong>on</strong>al errors,<br />

and <strong>in</strong>terference of biological comp<strong>on</strong>ents unique to the study samples or of unknown<br />

metabolites. ISR refers to reanalysis of <strong>in</strong>curred samples <strong>in</strong> separate analytical runs <strong>on</strong><br />

different days to check whether the orig<strong>in</strong>al analytical results are reproducible.<br />

C<strong>on</strong>firmati<strong>on</strong> of the reproducibility <strong>in</strong> ISR will improve the reliability of the analytical<br />

data obta<strong>in</strong>ed. In additi<strong>on</strong>, a failure to reproduce the orig<strong>in</strong>al data <strong>in</strong> ISR could trigger a<br />

cause <strong>in</strong>vestigati<strong>on</strong> and remedial measures for the analytical method.<br />

Usually, ISR is performed for representative studies selected for each different matrix<br />

<strong>in</strong> studies that use pharmacok<strong>in</strong>etic data as the primary endpo<strong>in</strong>t. For <strong>in</strong>stance, ISR<br />

should be c<strong>on</strong>ducted <strong>in</strong> the follow<strong>in</strong>g situati<strong>on</strong>s: <strong>in</strong> toxicok<strong>in</strong>etic studies for each<br />

different species; <strong>in</strong> cl<strong>in</strong>ical studies representative pharmacok<strong>in</strong>etic studies for healthy<br />

volunteers and patients with renal/hepatic impairment, as well as <strong>in</strong> bioequivalence<br />

studies. For n<strong>on</strong>-cl<strong>in</strong>ical studies, ISR may be performed with samples obta<strong>in</strong>ed <strong>in</strong><br />

prelim<strong>in</strong>ary studies, if these are representative of later-stage n<strong>on</strong>-cl<strong>in</strong>ical studies <strong>in</strong><br />

terms of sampl<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong>s.<br />

ISR should be performed with samples from as many subjects/animals as possible<br />

and should usually <strong>in</strong>clude those of near the maximum blood c<strong>on</strong>centrati<strong>on</strong> (Cmax) and<br />

the elim<strong>in</strong>ati<strong>on</strong> phase. ISR should be performed with<strong>in</strong> a time w<strong>in</strong>dow that ensures the<br />

stability of the analyte. As a guide, approximately 10% of the samples should be<br />

reanalyzed <strong>in</strong> cases where the total number of study samples is less than 1000 and<br />

approximately 5% of the number of samples exceed<strong>in</strong>g 1000 samples.<br />

The results of ISR are evaluated us<strong>in</strong>g assay variability. Assay variability can be<br />

calculated as the difference between the c<strong>on</strong>centrati<strong>on</strong> obta<strong>in</strong>ed by ISR and that <strong>in</strong> the<br />

orig<strong>in</strong>al analysis divided by their mean and multiplied by 100. The assay variability<br />

should be with<strong>in</strong> ±20% for at least two-thirds of the samples analyzed <strong>in</strong> ISR. In case<br />

11


325<br />

326<br />

327<br />

328<br />

329<br />

330<br />

331<br />

332<br />

333<br />

334<br />

335<br />

336<br />

337<br />

338<br />

339<br />

340<br />

341<br />

342<br />

343<br />

344<br />

345<br />

346<br />

347<br />

348<br />

349<br />

350<br />

351<br />

352<br />

353<br />

354<br />

355<br />

356<br />

357<br />

358<br />

359<br />

360<br />

the ISR data failed to meet the above criteria, cause <strong>in</strong>vestigati<strong>on</strong> should be c<strong>on</strong>ducted<br />

for the analytical method and necessary measures should be taken by c<strong>on</strong>sider<strong>in</strong>g the<br />

potential impact <strong>on</strong> study sample analysis.<br />

It should be noted that ISR is performed to m<strong>on</strong>itor assay variability. The orig<strong>in</strong>al<br />

data should never be discarded or replaced with the reanalysis data even if the assay<br />

variability exceeds ±20% for <strong>in</strong>dividual measurements.<br />

5.1.4. Carry-over<br />

Should there be any c<strong>on</strong>cern that carry-over may affect the quantificati<strong>on</strong> of analyte<br />

