05.01.2015 Views

Vitocal 300-G Technical Guide1.4 MB - Viessmann

Vitocal 300-G Technical Guide1.4 MB - Viessmann

Vitocal 300-G Technical Guide1.4 MB - Viessmann

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

VIESMANN VITOCAL <strong>300</strong>-G<br />

Brine/water and water/water heat pump<br />

Single and two-stage, from 21 kW<br />

<strong>Technical</strong> guide<br />

Heat pump with electric drive for DHW and central heating in<br />

mono-mode or dual mode heating systems.<br />

VITOCAL <strong>300</strong>-G Type BW/BWS, WW<br />

■ Type BW/BWS:<br />

Brine/water heat pump, 21.2 to 42.8 kW.<br />

■ Type WW:<br />

Water/water heat pump, 28.1 to 57.4 kW.<br />

■ Type BW/WW:<br />

For single stage operation or operation at stage 1 of a twostage<br />

heat pump.<br />

■ Type BWS:<br />

As stage 2 of a two-stage heat pump for increased output in<br />

conjunction with type BW/WW.<br />

■ Highly flexible due to combination with modules of different<br />

output.<br />

■ Easier handling through small and light modules.<br />

5457 919 GB 2/2010


Index<br />

Index<br />

1. <strong>Vitocal</strong> <strong>300</strong>-G 1. 1 Product description ..................................................................................................... 4<br />

■ Benefits of type BW/BWS, WW .............................................................................. 4<br />

■ Delivered condition ................................................................................................. 4<br />

1. 2 Specification ............................................................................................................... 5<br />

■ Specification ............................................................................................................ 5<br />

■ Dimensions of type BW/BWS, WW ......................................................................... 7<br />

■ Output diagrams ..................................................................................................... 8<br />

2. Installation accessories 2. 1 Primary circuit ............................................................................................................. 11<br />

■ Sensor well set, primary circuit ............................................................................... 11<br />

■ Brine circuit pressure switch ................................................................................... 11<br />

■ Brine accessory pack .............................................................................................. 11<br />

■ Primary pump .......................................................................................................... 12<br />

■ Brine distributor for geothermal collectors .............................................................. 13<br />

■ Brine distributor for geothermal probes/geothermal collectors ............................... 14<br />

■ Heat transfer medium Tyfocor ................................................................................ 16<br />

■ Filling station ........................................................................................................... 16<br />

2. 2 Secondary circuit ........................................................................................................ 17<br />

■ Secondary pump ..................................................................................................... 17<br />

■ Safety equipment block ........................................................................................... 18<br />

2. 3 Cooling ........................................................................................................................ 19<br />

■ Contact humidistat .................................................................................................. 19<br />

■ Natural cooling extension kit ................................................................................... 19<br />

■ 2-way motorised ball valve (DN 32) ........................................................................ 19<br />

■ Three-way diverter valve (R 1¼) ............................................................................. 19<br />

■ Room temperature sensor ...................................................................................... 19<br />

■ Frost stat ................................................................................................................. 19<br />

■ Fan convectors Vitoclima 200-C ............................................................................. 19<br />

2. 4 DHW heating via an external heat exchanger ............................................................ 22<br />

■ 2-way motorised ball valve (DN 32) ........................................................................ 22<br />

■ Cylinder primary pump ............................................................................................ 22<br />

3. Design information 3. 1 Power supply and tariffs ............................................................................................. 22<br />

■ Application procedure ............................................................................................. 22<br />

3. 2 Positioning requirements ............................................................................................ 22<br />

■ Minimum clearances ............................................................................................... 23<br />

■ Min. space requirement .......................................................................................... 23<br />

■ Electrical connections ............................................................................................. 23<br />

3. 3 Hydraulic connections ................................................................................................. 26<br />

■ Connections on the primary side brine/water (stages 1 and 2) ............................... 26<br />

■ Connections on the primary side water/water (stages 1 and 2) .............................. 28<br />

■ Connections on secondary side for two-stage heat pumps .................................... 31<br />

3. 4 System versions ......................................................................................................... 33<br />

3. 5 Sizing the heat pump .................................................................................................. 34<br />

■ Mono-mode operation ............................................................................................. 34<br />

■ Mono-energetic operation ....................................................................................... 35<br />

■ Dual mode operation ............................................................................................... 35<br />

■ Supplement for DHW heating ................................................................................. 35<br />

■ Supplement for setback mode ................................................................................ 36<br />

3. 6 Heat source for brine/water heat pumps ..................................................................... 36<br />

■ Frost protection ....................................................................................................... 36<br />

■ Geothermal collector ............................................................................................... 36<br />

■ Geothermal probe ................................................................................................... 39<br />

■ Expansion vessel for primary circuit ....................................................................... 40<br />

■ Pipework, primary circuit ......................................................................................... 41<br />

■ Pump output supplements (percentage) for operation with Tyfocor ....................... 43<br />

3. 7 Heat source for water/water heat pumps .................................................................... 43<br />

■ Groundwater ........................................................................................................... 43<br />

■ Calculating the required groundwater volume ........................................................ 44<br />

■ Permits for a groundwater/water heat pump system .............................................. 44<br />

■ Sizing the heat exchanger, primary circuit/separating heat exchanger .................. 45<br />

■ Cooling water .......................................................................................................... 45<br />

3. 8 Central heating/central cooling ................................................................................... 46<br />

■ Heating circuit ......................................................................................................... 46<br />

■ Heating circuit and heat distribution ........................................................................ 46<br />

■ Cooling operation .................................................................................................... 47<br />

2 VIESMANN VITOCAL <strong>300</strong>-G<br />

5457 919 GB


Index (cont.)<br />

3. 9 Systems with heating water buffer cylinder ................................................................ 47<br />

■ Heating water buffer cylinder operated in parallel ................................................... 47<br />

■ Heating water buffer cylinder for optimised runtimes .............................................. 48<br />

■ Heating water buffer cylinder for bridging periods when the supply is blocked ...... 48<br />

3.10 Water quality ............................................................................................................... 48<br />

■ Heating water .......................................................................................................... 48<br />

3.11 DHW heating .............................................................................................................. 49<br />

■ DHW connection ..................................................................................................... 49<br />

■ Function description regarding DHW heating ......................................................... 49<br />

■ Hydraulic connection, primary store system ........................................................... 50<br />

3.12 Cooling operation ........................................................................................................ 53<br />

■ Types and configuration .......................................................................................... 53<br />

■ Cooling function Natural cooling ............................................................................. 53<br />

■ Hydraulic connection, natural cooling function ........................................................ 53<br />

3.13 Swimming pool water heating ..................................................................................... 56<br />

■ Hydraulic connection, swimming pool ..................................................................... 56<br />

■ Sizing the plate heat exchanger .............................................................................. 57<br />

3.14 Connection of solar thermal systems .......................................................................... 57<br />

■ Sizing the solar expansion vessel ........................................................................... 58<br />

4. Heat pump control unit 4. 1 Vitotronic 200, type WO1A ......................................................................................... 59<br />

■ Structure and functions ........................................................................................... 59<br />

■ Time switch ............................................................................................................. 59<br />

■ Setting the operating programs ............................................................................... 60<br />

■ Frost protection function ......................................................................................... 60<br />

■ Heating and cooling curve settings (slope and level) .............................................. 60<br />

■ Heating systems with heating water buffer cylinder or low loss header .................. 61<br />

■ Outside temperature sensor ................................................................................... 61<br />

■ Specification Vitotronic 200, type WO1A ................................................................ 61<br />

4. 2 Control unit accessories ............................................................................................. 62<br />

■ Contactor relay ........................................................................................................ 62<br />

■ Contact temperature sensor as system flow temperature sensor ........................... 63<br />

■ Cylinder temperature sensor ................................................................................... 63<br />

■ Thermostat for controlling the swimming pool temperature .................................... 63<br />

■ Contact temperature sensor ................................................................................... 63<br />

■ Mixer motor ............................................................................................................. 64<br />

■ Extension kit for one heating circuit with mixer with integral mixer motor ............... 64<br />

■ Extension kit for one heating circuit with mixer for separate mixer motor ............... 65<br />

■ Immersion thermostat ............................................................................................. 65<br />

■ Contact thermostat .................................................................................................. 65<br />

■ Vitotrol 200A ........................................................................................................... 66<br />

■ Room temperature sensor for separate cooling circuit ........................................... 66<br />

■ KM BUS distributor ................................................................................................. 67<br />

■ External extension H1 ............................................................................................. 67<br />

■ Vitocom 100, type GSM .......................................................................................... 67<br />

■ Vitocom <strong>300</strong>, type FA5, FI2, GP2 ........................................................................... 68<br />

■ LON communication module ................................................................................... 69<br />

■ LON connecting cable for data exchange between control units ............................ 70<br />

■ Extension of the connecting cable .......................................................................... 70<br />

■ Terminator ............................................................................................................... 70<br />

5. Keyword index .............................................................................................................................................. 71<br />