<strong>in</strong> study samples, carry-over should be evaluated dur<strong>in</strong>g the actual study sample<br />

analysis us<strong>in</strong>g the same procedure described <strong>in</strong> 4.1.7 to assess the impact <strong>on</strong> the<br />

c<strong>on</strong>centrati<strong>on</strong> data.<br />

5.2. Po<strong>in</strong>ts to note<br />

5.2.1. Calibrati<strong>on</strong> range<br />

If c<strong>on</strong>centrati<strong>on</strong> data obta<strong>in</strong>ed dur<strong>in</strong>g the analysis of study samples are found with<strong>in</strong> a<br />

narrow range of the calibrati<strong>on</strong> range, redef<strong>in</strong><strong>in</strong>g of the c<strong>on</strong>centrati<strong>on</strong> levels of QC<br />

samples accord<strong>in</strong>gly is advisable.<br />

In case the calibrati<strong>on</strong> range is changed, partial validati<strong>on</strong> should be performed.<br />

However, it is not necessary to reanalyze the study samples that have been quantified<br />

prior to the change (<strong>in</strong> calibrati<strong>on</strong> range, levels, or number of QC samples).<br />

5.2.2. Reanalysis<br />

Possible reas<strong>on</strong>s and procedures for reanalysis, as well as criteria for handl<strong>in</strong>g of<br />

c<strong>on</strong>centrati<strong>on</strong> data should be predef<strong>in</strong>ed <strong>in</strong> the protocol or standard operat<strong>in</strong>g procedure<br />

(SOP).<br />

Examples of reas<strong>on</strong>s for reanalysis are as follows: calibrati<strong>on</strong> curve or QC samples<br />

failed to meet the criteria for the validity of analytical run; the obta<strong>in</strong>ed c<strong>on</strong>centrati<strong>on</strong><br />

was higher than the upper limit of the calibrati<strong>on</strong> range; the analyte of <strong>in</strong>terest was<br />

detected <strong>in</strong> pre-dose or placebo samples; improper sample process<strong>in</strong>g or malfuncti<strong>on</strong> of<br />

equipment; defective chromatogram; and causal <strong>in</strong>vestigati<strong>on</strong> <strong>on</strong> unusual data.<br />

Reanalysis of study samples for a pharmacok<strong>in</strong>etic reas<strong>on</strong> should be avoided, whenever<br />

12


361<br />

362<br />

363<br />

364<br />

365<br />

366<br />

367<br />

368<br />

369<br />

370<br />

371<br />

372<br />

373<br />

374<br />

375<br />

376<br />

377<br />

378<br />

379<br />

380<br />

381<br />

382<br />

383<br />

384<br />

385<br />

386<br />

387<br />

388<br />

389<br />

390<br />

391<br />

392<br />

393<br />

394<br />

395<br />

396<br />

possible. In bioequivalence studies, it is not acceptable to reanalyze study samples and<br />

replace the c<strong>on</strong>centrati<strong>on</strong> data <strong>on</strong>ly because the <strong>in</strong>itial data were pharmacok<strong>in</strong>etically<br />

questi<strong>on</strong>able. However, re-extracti<strong>on</strong> and/or reanalysis of specific study samples are<br />

acceptable when, for <strong>in</strong>stance, the <strong>in</strong>itial analysis yielded an unexpected or anomalous<br />

result that may affect the patient safety <strong>in</strong> a cl<strong>in</strong>ical trial.<br />

In any case, when reanalysis was performed, the analysis report should provide<br />

<strong>in</strong>formati<strong>on</strong> of the reanalyzed samples; the reas<strong>on</strong> for reanalysis; the data obta<strong>in</strong>ed <strong>in</strong><br />

the <strong>in</strong>itial analysis, if any; the data obta<strong>in</strong>ed <strong>in</strong> the reanalysis; and the f<strong>in</strong>al accepted<br />

values and the reas<strong>on</strong> and method of selecti<strong>on</strong>.<br />