5457 919 GB<br />

VITOCAL <strong>300</strong>-G VIESMANN 3


1<br />

<strong>Vitocal</strong> <strong>300</strong>-G<br />

1.1 Product description<br />

Heat pumps with electric drive for DHW and central heating in monomode,<br />

mono-energetic or dual mode operation.<br />

The brine/water heat pumps extract heat from the ground with the help<br />

of geothermal collectors or probes.<br />

The ground provides almost completely stable temperatures all the<br />

year round, enabling the heat pumps to operate virtually independently<br />

of the outside temperature. They can cover the entire heat demand of<br />

a building, even on colder days.<br />

Benefits of type BW/BWS, WW<br />

The water/water heat pumps with delivery and return wells gain heat<br />

from the groundwater which offers stable temperatures, enabling the<br />

heat pumps to achieve constantly high COPs.<br />

Consequently they are suitable for year round heating operation and<br />

DHW provision.<br />

A Hermetically sealed Compliant scroll compressor<br />

B Condenser<br />

C Evaporator<br />

D Only type BW/WW:<br />

Weather-compensated, digital heat pump control unit<br />

Vitotronic 200, type WO1A<br />

■ Mono-mode for central and DHW heating.<br />

■ Menu-guided heat pump control unit Vitotronic 200, type WO1A, for<br />

weather-compensated heating mode.<br />

■ Max. flow temperature of 60 °C for high DHW convenience and ideal<br />

for modernising an existing radiator heating system.<br />

■ High COP to EN 14511: up to 4.8 (brine 0 °C/water 35 °C).<br />

■ Low operating costs with the highest efficiency at every operating<br />

point through the innovative RCD (Refrigerant Cycle Diagnostic)<br />

system with electronic expansion valve.<br />

■ Especially suitable for low heating system temperatures, e.g. underfloor<br />

heating.<br />

■ Highly flexible due to combination with modules of different output.<br />

■ Low noise and vibration emissions through 3-D sound concept<br />

■ Convenient for applying for subsidies: with integral energy statement.<br />

■ Easier handling through small and light modules.<br />

■ Higher output can be achieved through cascade arrangement:<br />

21.2 to 342.4 kW<br />

■ Type BWS:<br />

As stage 2 of a two-stage heat pump for increased output in conjunction<br />

with type BW and WW.<br />

Delivered condition<br />

Type BW<br />

■ Compact heat pump design (with soft starter).<br />

■ Epoxy-coated casing.<br />

■ CFC-free, non-combustible refrigerant R 410A (refrigerant mixture,<br />

comprising 50 % R 32 and 50 % R 125).<br />

■ Evaporator and condenser made from copper-soldered stainless<br />

steel plate heat exchanger (1.4401), for the heating circuit and brine/<br />

groundwater circuit.<br />

■ Electronic expansion valve and patented refrigerant distribution.<br />

■ New refrigerant RCD (Refrigerant Cycle Diagnostic) circuit diagnostic<br />

system.<br />

■ Outside temperature sensor, flow and return temperature sensors<br />

plus sensors for the primary circuit flow and return.<br />

■ With fitted weather-compensated digital heat pump control unit<br />

Vitotronic 200, type WO1A<br />

Type WW<br />

■ Heat pump type BW<br />

■ Water/water heat pump conversion kit (frost stat for primary circuit<br />

and flow limiter for well circuit)<br />

Type BWS<br />

■ Heat pump type BW without heat pump control unit<br />

5457 919 GB<br />

4 VIESMANN VITOCAL <strong>300</strong>-G


<strong>Vitocal</strong> <strong>300</strong>-G (cont.)<br />

1.2 Specification<br />

Specification<br />

Type BW/BWS<br />

BW/BWS 121 129 145<br />

Output data to DIN EN 14511 (0/35 °C, 5 K spread)<br />

Rated heating output kW 21.2 28.8 42.8<br />

Refrigerating capacity kW 17.0 23.3 34.2<br />

Power consumption kW 4.48 5.96 9.28<br />

Coefficient of performance ∊ (COP) 4.73 4.83 4.6<br />

Output data to DIN EN 255 (0/35 °C, 10 K spread)<br />

Rated heating output kW 21.5 29.2 43.5<br />

Refrigerating capacity kW 17.5 23.8 35.0<br />

Power consumption kW 4.33 5.75 9.16<br />

Coefficient of performance ∊ (COP) 4.97 5.08 4.8<br />

Brine (primary circuit)<br />

Content l 7.3 9.1 12.7<br />

Min. flow rate (Δt = 5 K) l/h 3<strong>300</strong> 4200 6500<br />

Pressure drop mbar 90 120 200<br />

Max. flow temperature °C 25 25 25<br />

Min. flow temperature °C –5 –5 –5<br />

Heating water (secondary circuit)<br />

Content l 7.3 9.1 12.7<br />

Min. flow rate (Δt = 10 K) l/h 1900 2550 3700<br />

Pressure drop mbar 30 48 60<br />

Max. flow temperature °C 60 60 60<br />

1<br />

5457 919 GB<br />

Type WW<br />

WW 121 129 145<br />

Output data to DIN EN 14511 (10/35 °C, 5 K spread)<br />

Rated heating output kW 28.1 37.1 58.9<br />

Refrigerating capacity kW 23.7 31.4 48.9<br />

Power consumption kW 4.73 6.2 10.7<br />

Coefficient of performance ∊ (COP) 5.94 6.0 5.5<br />

Brine (primary circuit)<br />

Content l 7.3 9.1 12.7<br />

Min. flow rate (Δt = 4 K) l/h 5200 7200 10600<br />

Pressure drop mbar 200 <strong>300</strong> 440<br />

Max. inlet temperature °C 25 25 25<br />

Min. inlet temperature °C -5 -5 -5<br />

Heating water (secondary circuit)<br />

Content l 7.3 9.1 12.7<br />

Min. flow rate (Δt = 10 K) l/h 1900 2550 3700<br />

Pressure drop mbar 30 48 60<br />

Max. flow temperature °C 60 60 60<br />

Type BW/BWS, WW<br />

BW/BWS, WW 121 129 145<br />

Rated voltage, heat pump compressor stage 2 (type BWS) V 3/PE 400 V/50 Hz<br />

Rated current, compressor A 16 22 34<br />

Starting current, compressor (with starting current limiter) A


<strong>Vitocal</strong> <strong>300</strong>-G (cont.)<br />

1<br />

BW/BWS, WW 121 129 145<br />

Refrigerant circuit<br />

Refrigerant R 410 A<br />

Fill volume kg 6.5 7.3 10.0<br />

Compressor Type Hermetically sealed scroll compressor<br />

Permiss. operating pressure, high pressure side bar 43 43 43<br />

Permiss. operating pressure, low pressure side bar 28 28 28<br />

Permiss. operating pressure<br />

Primary circuit bar 3 3 3<br />

Secondary circuit bar 3 3 3<br />

Dimensions<br />

Total length mm 1085 1085 1085<br />

Total width mm 780 780 780<br />

Total height (with open control unit) mm 1267 1267 1267<br />

Connections<br />

Primary flow and return G 2 2 2<br />

Heating flow and return G 2 2 2<br />

Weight<br />

Heat pump stage 1 (type BW/WW) kg 282 305 345<br />

Heat pump stage 2 (type BWS) kg 277 <strong>300</strong> 340<br />

Sound power level at 0/35 °C<br />

(test with reference to DIN EN ISO 9614-2)<br />

dB(A) 42 44 44<br />

5457 919 GB<br />

6 VIESMANN VITOCAL <strong>300</strong>-G


<strong>Vitocal</strong> <strong>300</strong>-G (cont.)<br />

Dimensions of type BW/BWS, WW<br />

1<br />

1074<br />

88<br />

171<br />

301<br />

86<br />

< 42 V<br />

230 V<br />

400 V<br />

< 42 V<br />

230 V<br />

400 V<br />

86<br />

88<br />

171<br />

301<br />

60<br />

1074 87<br />

1267<br />

540<br />

270<br />

230<br />

540<br />

270<br />

230<br />

1025<br />

1025 60<br />

= <strong>300</strong><br />

780 780<br />

Type BWS on the left; type BW/WW on the right<br />

5457 919 GB<br />

VITOCAL <strong>300</strong>-G VIESMANN 7


<strong>Vitocal</strong> <strong>300</strong>-G (cont.)<br />

Output diagrams<br />

1<br />

Type 121<br />

35<br />

30<br />

25<br />

20<br />

D<br />

E<br />

F<br />

G<br />

D<br />

E<br />

F<br />

G<br />

A Heating output<br />

B Refrigerating capacity<br />

C Power consumption<br />

D T HV = 35 °C<br />

E T HV = 45 °C<br />

F T HV = 55 °C<br />

G T HV = 60 °C<br />

T HV Heating circuit flow temperature<br />

Note<br />

Data for the COP was calculated with reference to DIN EN 14511.<br />

A<br />

15<br />

Output in kW<br />

Ɛ Coefficient of performance (COP)<br />

B<br />

10<br />

C<br />

5<br />

0<br />

-5 0 5<br />

Water or brine temperature in °C<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-5 0 5<br />