5.2.3. Chromatogram <strong>in</strong>tegrati<strong>on</strong><br />

Procedures for chromatogram <strong>in</strong>tegrati<strong>on</strong> and re-<strong>in</strong>tegrati<strong>on</strong> should be predef<strong>in</strong>ed <strong>in</strong><br />

the protocol or SOP.<br />

In case chromatogram re-<strong>in</strong>tegrati<strong>on</strong> was performed, the reas<strong>on</strong> for re-<strong>in</strong>tegrati<strong>on</strong><br />

should be recorded and the chromatograms obta<strong>in</strong>ed both before and after the<br />

re-<strong>in</strong>tegrati<strong>on</strong> should be kept for future reference.<br />

5.2.4. System suitability<br />

Analytical <strong>in</strong>struments used <strong>in</strong> bioanalysis should be well ma<strong>in</strong>ta<strong>in</strong>ed and properly<br />

serviced. In order to ensure optimum performance of the <strong>in</strong>strument used for bioanalysis,<br />

it is advisable to c<strong>on</strong>firm the system suitability prior to each run, <strong>in</strong> additi<strong>on</strong> to<br />

periodical check. However, c<strong>on</strong>firmati<strong>on</strong> of the system suitability is not mandatory <strong>in</strong><br />

bioanalysis, because the validity of analysis is rout<strong>in</strong>ely checked <strong>in</strong> each analytical run.<br />

6. Documentati<strong>on</strong> and Archives<br />

In order to ensure adequate reproducibility and reliability of bioanalysis, results<br />

obta<strong>in</strong>ed <strong>in</strong> analytical method validati<strong>on</strong>s and study sample analyses should be<br />

documented <strong>in</strong> a validati<strong>on</strong> report and a study sample analysis report as described below.<br />

The reports should be stored al<strong>on</strong>g with relevant records and raw data <strong>in</strong> an appropriate<br />

manner.<br />

All relevant records and raw data should be kept, <strong>in</strong>clud<strong>in</strong>g those obta<strong>in</strong>ed <strong>in</strong> rejected<br />

analytical runs, specifically record of reference materials and blank matrices<br />

(receipt/release, use, storage), record of samples (receipt/release, preparati<strong>on</strong>, and<br />

13


397<br />

398<br />

399<br />

400<br />

401<br />

402<br />

403<br />

404<br />

405<br />

406<br />

407<br />

408<br />

409<br />

410<br />

411<br />

412<br />

413<br />

414<br />

415<br />

416<br />

417<br />

418<br />

419<br />

420<br />

421<br />

422<br />

423<br />

424<br />

425<br />

426<br />

427<br />

428<br />

429<br />

430<br />

431<br />

432<br />

storage), record of analyses, record of <strong>in</strong>strument (calibrati<strong>on</strong> and sett<strong>in</strong>gs), record of<br />

deviati<strong>on</strong>s, record of communicati<strong>on</strong>s, and raw data such as analytical data and<br />

chromatograms.<br />

Validati<strong>on</strong> report<br />

Summary of the validati<strong>on</strong><br />

Informati<strong>on</strong> <strong>on</strong> the reference standards<br />

Informati<strong>on</strong> <strong>on</strong> the blank matrices<br />

Analytical method<br />

Validated parameters and the acceptance criteria<br />

Validati<strong>on</strong> results and discussi<strong>on</strong><br />

Rejected runs together with the reas<strong>on</strong> for rejecti<strong>on</strong><br />

Informati<strong>on</strong> <strong>on</strong> reanalysis<br />

Deviati<strong>on</strong>s from the protocol and/or SOP, al<strong>on</strong>g with the impact <strong>on</strong> study results<br />

Informati<strong>on</strong> <strong>on</strong> reference study, protocol, and literature<br />

Representative chromatograms<br />

Study sample analysis report<br />

Summary of the study sample analysis<br />

Informati<strong>on</strong> <strong>on</strong> the reference standards<br />

Informati<strong>on</strong> <strong>on</strong> the blank matrices<br />

Informati<strong>on</strong> <strong>on</strong> receipt and storage of study samples<br />

Analytical method<br />

Parameters, acceptance criteria, and results of the validity evaluati<strong>on</strong><br />

Results and discussi<strong>on</strong> of study sample analysis<br />

Rejected runs together with the reas<strong>on</strong> for rejecti<strong>on</strong><br />

Informati<strong>on</strong> <strong>on</strong> reanalysis<br />

Deviati<strong>on</strong>s from the protocol and/or SOP, al<strong>on</strong>g with impact <strong>on</strong> study results<br />

Informati<strong>on</strong> <strong>on</strong> reference study, protocol, and literature<br />

Representative chromatograms, as needed<br />

List of relevant guidel<strong>in</strong>es<br />

1) Regard<strong>in</strong>g "the Guidance <strong>on</strong> N<strong>on</strong>cl<strong>in</strong>ical Safety Studies for the C<strong>on</strong>duct of Human<br />

14


433<br />

434<br />

435<br />

436<br />

437<br />

438<br />

439<br />

440<br />

441<br />

442<br />

443<br />

444<br />

445<br />

446<br />

447<br />

448<br />

449<br />

450<br />

451<br />

Cl<strong>in</strong>ical Trials and Market<strong>in</strong>g Authorizati<strong>on</strong> for Pharmaceuticals (ICH M3(R2))"<br />

PFSB/ELD Notificati<strong>on</strong> No. 0219-4 dated February 19, 2010<br />

2) Regard<strong>in</strong>g the "Note for Guidance <strong>on</strong> Toxicok<strong>in</strong>etics: The Assessment of Systemic<br />

Exposure <strong>in</strong> Toxicity Studies." PAB/ELD Notificati<strong>on</strong> No. 443 dated July 2, 1996<br />

3) Regard<strong>in</strong>g the "<str<strong>on</strong>g>Guidel<strong>in</strong>e</str<strong>on</strong>g> <strong>on</strong> N<strong>on</strong>cl<strong>in</strong>ical Pharmacok<strong>in</strong>etics." PNSB/ELD<br />

Notificati<strong>on</strong> No. 496 dated June 26, 1998<br />

4) "Partial Revisi<strong>on</strong> of the <str<strong>on</strong>g>Guidel<strong>in</strong>e</str<strong>on</strong>g> <strong>on</strong> Bioequivalence Studies for Generic<br />

Pharmaceuticals." PFSB/ELD Notificati<strong>on</strong> No. 0299-10 dated February 29, 2012<br />

5) Revisi<strong>on</strong> of the "Q & As c<strong>on</strong>cern<strong>in</strong>g the <str<strong>on</strong>g>Guidel<strong>in</strong>e</str<strong>on</strong>g> <strong>on</strong> Bioequivalence Studies for<br />

Generic Pharmaceuticals." Office Communicati<strong>on</strong> dated February 29, 2012<br />

6) "Note <strong>on</strong> Cl<strong>in</strong>ical Pharmacok<strong>in</strong>etic Studies of Pharmaceuticals." PFSB/ELD<br />

Notificati<strong>on</strong> No. 796 dated June 1, 2001<br />

7)US FDA: Guidance for Industry, <strong>Bioanalytical</strong> <strong>Method</strong> Validati<strong>on</strong>, U.S.<br />

Department of Health and Human Services, FDA, Center for Drug Evaluati<strong>on</strong> and<br />

Research, Center for Veter<strong>in</strong>ary Medic<strong>in</strong>e(2001)<br />

8) EMA: <str<strong>on</strong>g>Guidel<strong>in</strong>e</str<strong>on</strong>g> <strong>on</strong> bioanalytical method validati<strong>on</strong>,<br />

EMEA/CHMP/EWP/192217/2009, Committee for Medic<strong>in</strong>al Products for Human<br />

Use(2011)<br />

15


452<br />

453<br />

454<br />

455<br />

456<br />

457<br />

458<br />

459<br />

460<br />

461<br />

462<br />

463<br />

464<br />

465<br />

466<br />

467<br />

468<br />

469<br />

470<br />

Glossary<br />

Accuracy: The degree of closeness of a c<strong>on</strong>centrati<strong>on</strong> determ<strong>in</strong>ed by the method to the<br />

nom<strong>in</strong>al (theoretical) c<strong>on</strong>centrati<strong>on</strong> of the analyte. Accuracy is expressed as a percentage<br />

relative to the theoretical c<strong>on</strong>centrati<strong>on</strong>.<br />