Water or brine temperature in °C<br />

10<br />

10<br />

G<br />

F<br />

E<br />

D<br />

15<br />

D<br />

E<br />

F<br />

G<br />

15<br />

5457 919 GB<br />

8 VIESMANN VITOCAL <strong>300</strong>-G


<strong>Vitocal</strong> <strong>300</strong>-G (cont.)<br />

Type 129<br />

45<br />

40<br />

35<br />

30<br />

D<br />

E<br />

F<br />

G<br />

D<br />

E<br />

F<br />

A Heating output<br />

B Refrigerating capacity<br />

C Power consumption<br />

D T HV = 35 °C<br />

E T HV = 45 °C<br />

F T HV = 55 °C<br />

G T HV = 60 °C<br />

T HV Heating circuit flow temperature<br />

Note<br />

Data for the COP was calculated with reference to DIN EN 14511.<br />

1<br />

G<br />

25<br />

A<br />

20<br />

B<br />

15<br />

Output in kW<br />

Ɛ Coefficient of performance (COP)<br />

10<br />

C<br />

5<br />

0<br />

-5 0 5<br />

Water or brine temperature in °C<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-5 0 5<br />

Water or brine temperature in °C<br />

10<br />

10<br />

G<br />

F<br />

E<br />

D<br />

15<br />

D<br />

E<br />

F<br />

G<br />

15<br />

5457 919 GB<br />

VITOCAL <strong>300</strong>-G VIESMANN 9


<strong>Vitocal</strong> <strong>300</strong>-G (cont.)<br />

Type 145<br />

1<br />

70<br />

60<br />

50<br />

40<br />

D<br />

E<br />

F<br />

G<br />

D<br />

E<br />

F<br />

G<br />

A Heating output<br />

B Refrigerating capacity<br />

C Power consumption<br />

D T HV = 35 °C<br />

E T HV = 45 °C<br />

F T HV = 55 °C<br />

G T HV = 60 °C<br />

T HV Heating circuit flow temperature<br />

Note<br />

Data for the COP was calculated with reference to DIN EN 14511.<br />

A<br />

30<br />

Output in kW<br />

Coefficient of performance ε (COP)<br />

B<br />

20<br />

C<br />

10<br />

0<br />

-5 0 5<br />

Water or brine temperature in °C<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-5 0 5<br />

Water or brine temperature in °C<br />

10<br />

10<br />

G<br />

F<br />

E<br />

D<br />

15<br />

D<br />

E<br />

F<br />

G<br />

15<br />

5457 919 GB<br />

10 VIESMANN VITOCAL <strong>300</strong>-G


Installation accessories<br />

2.1 Primary circuit<br />

Sensor well set, primary circuit<br />

Part no. 7460 714<br />

For on-site primary circuit pipework.<br />

Brine circuit pressure switch<br />

Part no. 9532 663<br />

Note<br />

Cannot be used in conjunction with potassium carbonate-based heat<br />

transfer medium.<br />

Components:<br />

■ Pipe with connection R1¼ (2 pce)<br />

■ Sensor well for temperature sensors (flow and return)<br />

Note<br />

The temperature sensors are included in the standard delivery of the<br />

heat pump.<br />

2<br />

5457 919 GB<br />

Brine accessory pack<br />

Only for single stage heat pump type BW 121 and BW 129.<br />

■ For systems with a brine circuit pump (primary pump) in the brine<br />

return.<br />

■ Suitable for <strong>Viessmann</strong> heat transfer medium "Tyfocor" based on<br />

ethylene glycol (see chapter "Heat transfer medium").<br />

■ Brine accessory pack for single and two-stage heat pumps, thermally<br />

insulated with vapour diffusion-proof material.<br />

Components:<br />

■ Air separator<br />

■ Safety valve (3 bar)<br />

■ Pressure gauge<br />

■ Drain & fill valves (2 pce)<br />

■ Fittings for installing the primary pump<br />

■ Shut-off valves<br />

■ Wall mounting bracket<br />

■ Thermal insulation (vapour diffusion-proof)<br />

■ Expansion vessel<br />

■ Subject to part no., with or without circulation pump<br />

Heat pump type BW 121 BW 129 BW 145<br />

Expansion vessel 35 l 50 l on-site<br />

Part no. for brine accessory<br />

pack<br />

Without circulation pump Z008 585 Z008 586 on-site<br />

(Connection set for on-site<br />

circulation pump G 2)<br />

With Wilo high efficiency Z008 594 —<br />

circulation pump, type<br />

Stratos Para (3 - 11 m),<br />

230 V~<br />

(Connection set for on-site<br />

circulation pump G 1½)<br />

With Wilo standard circulation<br />

pump:<br />

– Type TOP S 30/7, Z008 591 —<br />

400 V~<br />

(Connection set for onsite<br />

circulation pump<br />

G 2)<br />

– Type TOP S 30/10,<br />

400 V~<br />

(Connection set for onsite<br />

circulation pump<br />

G 2)<br />

— Z008 592<br />

Circulation pump curves<br />

See chapter "Primary pump".<br />

VITOCAL <strong>300</strong>-G VIESMANN 11


Installation accessories (cont.)<br />

670<br />

86<br />

E<br />

D<br />

2<br />

F<br />

G 1¼ G 1¼<br />

H<br />

360<br />

C<br />

G<br />

B<br />

B<br />

G 1¼<br />

N<br />

B<br />

A<br />

192<br />

G 1¼<br />

192<br />

K<br />

M<br />

L<br />

C<br />

A Primary circuit flow (heat pump brine inlet)<br />

B Ball valve<br />

C Drain & fill valve<br />

D Pressure switch connection<br />

E Air separator<br />

F Primary circuit flow (brine inlet, brine accessory pack)<br />

G Pressure gauge<br />

H Safety valve (3 bar)<br />

K Primary circuit return (brine outlet, brine accessory pack)<br />

L Expansion vessel connection<br />

M Primary circuit return (heat pump brine outlet)<br />

N Primary pump<br />

Assembly and installation information<br />

■ Fit the brine accessory pack horizontally to ensure the correct function<br />

of the air separator.<br />

■ Fit the air blow-off connector above the brine accessory pack.<br />

■ Check the circulation pump for an adequate residual head (see<br />

curves).<br />

Position the pump cable entry so that it points downwards or to the<br />

l.h. or r.h. side, or turn the pump head if required.<br />

■ If the brine circuit pressure switch is not connected, the brine accessory<br />

pack can also be installed in the external interconnecting duct<br />

(waterproof).<br />

Primary pump<br />

For installation in the primary circuit return (brine return)<br />

Components:<br />

■ Circulation pump 400 V~<br />

■ Thermal insulation (vapour diffusion-proof)<br />

■ Contactor relay<br />

Note<br />

For operation with water/Tyfocor, the pump output supplements<br />

should be taken into account (see page 43).<br />

Heat pump type BW 121 BW 129 BW 145<br />

Circulation pump part no.<br />

Wilo standard circulation<br />

Z007 441 — on-site<br />

pump,<br />

type TOP S 30/7,<br />

400 V~<br />

Wilo standard circulation<br />

pump,<br />

type TOP S 30/10,<br />

400 V~<br />

— Z007 442<br />

5457 919 GB<br />

12 VIESMANN VITOCAL <strong>300</strong>-G


Installation accessories (cont.)<br />

Wilo standard circulation pump curves<br />

Wilo high efficiency circulation pump curves<br />

Only in conjuction with brine accessory pack.<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

min. (3 )<br />

(2 )<br />

max. (1 )<br />

Head<br />

in m<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0 1 2 3 4 5<br />

Pump rate in m³/h<br />

2<br />

Head in m<br />

2<br />

1<br />

0<br />

0 1 2 3 4 5 6 7 8<br />

Pump rate in m³/h<br />

Type TOP S 30/7, 400 V~<br />

12<br />

11<br />

10<br />

9<br />

8<br />

7<br />

6<br />

Head in m<br />

5<br />

4<br />

min. (3 )<br />

(2 )<br />

max. (1 )<br />

3<br />

2<br />

1<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10 11 12<br />

Pump rate in m³/h<br />

Output in W<br />

160<br />

140<br />

max.<br />

120<br />

10 m<br />

8 m<br />

100<br />

6 m<br />

80<br />

4 m<br />

60<br />

40<br />

2 m<br />

20<br />

0<br />

0 1 2 3 4 5<br />

Pump rate in m³/h<br />

Type Stratos Para (3 - 11 m), 230 V~<br />

Type TOP S 30/10, 400 V~<br />

Brine distributor for geothermal collectors<br />

(<strong>Vitocal</strong> rated heating output: max. 37.1 kW)<br />

Part no. 7143 762<br />

Brass brine distributor, pre-assembled on two anti-vibration mounts.<br />

Can be fitted to the house wall, in the cellar duct or in the central service<br />

duct.<br />

■ 2 quick-acting air vent valves<br />

■ 1 drain & fill valve per header<br />

Up to 4 brine distributors can be connected to each flow and return.<br />

Components:<br />

■ 2 headers for flow and return<br />

■ Flow and return connections for 10 brine circuits, ball valves and<br />

locking ring fittings (PE 20 × 2.0)<br />

5457 919 GB<br />

VITOCAL <strong>300</strong>-G VIESMANN 13


Installation accessories (cont.)<br />

670<br />

545<br />

33<br />

52<br />

1¼"<br />

55<br />

200<br />

2<br />

1¼"<br />

63<br />

A Header G 1¼ (flow)<br />

B Header G 1¼ (return)<br />

C Locking ring fittings for PE 20 × 2.0 mm<br />

D Ball valve for filling and draining<br />

E Ball valves for shutting off the individual circuits<br />

F Sound-absorbing panel<br />

Connection versions<br />

VL<br />

1 2 3 4 5 6 7 8 910<br />

RL<br />

10 9 8 7 6 5 4 3 2 1<br />

1 2 3 4 5 6 7 8 9 10<br />

11 12 13 14 15 16 17 18 19 20<br />

RL Brine return<br />

VL Brine flow<br />

10 9 8 7 6 5 4 3 2 1<br />

20 19 18 17 16 15 14 13 12 11<br />

Note<br />

For the allocation of brine distributor to heat pump type, see table in<br />

design information, "Heat sources for brine/water heat pumps",<br />

page 37.<br />

A Brine flow<br />

B Brine return<br />

Brine distributor for geothermal probes/geothermal collectors<br />

Locking ring fittings<br />

Number of brine circuits Part no.<br />

Geothermal<br />

probes<br />

Geothermal<br />

collectors<br />

PE 25 x 2.3 — 2 7373 332<br />

— 3 7373 331<br />

— 4 7182 043<br />

PE 32 x 2.9 2 2 7373 330<br />

3 3 7373 329<br />

4 4 7143 763<br />

Brine distributor for geothermal probes/geothermal collectors<br />

Nickel-plated brine distributor. Can be fitted to the house wall, in the<br />

cellar duct or in the central service duct.<br />

Components:<br />

■ Header for separate flow and return<br />

■ Flow and return connections for 2, 3 or 4 brine circuits, ball valves<br />

and locking ring fittings (PE 25 × 2.3 or PE 32 × 2.9)<br />

■ Installation accessories<br />

■ 2 drain & fill valves<br />

Up to 4 brine distributors can be connected to each flow and return.<br />

Brine distributors for 2, 3 and 4 brine circuits can be combined in any<br />

order.<br />

5457 919 GB<br />

14 VIESMANN VITOCAL <strong>300</strong>-G


Installation accessories (cont.)<br />

175<br />

335<br />

A<br />

C<br />

B<br />

E<br />

≈ 80<br />

F<br />

≈ 130<br />

2<br />

80<br />

D<br />

80<br />

Brine distributor for 2 brine circuits<br />

Brine distributor for 4 brine circuits<br />

A<br />

B<br />

255<br />

C<br />

A Union nut G 2 for ball valve connection, locking ring fitting or a<br />

further module<br />

B Ball valve for filling and draining<br />

C Header G 1½<br />

D Locking ring fittings for PE 32 × 2.9 mm or PE 25 × 2.3 mm<br />

E 2" end cap with G ½ plug<br />

F Ball valves for shutting off the individual circuits<br />

E<br />

≈ 130<br />

F<br />

80<br />

D<br />

Brine distributor for 3 brine circuits<br />

Connection versions<br />

1 2 3<br />

4<br />

VL<br />

VL<br />

4 3 2<br />

1<br />

RL<br />

1 2 3<br />

4<br />

5 6 7<br />

8<br />

Example for 4 brine circuits<br />

4 3 2<br />

1<br />

8 7 6<br />

RL<br />

5<br />

RL Brine return<br />

VL Brine flow<br />

Example for 8 brine circuits<br />

RL Brine return<br />

VL Brine flow<br />

5457 919 GB<br />

Note<br />

For the allocation of brine distributor to heat pump type, see tables in<br />

design information, "Heat sources for brine/water heat pumps",<br />

pages 37 and 39.<br />

VITOCAL <strong>300</strong>-G VIESMANN 15


Installation accessories (cont.)<br />

Heat transfer medium Tyfocor<br />

■ 30 l in a disposable container<br />

Part no. 9532 655<br />

■ 200 l in a disposable container<br />

Part no. 9542 602<br />

Light green ready mixed medium for the primary circuit, down to<br />

–15 °C, based on ethylene glycol with corrosion inhibitors.<br />

2<br />

Filling station<br />

Part no. 7188 625<br />

For filling the primary circuit.<br />

Components:<br />

■ Self-priming impeller pump (30 l/min)<br />

■ Dirt filter, inlet side<br />

■ Hose, inlet side (0.5 m)<br />

■ Connection hose (2 pce, each 2.5 m)<br />

■ Packing crate (can be used as flushing tank)<br />

5457 919 GB<br />

16 VIESMANN VITOCAL <strong>300</strong>-G


Installation accessories (cont.)<br />

2.2 Secondary circuit<br />

Secondary pump<br />

Secondary pump (DHW and central heating)<br />

Wilo standard circulation pump, type RS Part no. 7338 850<br />

25/6-3, 230 V~<br />

(only for <strong>Vitocal</strong> with rated heating output up to<br />

28.8 kW)<br />

Secondary pump (central heating)<br />

Grundfos, type UPS 25-60, 230 V~ Part no. 7338 851<br />

Laing EC Vario 25/180 G (class B), 230 V~ Part no. 7374 788<br />

Wilo standard circulation pump curves<br />

Head in m<br />

Output in W<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

min. (3)<br />

(2)<br />

max. (1)<br />

0<br />

0 1 2 3<br />

Pump rate in m³/h<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

min. (3)<br />

(2)<br />

0<br />

0 1 2 3<br />

Pump rate in m³/h<br />

4<br />

max. (1)<br />

4<br />

Grundfos curves<br />

Head in m<br />

6.0<br />

5.0<br />

4.0<br />

3<br />

2<br />

3.0 1<br />

2.0<br />

1.0<br />

UPS 25-60<br />

0<br />

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0<br />

Flow rate in m³/h<br />

Type UPS 25-60, 230 V~<br />

Laing curves<br />

Head in m<br />

6<br />

5<br />

E6 vario<br />

4<br />

3<br />

E4 vario<br />

2<br />

1<br />

0<br />

0.0 0.5 1.0 1.5 2.0 2.5 3.0<br />

Flow rate in m³/h<br />

Type E4/E6 Vario 25/180, 230 V~<br />

Head in m<br />

6<br />

5<br />

4<br />

E6 auto<br />

3<br />

2<br />

E4 auto<br />

1<br />

0<br />

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5<br />

Flow rate in m³/h<br />

Type E4/E6 Auto 25/180, 230 V~<br />

2<br />

Type RS 25/6-3, 230 V~<br />

5457 919 GB<br />

VITOCAL <strong>300</strong>-G VIESMANN 17


Installation accessories (cont.)<br />

Wilo high efficiency circulation pump curves<br />

Only in conjunction with a hydraulic module.<br />

2<br />

Head in m<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 1 2 3 4<br />

Pump rate in m³/h<br />

60<br />

Output<br />

in W<br />

40<br />

0<br />

0 1 2 3 4<br />

Pump rate in m³/h<br />

Type Stratos Para (1 - 7 m), 230 V~<br />

Safety equipment block<br />

Part no. 7143 779<br />

Components:<br />

■ Safety valve R ½ (blow-off pressure 3 bar)<br />

■ Pressure gauge<br />

■ Automatic air vent valve with automatic shut-off facility<br />

■ Thermal insulation<br />

144<br />

80<br />

232<br />

5457 919 GB<br />

18 VIESMANN VITOCAL <strong>300</strong>-G


Installation accessories (cont.)<br />

2.3 Cooling<br />

Contact humidistat<br />

Part no. 7181 418<br />

■ Dew point contact switch<br />

■ to prevent the formation of condensate<br />

Natural cooling extension kit<br />

Part no. 7179 172<br />

Components:<br />

■ PCB for processing signals and controlling the natural cooling function<br />

■ Connection plug<br />

■ Installation accessories<br />

2<br />

2-way motorised ball valve (DN 32)<br />

Part no. 7180 573<br />

■ With electric drive (230 V~)<br />

■ Connection R 1¼"<br />

Three-way diverter valve (R 1¼)<br />

Part no. 7165 482<br />

■ With electric drive (230 V~)<br />

■ Connection R 1¼<br />

Room temperature sensor<br />

Part no. 7408 012<br />

For a separate cooling circuit.<br />

For specification see chapter on control unit accessories (from<br />

page 62)<br />

Frost stat<br />

Part no. 7179 164<br />

Safety switch to protect the cooling heat exchanger from frost.<br />

Fan convectors Vitoclima 200-C<br />

■ With three-way control valve<br />

■ With 4-pipe heat exchanger for heating and cooling<br />

■ For wall mounting<br />

Fan convector Vitoclima 200-C Type V202H V203H V206H V209H<br />

Z004 926 Z004 927 Z004 928 Z004 929<br />

Plinth for floor mounting 7267 205<br />

Air filter (5 pce) 7428 521 7428 522 7428 523<br />

5457 919 GB<br />