Accuracy (%) = (Measured c<strong>on</strong>centrati<strong>on</strong>/Theoretical c<strong>on</strong>centrati<strong>on</strong>) × 100.<br />

Analysis: A series of analytical procedures from sample process<strong>in</strong>g to measurement <strong>on</strong><br />

an analytical <strong>in</strong>strument.<br />

Analyte: A specific compound be<strong>in</strong>g analyzed. It can be a drug, biomolecule or its<br />

derivative, metabolite, and/or degradati<strong>on</strong> product <strong>in</strong> a sample.<br />

Analytical run: A set of samples compris<strong>in</strong>g calibrati<strong>on</strong> standards, QC samples, and<br />

study samples. A set of subsequently processed samples, called a batch, is usually<br />

analyzed as a s<strong>in</strong>gle run without <strong>in</strong>terrupti<strong>on</strong> <strong>in</strong> time and by the same analyst with the<br />

same reagents under the same c<strong>on</strong>diti<strong>on</strong>s.<br />

Assay variability: The degree of difference between the duplicate c<strong>on</strong>centrati<strong>on</strong>s<br />

determ<strong>in</strong>ed for a s<strong>in</strong>gle sample. The difference is expressed as a percentage relative to<br />

the mean of the two.<br />

Assay variability (%) = [(C<strong>on</strong>centrati<strong>on</strong> <strong>in</strong> analysis to be compared - C<strong>on</strong>centrati<strong>on</strong> <strong>in</strong><br />

reference analysis)/Mean of the two] × 100.<br />

16


471<br />

472<br />

473<br />

474<br />

475<br />

476<br />

477<br />

478<br />

479<br />

480<br />

481<br />

482<br />

483<br />

484<br />

485<br />

486<br />

487<br />

488<br />

489<br />

490<br />

491<br />

492<br />

493<br />

494<br />

495<br />

496<br />

497<br />

498<br />

499<br />

500<br />

501<br />

Blank sample: A matrix sample processed without add<strong>in</strong>g an analyte or <strong>in</strong>ternal<br />

standard.<br />

Calibrati<strong>on</strong> curve: The relati<strong>on</strong>ship between the theoretical c<strong>on</strong>centrati<strong>on</strong> and the<br />

resp<strong>on</strong>se of the analyte. A calibrati<strong>on</strong> curve is generated from a blank sample, a zero<br />

sample, and at least 6 c<strong>on</strong>centrati<strong>on</strong> levels of calibrati<strong>on</strong> standards, <strong>in</strong>clud<strong>in</strong>g an LLOQ<br />

sample.<br />

Calibrati<strong>on</strong> standard: A sample spiked with the analyte of <strong>in</strong>terest to a known<br />

c<strong>on</strong>centrati<strong>on</strong>, which is used to generate calibrati<strong>on</strong> curves. Calibrati<strong>on</strong> standards are<br />

used to generate a calibrati<strong>on</strong> curve, from which the c<strong>on</strong>centrati<strong>on</strong>s of the analyte <strong>in</strong> QC<br />

samples and study samples are determ<strong>in</strong>ed.<br />

Carry-over: An alterati<strong>on</strong> of the measured c<strong>on</strong>centrati<strong>on</strong> due to a leftover analyte <strong>in</strong> the<br />

analytical <strong>in</strong>strument used.<br />

Cross validati<strong>on</strong>: A validati<strong>on</strong> performed when two or more analytical methods are<br />

used with<strong>in</strong> the same study or across different studies or when analytical methods of<br />

different measurement pr<strong>in</strong>ciples (e.g., LC/MS/MS and ELISA) are used.<br />

Diluti<strong>on</strong> <strong>in</strong>tegrity: Assessment of the sample diluti<strong>on</strong> procedure, when required, to<br />

c<strong>on</strong>firm that the procedure does not impact the measured c<strong>on</strong>centrati<strong>on</strong> of the analyte.<br />