VITOCAL <strong>300</strong>-G VIESMANN 19


Installation accessories (cont.)<br />

Specification<br />

2<br />

Fan convectors Vitoclima 200-C Type V202H V203H V206H V209H<br />

Cooling capacity kW 2.0 3.4 5.6 8.8<br />

Output kW 2.0 3.7 5.3 9.4<br />

Power supply [terminals]<br />

1/N/PE 230 V/50 Hz<br />

Fan power consumption<br />

at speed V1 W 45 57 107 188<br />

at speed V2 W 37 47 81 132<br />

at speed V3 W 27 39 64 112<br />

at speed V4 W 19 36 55 101<br />

at speed V5 W 16 33 41 90<br />

Cooling valve<br />

k v value m 3 /h 1.6 1.6 1.6 2.5<br />

Connection R 1/2 R 1/2 R 1/2 R 3/4<br />

Heating valve<br />

k v value m 3 /h 1.6 1.6 1.6 1.6<br />

Connection R 1/2 R 1/2 R 1/2 R 1/2<br />

Condensate connection Ø mm 18.5 18.5 18.5 18.5<br />

Thermostatically activated servomotor<br />

Max. permiss. ambient temperature °C 50 50 50 50<br />

Max. permiss. media temperature °C 110 110 110 110<br />

Power consumption W 3 3 3 3<br />

Rated current mA 13 13 13 13<br />

Weight kg 20 30 39 50<br />

Factory-set fan speed<br />

Dimensions<br />

a<br />

b<br />

231<br />

204<br />

100<br />

73<br />

170<br />

90<br />

c<br />

Front and side view<br />

A Plinth (accessory)<br />

Type<br />

Dimensions in mm<br />

a b c<br />

V202H 768 762 478<br />

V203H 1138 1132 478<br />

V206H 1508 1502 478<br />

V209H 1508 1502 578<br />

5457 919 GB<br />

20 VIESMANN VITOCAL <strong>300</strong>-G


Installation accessories (cont.)<br />

a<br />

A Air outlet<br />

B Top<br />

C 4 fixing holes 7 8 mm<br />

D Bottom<br />

E Floor<br />

F Air inlet<br />

b<br />

100<br />

c<br />

d<br />

Type<br />

Dimensions in mm<br />

a b c d<br />

V202H 500 430 360 150<br />

V203H 870 430 360 150<br />

V206H 1240 430 360 150<br />

V209H 1240 530 365 157<br />

2<br />

Wall mounting (front view)<br />

220 220<br />

a<br />

b<br />

a<br />

b<br />

A R.H.<br />

B L.H.<br />

C Heating return connection<br />

D Cooling return connection<br />

E Heating flow connection<br />

F Cooling flow connection<br />

f<br />

e<br />

d<br />

c<br />

c<br />

d<br />

e<br />

f<br />

Type<br />

Dimensions in mm<br />

a b c d e f g h k<br />

V202H 98 56 237 254 390 408 147 189 518<br />

V203H 98 56 237 254 390 408 147 189 518<br />

V206H 98 56 237 254 390 408 147 189 548<br />

V209H 83 40 235 246 495 506 145 188 618<br />

100<br />

g<br />

h<br />

g<br />

h<br />

100<br />

Position of the hydraulic connections (side view, both sides)<br />

5457 919 GB<br />

VITOCAL <strong>300</strong>-G VIESMANN 21


Installation accessories (cont.)<br />

2.4 DHW heating via an external heat exchanger<br />

2-way motorised ball valve (DN 32)<br />

Part no. 7180 573<br />

■ With electric drive (230 V~)<br />

■ Connection R 1¼"<br />

Cylinder primary pump<br />

For DHW heating via a plate heat exchanger (on-site).<br />

■ Grundfos UPS 25-60 B<br />

Part no. 7820 403<br />

■ Grundfos UPS 32-80 B<br />

Part no. 7820 404<br />

9<br />

8<br />

7<br />

UPS 32-80 B<br />

3<br />

Curves<br />

Head in m<br />

6.0<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

0<br />

3<br />

2<br />

1<br />

UPS 25-60B<br />

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0<br />

Pump rate in m³/h<br />

Type UPS 25-60 B, 230 V~<br />

Head in m<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10 11<br />

Pump rate in m³/h<br />

Type UPS 32-80 B, 230 V~<br />

Design information<br />

3.1 Power supply and tariffs<br />

According to current Federal tariffs [Germany], the electrical demand<br />

for heat pumps is considered domestic usage. Where heat pumps are<br />

used to heat buildings, the local power supply company must first give<br />

permission [check with your local power supply company].<br />

Check the connection conditions specified by your local power supply<br />

utility for the stated equipment details. It is crucial to establish whether<br />

a mono-mode and/or mono-energetic heat pump operation is feasible<br />

in the supply area.<br />

Application procedure<br />

The following details are required to assess the effect of the heat pump<br />

operation on the grid of your local power supply utility:<br />

■ User address<br />

■ Location where the heat pump is to be used<br />

■ Type of demand in accordance with general tariffs<br />

(domestic, agricultural, commercial, professional and other use)<br />

It is also important to obtain information about standing charges and<br />

energy tariffs, about the options for utilising off-peak electricity during<br />

the night and about any power-off periods.<br />

Address any questions relating to these issues to your customer's local<br />

power supply utility.<br />

■ Intended heat pump operating mode<br />

■ Heat pump manufacturer<br />

■ Type of heat pump<br />

■ Connected load in kW (from rated voltage and rated current)<br />

■ Max. starting current in A<br />

■ Max. heat load of the building in kW<br />

3.2 Positioning requirements<br />

■ The installation room must be dry and safe from the risk of frost.<br />

■ Never install the appliance in living spaces or directly next to, below<br />

or above quiet rooms/bedrooms.<br />

■ Maintain the minimum clearances and minimum room volume (see<br />

the following chapter).<br />

■ Sound insulation measures:<br />

– Heat pump installation on anti-vibration platforms or plinths (see<br />

next chapter).<br />

– Reduction of reverberative surfaces, particularly on walls and ceilings.<br />

Rough structural renders absorb more sound than tiles.<br />

– If quietness is a particularly important consideration, apply soundabsorbing<br />

material to the walls and ceilings (commercially available).<br />

■ Hydraulic connections:<br />

5457 919 GB<br />

22 VIESMANN VITOCAL <strong>300</strong>-G


Design information (cont.)<br />

– Always make hydraulic heat pump connections flexible and stressfree<br />

(e.g. by using <strong>Viessmann</strong> heat pump accessories).<br />

– Apply anti-vibration fixings to pipework and installations.<br />

– To prevent condensation, thermally insulate lines and components<br />

in the primary circuit with vapour diffusion-proof materials.<br />

Minimum clearances<br />

Note<br />

■ Additional strain relief clamps are required for the power cables if the<br />

clearance behind the heat pump is more than 80 mm.<br />

■ Observe clearances required for installation and maintenance<br />

A<br />

≥ 400<br />

= <strong>300</strong><br />

A<br />

≥ 400<br />

≥ 400 ≥ 400<br />

≥ 1500<br />

3<br />

≥ 1500<br />

Type BW/BWS, WW, type BWS (stage 2) is always positioned to the<br />

left of type BW, WW (stage 1)<br />

Type BW, WW<br />

A Clearance depends on on-site installation and location<br />

A Clearance depends on on-site installation and location<br />

Min. space requirement<br />

According to DIN EN 378 the minimum volume for the installation room<br />

depends on the amount and the consistency of the refrigerant.<br />

V min =<br />

m max<br />

G<br />

V min Minimum room volume in m 3<br />

m max max. amount of refrigerant in kg<br />

G Practical limit in accordance with DIN EN 378, subject to the<br />

refrigerant constituency<br />

Refrigerant Practical limit in kg/m 3<br />

R 407 C 0.31<br />

R 410 A 0.44<br />

R 134 A 0.25<br />

Note<br />

If several heat pumps are to be installed in one room, add the minimum<br />

room volumes of the individual appliances together.<br />

Taking into account the refrigerant used and the fill volume, the<br />

following minimum room volumes result:<br />

Rated heating output Min. space requirement<br />

21.2 kW 15 m 3<br />

28.8 kW 17 m 3<br />

42.8 kW 23 m 3<br />

5457 919 GB<br />

Electrical connections<br />

■ Observe the technical connection requirements specified by your<br />

local power supply utility.<br />

■ Your local power supply utility will provide you with details regarding<br />

the required metering and switching equipment.<br />

■ A separate electricity meter should be provided for the heat pump.<br />

<strong>Viessmann</strong> heat pumps operate with 400 V~ (in some countries<br />

230 V models are also available).<br />

The control circuit requires a power supply of 230 V~.<br />

The control circuit fuse (6.3 A) is located in the heat pump control<br />

unit.<br />

VITOCAL <strong>300</strong>-G VIESMANN 23


Design information (cont.)<br />

Power-OFF<br />

It is possible for the power supply utility to shut down the compressor<br />

and instantaneous heating water heater (if installed). The ability to<br />

carry out such a shutdown may be a power supply utility requirement<br />

for providing a lower tariff.<br />

This must not shut down the power supply to the heat pump control<br />

unit.<br />

Single stage heat pump<br />

D<br />

E<br />

F<br />

O<br />

U<br />

G<br />

L<br />

M<br />

P<br />

RS<br />

3<br />

C<br />

K<br />

H<br />

A<br />

A Heat pump type BW, WW<br />

C DHW cylinder<br />

D Outside temperature sensor, sensor lead (2 x 0.75 mm 2 )<br />

E DHW circulation pump, power cable (3 x 1.5 mm 2 )<br />

F Cylinder temperature sensor, sensor lead (2 x 0.75 mm 2 )<br />

G Junction box<br />

H Motorised two-way valve, normally closed<br />

K Cylinder primary pump (DHW side), power cable (3 x 1.5 mm 2 )<br />

L Circulation pump for cylinder heating (heating water side), power<br />

cable (3 x 1.5 mm 2 )<br />

or<br />

Three-way diverter valve, power cable (5 x 1.5 mm 2 )<br />

Recommendation: use the circulation pump for cylinder heating<br />

as hydraulic balancing is better achieved than with the three-way<br />

diverter valve.<br />

M Circulation pump, primary circuit (brine), power cable (3 x<br />

1.5 mm 2 or<br />

for circulation pump with thermal circuit breaker 5 x 1.5 mm 2 )<br />

If a 400 V~ circulation pump is used, it should be connected via a<br />

contactor relay.<br />

Type WW: Note the following additional components:<br />

■ Well pump (If a 400 V~ well pump is used, it should be connected<br />

via a contactor relay.)<br />

■ Flow limiter<br />

■ Frost stat<br />

■ Separating heat exchanger<br />

O Secondary pump, power cable (3 x 1.5 mm 2 )<br />

Further circulation pumps are required for heating water buffer<br />

cylinders, heating circuits with mixers and external heat sources;<br />

see system scheme, page 33.<br />

P Instantaneous heating water heater (on site):<br />

An instantaneous heating water heater (on site) can only be<br />

installed outside the heat pump. The flow temperature sensor<br />

system must be installed in the direction of flow downstream of<br />

the instantaneous heating water heater.<br />

■ Power cable: See details provided by manufacturer<br />

■ Control via heat pump control unit<br />

R Heat pump control unit power cable, 230 V~, 50 Hz (5 x<br />

1.5 mm 2 ) with power-OFF contact<br />

S Compressor power cable, 400 V~ (see table)<br />

U Electricity meter/mains<br />

Note<br />

For heating water buffer cylinders, heating circuits with mixers, external<br />

heat sources (gas/oil/wood) etc., additional supply and control<br />

cables and sensor leads must be factored in.<br />

Check the core cross-section of the power cables and enlarge if<br />

required.<br />

Recommended power cables:<br />

Type<br />

Heat pump control unit Compressor (400 V~)<br />

(230 V~)<br />

Max. cable length<br />

BW 121, WW 121 5 x 1.5 mm 2 4 x 2.5 mm 2 50 m<br />

BW 129, WW 129 5 x 1.5 mm 2 4 x 4.0 mm 2 50 m<br />

BW 145, WW 145 5 x 1.5 mm 2 4 x 6.0 mm 2 40 m<br />

Line lengths in the heat pump plus wall clearance:<br />

Type BW, WW BWS<br />

Heat pump control unit power supply (230 V~) 1.0 m A connecting cable is used for the power supply<br />

Compressor power supply (400 V~) 1.0 m 1.0 m<br />

Additional power cables 1.5 m Connecting cable<br />

24 VIESMANN VITOCAL <strong>300</strong>-G<br />

5457 919 GB


Design information (cont.)<br />

Two-stage heat pump<br />

D<br />

E<br />

F<br />

G<br />

L<br />

M<br />

N<br />

O<br />

P<br />

RST<br />

U<br />

C<br />

K<br />

H<br />

B<br />

A<br />

A Heat pump type BW, WW (stage 1)<br />

B Heat pump type BWS (stage 2)<br />

C DHW cylinder<br />

D Outside temperature sensor, sensor lead (2 x 0.75 mm 2 )<br />

E DHW circulation pump, power cable (3 x 1.5 mm 2 )<br />

F Cylinder temperature sensor, sensor lead (2 x 0.75 mm 2 )<br />

G Junction box<br />

H Motorised two-way valve, normally closed<br />

K Cylinder primary pump (DHW side), power cable (3 x 1.5 mm 2 )<br />

L Circulation pump for cylinder heating (heating water side), power<br />

cable (3 x 1.5 mm 2 )<br />

or<br />

Three-way diverter valve, power cable (5 x 1.5 mm 2 )<br />

Recommendation: use the circulation pump for cylinder heating<br />

as hydraulic balancing is better achieved than with the three-way<br />

diverter valve.<br />

Two circulation pumps for cylinder heating are required for the<br />

two-stage heat pump (one for every stage; see page 31).<br />

M Circulation pump, primary circuit (brine), power cable (3 x<br />

1.5 mm 2 or<br />

for circulation pump with thermal circuit breaker 5 x 1.5 mm 2 )<br />

If a 400 V~ circulation pump is used, it should be connected via a<br />

contactor relay.<br />

With the two-stage heat pump, either a common primary pump<br />

can be used for both stages, or a separate primary pump can be<br />

used for each stage.<br />

Type WW: Note the following additional components:<br />

■ Well pump (If a 400 V~ well pump is used, it should be connected<br />

via a contactor relay.)<br />

■ Flow limiter<br />

■ Frost stat<br />

■ Separating heat exchanger<br />

N Electrical connecting cables between heat pump stage 1 and 2<br />

(standard delivery)<br />

O Secondary pump, power cable (3 x 1.5 mm 2 )<br />

Two secondary pumps are required for the two-stage heat pump<br />

(one for every stage; see page 31).<br />

Further circulation pumps are required for heating water buffer<br />

cylinders, heating circuits with mixers and external heat sources;<br />

see system scheme, page 33.<br />

P Instantaneous heating water heater (on site):<br />

An instantaneous heating water heater (on site) can only be<br />

installed outside the heat pump. The flow temperature sensor<br />

system must be installed in the direction of flow downstream of<br />

the instantaneous heating water heater.<br />

■ Power cable: See details provided by manufacturer<br />

■ Control via heat pump control unit<br />

R Heat pump control unit power cable, 230 V~, 50 Hz (5 x<br />

1.5 mm 2 ) with power-OFF contact<br />

S Compressor power cable, type BW, WW, 400 V~ (see table)<br />

T Compressor power cable, type BWS, 400 V~ (see table)<br />

U Electricity meter/mains<br />

Note<br />

For heating water buffer cylinders, heating circuits with mixers, external<br />

heat sources (gas/oil/wood) etc., additional supply and control<br />

cables and sensor leads must be factored in.<br />

Check the core cross-section of the power cables and enlarge if<br />

required.<br />

3<br />

5457 919 GB<br />

Recommended power cables:<br />

Type<br />

Heat pump control unit Compressor (400 V~)<br />

(230 V~)<br />

Max. cable length<br />

BW 121, WW 121 5 x 1.5 mm 2 4 x 2.5 mm 2 50 m<br />

BWS 121 — 4 x 2.5 mm 2 50 m<br />

BW 129, WW 129 5 x 1.5 mm 2 4 x 4.0 mm 2 50 m<br />

BWS 129 — 4 x 4.0 mm 2 50 m<br />

BW 145, WW 145 5 x 1.5 mm 2 4 x 6.0 mm 2 40 m<br />

BWS 145 — 4 x 6.0 mm 2 40 m<br />

Line lengths in the heat pump plus wall clearance:<br />

Type BW, WW BWS<br />

Heat pump control unit power supply (230 V~) 1.0 m A connecting cable is used for the power supply<br />