Full validati<strong>on</strong>: Dem<strong>on</strong>strati<strong>on</strong> of all the validati<strong>on</strong> items i.e., selectivity, lower limit of<br />

quantificati<strong>on</strong> (LLOQ), calibrati<strong>on</strong> curve, accuracy, precisi<strong>on</strong>, matrix effects, recovery,<br />

carry-over, diluti<strong>on</strong> <strong>in</strong>tegrity, and stability. Full validati<strong>on</strong> is usually performed when<br />

establish<strong>in</strong>g a new analytical method.<br />

Incurred sample: A study sample that is obta<strong>in</strong>ed from a subject or animal that was<br />

dosed with an active study drug.<br />

Incurred sample reanalysis (ISR): Reanalysis of a porti<strong>on</strong> of the <strong>in</strong>curred samples <strong>in</strong><br />

separate analytical runs <strong>on</strong> different days to check whether the orig<strong>in</strong>al analytical results<br />

are reproducible.<br />

Internal standard (IS): A compound added to samples for normalizati<strong>on</strong> of the<br />

recovery of an analyte dur<strong>in</strong>g sample process<strong>in</strong>g and the resp<strong>on</strong>se obta<strong>in</strong>ed by the<br />

analytical <strong>in</strong>strument. A structurally similar analogue or a stable isotope-labeled<br />

compound is used.<br />

Lower limit of quantificati<strong>on</strong> (LLOQ): The lowest c<strong>on</strong>centrati<strong>on</strong> of an analyte at<br />

17


502<br />

503<br />

504<br />

505<br />

506<br />

507<br />

508<br />

509<br />

510<br />

511<br />

512<br />

513<br />

514<br />

515<br />

516<br />

517<br />

518<br />

519<br />

520<br />

521<br />

522<br />

523<br />

524<br />

525<br />

526<br />

527<br />

528<br />

529<br />

530<br />

531<br />

532<br />

which the analyte can be quantified with reliable accuracy and precisi<strong>on</strong>.<br />

Matrix: Whole blood, plasma, serum, ur<strong>in</strong>e, or other biological fluid or tissue selected<br />

for analysis. A matrix not c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g exogenous chemicals (except anticoagulant) and<br />

their metabolites is called blank matrix.<br />

Matrix effect: An alterati<strong>on</strong> of the analyte resp<strong>on</strong>se due to matrix comp<strong>on</strong>ent(s) <strong>in</strong> the<br />

sample.<br />

Matrix factor (MF): The ratio of the analyte resp<strong>on</strong>se <strong>in</strong> the presence of matrix to the<br />

resp<strong>on</strong>se <strong>in</strong> the absence of matrix.<br />

MF = Analyte resp<strong>on</strong>se <strong>in</strong> the presence of matrix/Analyte resp<strong>on</strong>se <strong>in</strong> the absence of<br />

matrix.<br />

Partial validati<strong>on</strong>: A validati<strong>on</strong> performed when m<strong>in</strong>or changes are made to an<br />

analytical method that has already been fully validated. A set of parameters to be<br />

evaluated <strong>in</strong> a partial validati<strong>on</strong> should be determ<strong>in</strong>ed accord<strong>in</strong>g to the extent and nature<br />

of the changes made to the method. It can range from as little as with<strong>in</strong>-run accuracy<br />

and precisi<strong>on</strong> evaluati<strong>on</strong> to a nearly full validati<strong>on</strong>.<br />

Precisi<strong>on</strong>: The degree of closeness between <strong>in</strong>dividual c<strong>on</strong>centrati<strong>on</strong>s determ<strong>in</strong>ed <strong>in</strong><br />

repeated measurements. Precisi<strong>on</strong> is expressed as the coefficient of variati<strong>on</strong> (CV) or<br />

the relative standard deviati<strong>on</strong> (RSD) <strong>in</strong> percentage.<br />

Precisi<strong>on</strong> (%) = (Standard deviati<strong>on</strong>/Mean) × 100.<br />