Compressor power supply (400 V~) 1.0 m 1.0 m<br />

Additional power cables 1.5 m Connecting cable<br />

VITOCAL <strong>300</strong>-G VIESMANN 25


Design information (cont.)<br />

3.3 Hydraulic connections<br />

Connections on the primary side brine/water (stages 1 and 2)<br />

Single stage heat pump (type BW)<br />

wP<br />

P<br />

wQ<br />

P<br />

P<br />

qT<br />

2<br />

3<br />

wU<br />

wW<br />

1<br />

P Primary circuit interface (see system examples)<br />

Required equipment<br />

Pos.<br />

Description<br />

1 Heat pump<br />

2 Heat pump control unit<br />

qT<br />

Primary pump<br />

wP<br />

Brine accessory pack<br />

wQ<br />

Pressure switch, primary circuit<br />

wW<br />

Brine distributor for geothermal probes/collectors<br />

wU<br />

Geothermal probes/collectors<br />

Two-stage heat pumps (type BW+BWS)<br />

Two primary pumps<br />

wP<br />

P<br />

wQ<br />

P<br />

qZ<br />

P<br />

qU<br />

wT<br />

qT<br />

2<br />

wU<br />

wW<br />

9<br />

1<br />

P Primary circuit interface (see system examples)<br />

5457 919 GB<br />

26 VIESMANN VITOCAL <strong>300</strong>-G


Design information (cont.)<br />

Equipment required<br />

Pos.<br />

Description<br />

1 Heat pump stage 1<br />

2 Heat pump control unit<br />

9 Heat pump stage 2<br />

qT Primary pump (heat pump stage 1)<br />

qZ<br />

Flow temperature sensor, primary circuit<br />

qU<br />

Return temperature sensor, primary circuit<br />

wP<br />

Brine accessory pack<br />

wQ<br />

Pressure switch, primary circuit<br />

wW<br />

Brine distributor, geothermal probes/collectors<br />

wT Primary pump (heat pump stage 2)<br />

wU<br />

Geothermal probes/collectors<br />

One common primary pump (on site)<br />

wP<br />

P<br />

wQ<br />

P<br />

P<br />

qZ<br />

3<br />

qU<br />

qT<br />

2<br />

wU<br />

wW<br />

9<br />

1<br />

P Primary circuit interface<br />

Equipment required<br />

Pos.<br />

Description<br />

1 Heat pump stage 1<br />

2 Heat pump control unit<br />

9 Heat pump stage 2<br />

qT<br />

Common primary pump<br />

qZ<br />

Flow temperature sensor, primary circuit<br />

qU<br />

Return temperature sensor, primary circuit<br />

wP<br />

Brine accessory pack<br />

wQ<br />

Pressure switch, primary circuit<br />

wW<br />

Brine distributor, geothermal probes/collectors<br />

wU<br />

Geothermal probes/collectors<br />

5457 919 GB<br />

VITOCAL <strong>300</strong>-G VIESMANN 27


Design information (cont.)<br />

Connections on the primary side water/water (stages 1 and 2)<br />

Single stage heat pump (type WW)<br />

wP<br />

P<br />

wQ<br />

P<br />

P<br />

wE<br />

qT<br />

2<br />

3<br />

wR<br />

wW<br />

qO<br />

1<br />

wZ<br />

wU<br />

wI<br />

P Primary circuit interface<br />

Equipment required<br />

Pos.<br />

Description<br />

1 Heat pump<br />

2 Heat pump control unit<br />

qT<br />

Primary pump<br />

qO<br />

Frost stat, primary circuit (conversion kit standard delivery)<br />

wP<br />

Brine accessory pack<br />

wQ<br />

Pressure switch, primary circuit<br />

wW<br />

Separating heat exchanger, primary circuit<br />

wE<br />

Flow limiter, well circuit ( (conversion kit standard delivery), remove jumper when connecting)<br />

wR<br />

Dirt trap<br />

wZ<br />

Well pump (suction pump for groundwater; connect via on-site contactor with fuse protection)<br />

wU<br />

Delivery well<br />

wI<br />

Return well<br />

5457 919 GB<br />

28 VIESMANN VITOCAL <strong>300</strong>-G


Design information (cont.)<br />

Two-stage heat pumps (type WW+BWS)<br />

Two primary pumps<br />

wP<br />

P<br />

wQ<br />

P<br />

qZ<br />

P<br />

qU<br />

wT<br />

qT<br />

wE<br />

2<br />

wR<br />

wW<br />

qO<br />

9<br />

1<br />

3<br />

wZ<br />

wU<br />

wI<br />

P Primary circuit interface (see system examples)<br />

Equipment required<br />

Pos.<br />

Description<br />

1 Heat pump stage 1 with conversion kit water/water heat pump<br />

2 Heat pump control unit<br />

9 Heat pump stage 2<br />

qT Primary pump (heat pump stage 1)<br />

qZ<br />

Flow temperature sensor, primary circuit<br />

qU<br />

Return temperature sensor, primary circuit<br />

qO<br />

Frost stat, primary circuit (component of conversion kit)<br />

wP<br />

Brine accessory pack<br />

wQ<br />

Pressure switch, primary circuit<br />

wW<br />

Heat exchanger, primary circuit<br />

wE<br />

Flow limiter, well circuit (component of conversion kit; remove jumper when connecting)<br />

wR<br />

Dirt trap<br />

wT Primary pump (heat pump stage 2)<br />

wZ<br />

Well pump (suction pump for groundwater; connection via on-site contactor with fuse protection)<br />

wU<br />

Delivery well<br />

wI<br />

Return well<br />

5457 919 GB<br />

VITOCAL <strong>300</strong>-G VIESMANN 29


Design information (cont.)<br />

One common primary pump (on site)<br />

wP<br />

P<br />

wQ<br />

P<br />

qZ<br />

P<br />

qU<br />

wE<br />

qT<br />

2<br />

wR<br />

wW<br />

qO<br />

9 1<br />

3<br />

wZ<br />

wU<br />

wI<br />

P Primary circuit interface<br />

Equipment required<br />

Pos.<br />

Description<br />

1 Heat pump stage 1 with conversion kit water/water heat pump<br />

2 Heat pump control unit<br />

9 Heat pump stage 2<br />

qT<br />

Common primary pump<br />

qZ<br />

Flow temperature sensor, primary circuit<br />

qU<br />

Return temperature sensor, primary circuit<br />

qO<br />

Frost stat, primary circuit (component of conversion kit)<br />

wP<br />

Brine accessory pack<br />

wQ<br />

Pressure switch, primary circuit<br />

wW<br />

Heat exchanger, primary circuit<br />

wE<br />

Flow limiter, well circuit (component of conversion kit; remove jumper when connecting)<br />

wR<br />

Dirt trap<br />

wZ<br />

Well pump (suction pump for groundwater; connection via on-site contactor with fuse protection)<br />

wU<br />

Delivery well<br />

wI<br />

Return well<br />

5457 919 GB<br />

30 VIESMANN VITOCAL <strong>300</strong>-G


Design information (cont.)<br />

Connections on secondary side for two-stage heat pumps<br />

C<br />

H<br />

W<br />

qP<br />

6<br />

qZ<br />

qQ<br />

5<br />

P<br />

qU<br />

wT<br />

qT<br />

qW<br />

3<br />

2<br />

P<br />

3<br />

8<br />

9<br />

1 qE<br />

C Cooling interface<br />

H Heating interface<br />

P Primary circuit interface (see primary circuit)<br />

W DHW interface (see DHW heating)<br />

Equipment required<br />

Pos. Description<br />

Heat source<br />

1 Heat pump stage 1<br />

2 Heat pump control unit<br />

3 Outside temperature sensor<br />

5 Circulation pump for cylinder heating (heating water side), heat pump stage 1<br />

6 Secondary pump, heat pump stage 1<br />

9 Heat pump stage 2<br />

qP Secondary pump, heat pump stage 2<br />

qQ Circulation pump for cylinder heating (heating water side), heat pump stage 2<br />

qW Safety equipment block with safety assembly<br />

qE Expansion vessel<br />

qT Primary pump, heat pump stage 1<br />

qZ Flow temperature sensor, primary circuit<br />

qU Return temperature sensor, primary circuit<br />

wT Primary pump, heat pump stage 2<br />

Two-stage heat pump cascade<br />

A heat pump cascade consists of a lead appliance and up to 3 lag heat<br />

pumps. In a two-stage heat pump cascade, the lead appliance and lag<br />

heat pumps each consist of one heat pump stage 1 and one heat pump<br />

stage 2.<br />

The electrical connection is made at the heat pump stage 1 via KM<br />

BUS at external extension H1 (accessory).<br />

Note<br />

With external extension H1 (accessory), the swimming pool water<br />

heating function can be enabled in addition to the heat pump cascade<br />

connection.<br />

5457 919 GB<br />

VITOCAL <strong>300</strong>-G VIESMANN 31


Design information (cont.)<br />

qP 6<br />

2 2 2 2<br />

3 3 3 3<br />

9 1 9 1 9 1 9 1<br />

W<br />

IV III II I<br />

H<br />

P<br />

C<br />

5<br />

3<br />

qP 6 qP 6 qP 6<br />

qQ 5<br />

qQ 5 qQ 5 qQ<br />

qZ<br />

qZ<br />

qZ<br />

qZ<br />

qU<br />

qU<br />

qU<br />

qU<br />

wT qT wT qT wT qT wT qT<br />

C<br />

H<br />

P<br />

Cooling interface<br />

Heating interface<br />

Primary circuit interface<br />

W DHW interface<br />

I Lead appliance (two-stage) of the heat pump cascade<br />

II to IV Lag heat pump (two-stage) 1 to 3<br />

Equipment required<br />

Pos. Description<br />

Heat source<br />

1 Heat pump stage 1<br />

2 Heat pump control unit<br />

3 Outside temperature sensor<br />

5 Circulation pump for cylinder heating (heating water side), heat pump stage 1<br />

6 Secondary pump, heat pump stage 1<br />

9 Heat pump stage 2<br />

qP Secondary pump, heat pump stage 2<br />

qQ Circulation pump for cylinder heating (heating water side), heat pump stage 2<br />