Processed sample: A sample after process<strong>in</strong>g of a biological specimen, ready for<br />

measurement <strong>on</strong> an analytical <strong>in</strong>strument.<br />

Quality c<strong>on</strong>trol (QC) sample: A sample spiked with the analyte of <strong>in</strong>terest to a known<br />

c<strong>on</strong>centrati<strong>on</strong> used to assess the performance and reliability of an analytical method. In<br />

analytical runs, QC samples are analyzed to assess the validity of the analytical method<br />

used for calibrati<strong>on</strong> curve and study sample analysis.<br />

Quantificati<strong>on</strong> range: The range of c<strong>on</strong>centrati<strong>on</strong> of an analyte <strong>in</strong> which the analyte<br />

can be quantified with reliable accuracy and precisi<strong>on</strong>. Quantificati<strong>on</strong> range of a<br />

bioanalytical method is ensured by the range of calibrati<strong>on</strong> curve (calibrati<strong>on</strong> range) and<br />

the diluti<strong>on</strong> <strong>in</strong>tegrity.<br />

Reanalysis: Repetiti<strong>on</strong> of a series of analytical procedures from the process<strong>in</strong>g step <strong>on</strong><br />

samples that have been analyzed <strong>on</strong>ce.<br />

18


533<br />

534<br />

535<br />

536<br />

537<br />

538<br />

539<br />

540<br />

541<br />

542<br />

543<br />

544<br />

545<br />

546<br />

547<br />

548<br />

549<br />

550<br />

551<br />

552<br />

553<br />

554<br />

555<br />

556<br />

557<br />

558<br />

559<br />

560<br />

561<br />

562<br />

563<br />

Recovery: The efficiency at which an analytical method recovers the analyte through<br />

the sample-process<strong>in</strong>g step.<br />

Recovery (%) = (Resp<strong>on</strong>se <strong>in</strong> a biological sample that was spiked with the analyte and<br />

processed/Resp<strong>on</strong>se <strong>in</strong> a biological blank sample that was processed and then spiked<br />

with the analyte) × 100.<br />

Reference material (Reference standard): A compound used as the standard <strong>in</strong><br />

quantify<strong>in</strong>g an analyte; ma<strong>in</strong>ly used to prepare calibrati<strong>on</strong> standards and QC samples.<br />

Resp<strong>on</strong>se(Resp<strong>on</strong>se variable): A resp<strong>on</strong>se obta<strong>in</strong>ed by the detector <strong>on</strong> an analytical<br />

<strong>in</strong>strument, usually refers to a peak area (or a peak height) obta<strong>in</strong>ed from the<br />

chromatogram generated by c<strong>on</strong>versi<strong>on</strong> of <strong>in</strong>strument resp<strong>on</strong>ses <strong>in</strong>to electric signals.<br />

Selectivity: The ability of an analytical method to measure and differentiate the analyte<br />

and the <strong>in</strong>ternal standard <strong>in</strong> the presence of other comp<strong>on</strong>ents <strong>in</strong> samples. Selectivity is<br />

often used <strong>in</strong>terchangeably with specificity, but some po<strong>in</strong>t out that these two terms<br />

should be dist<strong>in</strong>guished, as specificity is an ultimate form of selectivity. Based <strong>on</strong> this<br />

idea, specificity is generally the ability to detect a s<strong>in</strong>gle comp<strong>on</strong>ent, while selectivity is<br />

def<strong>in</strong>ed as the ability to detect a series of substances which share certa<strong>in</strong> characteristics.<br />

In other words, selectivity is the ability to differentiate the analyte and the <strong>in</strong>ternal<br />

standard from other comp<strong>on</strong>ents, which could also be detected.<br />

Specificity: See the def<strong>in</strong>iti<strong>on</strong> of "Selectivity."<br />

Stability: The chemical or biological stability of an analyte <strong>in</strong> a given solvent or matrix<br />

under specific c<strong>on</strong>diti<strong>on</strong>s over given time <strong>in</strong>tervals. Analyte stability is evaluated to<br />

ensure that the analyte c<strong>on</strong>centrati<strong>on</strong> is not affected as the samples move through each<br />

step of the process from collecti<strong>on</strong> to f<strong>in</strong>al analysis.<br />

Stock soluti<strong>on</strong>: A n<strong>on</strong>-matrix soluti<strong>on</strong> of reference material at the highest c<strong>on</strong>centrati<strong>on</strong><br />

prepared <strong>in</strong> an appropriate solvent.<br />

Study sample: A biological specimen that is obta<strong>in</strong>ed from a toxicok<strong>in</strong>etic study or<br />

cl<strong>in</strong>ical trial for bioanalysis.<br />

Surrogate matrix: A matrix used as an alternative to a matrix of limited availability<br />

(e.g., tissue, cerebrosp<strong>in</strong>al fluid, bile).<br />

System suitability: C<strong>on</strong>firmati<strong>on</strong> of optimum <strong>in</strong>strument performance us<strong>in</strong>g a reference<br />

standard soluti<strong>on</strong> of the analyte prior to an analytical run.<br />

19


564<br />

565<br />

566<br />

567<br />

568<br />

569<br />

570<br />

571<br />

572<br />

573<br />

574<br />

Tiered approach: A strategy to <strong>in</strong>itially limit the characterizati<strong>on</strong> of analytical method<br />

and to gradually expand parameters to be characterized and the extent toward a full<br />

validati<strong>on</strong> as the development process proceeds. (see Annex)<br />

Validati<strong>on</strong>: Dem<strong>on</strong>strati<strong>on</strong> of adequate reproducibility and reliability of an analytical<br />

method through various evaluati<strong>on</strong>s.<br />

Work<strong>in</strong>g soluti<strong>on</strong>: A n<strong>on</strong>-matrix soluti<strong>on</strong> prepared by dilut<strong>in</strong>g the stock soluti<strong>on</strong> <strong>in</strong> an<br />

appropriate solvent. It is ma<strong>in</strong>ly added to matrix to prepare calibrati<strong>on</strong> standards and<br />

QC samples.<br />

Zero sample: A blank sample spiked with an <strong>in</strong>ternal standard.<br />

20


575<br />

576<br />

577<br />

578<br />

579<br />

580<br />

581<br />

582<br />

583<br />

584<br />

585<br />

586<br />

587<br />

588<br />

589<br />

590<br />

591<br />

592<br />

593<br />

594<br />

595<br />

596<br />

597<br />

598<br />

599<br />

600<br />

601<br />

602<br />

603<br />

Annex Applicati<strong>on</strong> of a tiered approach<br />

It is often the case that <strong>in</strong> vivo human drug metabolites, which should be the target of<br />

bioanalyses <strong>in</strong> cl<strong>in</strong>ical pharmacok<strong>in</strong>etic studies, are unknown <strong>in</strong> early stages of cl<strong>in</strong>ical<br />

trials and that time is required to prepare a sufficient amount of reference standard for<br />

use <strong>in</strong> validati<strong>on</strong>. In such cases, the so-called tiered approach may be applied for<br />

analytical method validati<strong>on</strong> for efficient pharmaceutical development.<br />

The tiered approach is a strategy to <strong>in</strong>itially limit the characterizati<strong>on</strong> of analytical<br />

method and to gradually expand parameters to be characterized and the extent toward a<br />

full validati<strong>on</strong> as the development process proceeds. Pharmaceutical research and<br />

development could be carried out more efficiently by adopt<strong>in</strong>g the tiered approach <strong>in</strong><br />

the early to mid-stages of the development process, enabl<strong>in</strong>g early-stage evaluati<strong>on</strong>s and<br />

facilitat<strong>in</strong>g predicti<strong>on</strong>s of future development.<br />

However, even when the tiered approach is used, it is advisable to predef<strong>in</strong>e<br />

appropriate criteria for the characterizati<strong>on</strong> of analytical method based <strong>on</strong> scientific<br />

judgment <strong>in</strong> order to improve the reproducibility and reliability of c<strong>on</strong>centrati<strong>on</strong> data<br />

obta<strong>in</strong>ed.<br />

1) Viswanathan, C.T., Bansal, S., Booth, B., DeStefano, A.J., Rose, M.J., Sailstad, J.,<br />

Shah, V.P., Skelly, J.P., Swann, P.G. and We<strong>in</strong>er, R.: AAPS J., 9(1),<br />

E30-E42(2007)<br />

2) Timmerman, P., Kall, M.A., Gord<strong>on</strong>, B., Laakso, S., Freisleben, A. and Hucker,<br />

R.: Bioanalysis, 2(7), 1185-1194(2010)<br />

3) US FDA: Guidance for Industry, Safety Test<strong>in</strong>g of Drug Metabolites, U.S.<br />

Department of Health and Human Services, FDA, Center for Drug Evaluati<strong>on</strong> and<br />

Research (2008)<br />

21

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!