qT Primary pump, heat pump stage 1<br />

qZ Flow temperature sensor, primary circuit<br />

qU Return temperature sensor, primary circuit<br />

wT Primary pump, heat pump stage 2<br />

5457 919 GB<br />

32 VIESMANN VITOCAL <strong>300</strong>-G


Design information (cont.)<br />

3.4 System versions<br />

X Requirement<br />

0 Option<br />

Parameter 0 1 2 3 4 5 6 7 8 9 10 11<br />

"System<br />

scheme"<br />

Versions a b c a b c b c b c b c b c b c b c b c b c<br />

Heating operation and DHW heating<br />

Heating circuit<br />

A1 without<br />

X X X X X X X X X X X X X X<br />

mixer<br />

Heating circuit<br />

with<br />

X X X X X X X X X X X X X X X X<br />

mixer M2<br />

Heating circuit<br />

M3 with<br />

X X X X X X X X<br />

mixer<br />

DHW cylinder<br />

X X X X X X X X X X X X<br />

Heating water<br />

buffer cylinder<br />

X X X X X X X X X X X X X X X X X X X X<br />

External heat<br />

source<br />

X X X X X X X X X X<br />

Cooling mode (only one cooling circuit possible)<br />

Heating circ.<br />

A1<br />

0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Heating circuit<br />

M2<br />

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Heating circuit<br />

M3<br />

0 0 0 0 0 0 0 0<br />

Separate<br />

cooling circuit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

Swimming pool water heating<br />

Swimming<br />

pool (only<br />

with external 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

extension<br />

H1)<br />

Solar DHW heating<br />

Solar (only<br />

with Vitosolic<br />

0 0 0 0 0 0 0 0 0 0 0<br />

0<br />

100/200)<br />

Cascade operation<br />

Lead appliance<br />

X X X X X X X X X X X X X X X X X X X X X X X<br />

Lag heat<br />

pump<br />

X<br />

3<br />

5457 919 GB<br />

VITOCAL <strong>300</strong>-G VIESMANN 33


Design information (cont.)<br />

Example:<br />

For further examples, see "Heat pump system examples".<br />

3<br />

System version 6b: Heating circuit without mixer A1, heating circuit<br />

with mixer M2, DHW cylinder, heating water buffer cylinder<br />

3.5 Sizing the heat pump<br />

Note<br />

Sizing is of particular relevance to heat pump systems that are to be operated in mono-mode, since oversized equipment will incur disproportionate<br />

system costs. Therefore avoid oversizing!<br />

First establish the standard heat load of the building Φ HL . For discussions<br />

with customers and for the preparation of a quotation, in most<br />

cases estimating the heat load is adequate.<br />

As with all heating systems, determine the standard heat load of the<br />

building in accordance with DIN EN 12831 before selecting the appropriate<br />

heat pump.<br />

Mono-mode operation<br />

Theoretical sizing with the power supply blocked for 3 × 2 hour<br />

According to DIN EN 12831, the heat pump system in mono-mode<br />

Older house (without thermal insulation) 120 W/m 2<br />

must, as sole heat source, be able to cover the entire heating demand<br />

of the building.<br />

periods<br />

Example:<br />

For a new building with good thermal insulation (50 W/m 2 ) and a<br />

When sizing the heat pump, observe the following:<br />

■ Take supplements to the heat load of the building to cover power-<br />

OFF periods into account. [In Germany] the power supply utility may<br />

cut off the power supply to heat pumps for up to 3 × 2 hours within<br />

heated area of 170 m 2<br />

■ Estimated heat load: 8.4 kW<br />

■ Maximum blocking time of 3 × 2 hours at a minimum outside temperature<br />

in accordance with DIN EN 12831<br />

a 24 hour period.<br />

Observe additional individual arrangements for customers with special<br />

tariffs.<br />

24 h, therefore, result in a daily heat volume of:<br />

■ 8.4 kW ∙ 24 h = 202 kWh<br />

■ The building inertia means that 2 hours of power-OFF periods are<br />

not taken into consideration.<br />

To cover the maximum daily heat amount, only 18 h/day are available<br />

for heat pump operation on account of the power-OFF periods. The<br />

Note<br />

However, the "enable time" between power-OFF periods must be at<br />

least as long as the preceding power-OFF period.<br />

Estimate of the heat load based on the heated area<br />

The heated surface area (in m 2 ) is multiplied by the following specific<br />

heat demand:<br />

building inertia means that 2 hours of the period during which power<br />

is blocked are not taken into consideration.<br />

■ 202 kWh / (18 + 2) h = 10.1 kW<br />

In other words, the heat pump output would need to be increased by<br />

20 %, if power-OFF periods of 3 × 2 hours per day were to be<br />

applied.<br />

Passive house 10 W/m 2<br />

Frequently, power-OFF periods are only invoked if there is a need to<br />

do so. Please contact the customer's power supply utility to enquire<br />

Low energy house 40 W/m 2 about power-OFF periods.<br />

New build (to EnEV) 50 W/m 2<br />

House (built prior to 1995 with standard thermal insulation)<br />

80 W/m 2<br />

5457 919 GB<br />

34 VIESMANN VITOCAL <strong>300</strong>-G


Design information (cont.)<br />

Mono-energetic operation<br />

In heating mode, the heat pump system is supplemented by an instantaneous<br />

heating water heater (on site). The control unit switches the<br />

instantaneous heating water heater on, subject to the outside temperature<br />

(dual mode temperature) and heat load.<br />

Note<br />

That part of the electric power drawn by the instantaneous heating<br />

water heater will generally not be charged at special tariffs.<br />

Sizing of typical system configurations:<br />

■ The heat pump heating output must be designed for approx. 70 to<br />

85 % of the maximum required heat load of the building in accordance<br />

with DIN EN 12831.<br />

■ The heat pump covers approx. 95 % of the annual heat load.<br />

■ Blocking periods must not to be taken into consideration.<br />

Note<br />

Compared to mono-mode operation, the heat pump will run for longer<br />

due to its smaller size. To compensate for this, increase the size of the<br />

heat source for brine/water heat pumps.<br />

For a geothermal probe system, an annual extraction rate of<br />

100 kWh/m ∙ p.a. should not be exceeded.<br />

Instantaneous heating water heater (on site)<br />

An electric instantaneous heating water heater can be integrated in the<br />

heating water flow as an auxiliary heat source. The instantaneous<br />

heating water heater is connected and protected via a separate power<br />

supply connection.<br />

The heat pump control unit regulates this function. The instantaneous<br />

heating water heater can be enabled separately for central heating and<br />

DHW heating.<br />

If enabled the respective parameter, the heat pump control unit starts<br />

stages 1, 2 or 3 of the instantaneous heating water heater, subject to<br />

the prevailing heat demand. As soon as the maximum flow temperature<br />

in the secondary circuit is reached, the heat pump control unit<br />

switches the instantaneous heating water heater off.<br />

Parameter "Stage at power-OFF" restricts the output stage of the<br />

instantaneous heating water heater for the duration of the power-OFF<br />

period.<br />

To limit the total power consumption, the heat pump control unit stops<br />

the instantaneous heating water heater for a few seconds directly<br />

before the compressor starts. Each stage is subsequently started individually<br />

one after the other in intervals of 10 s.<br />

If the instantaneous heating water heater is on and the differential<br />

between flow and return temperatures in the secondary circuit does<br />

not rise by at least 1 K within 24 h, the heat pump control unit displays<br />

a fault message.<br />

3<br />

Dual mode operation<br />

External heat source<br />

The heat pump control unit enables the heat pump to operate in dual<br />

mode with an external heat source, e.g. oil boiler.<br />

The external heat source is hydraulically connected to let the heat<br />

pump also be used as a return temperature raising facility for the boiler.<br />

System separation is provided either with a low loss header or heating<br />

water buffer cylinder.<br />

For optimum heat pump operation, the external heat source must be<br />

integrated via a mixer into the heating water flow. A quick reaction is<br />

achieved by directly controlling this mixer via the heat pump control<br />

unit.<br />

If the outside temperature (long-term average) is below the dual mode<br />

temperature, the heat pump control unit starts the external heat<br />

source. In case of direct heat demand from the consumers (e.g. for<br />

frost protection or if the heat pump is faulty), the external heat source<br />

is also started above the dual mode temperature.<br />

In addition, the external heat source can be enabled for DHW heating.<br />

Note<br />

The heat pump control unit does not contain any safety function for<br />

the external heat source. To prevent excessive temperatures in the<br />

heat pump flow and return in case of a fault, high limit safety cut-outs<br />

must be provided to stop the external heat source (switching threshold<br />

70 °C).<br />

Supplement for DHW heating<br />

For general house building, a max. DHW consumption of approx.<br />

50 litre per person per day at approx. 45 ºC is assumed.<br />

■ This represents an additional heat load of approx. 0.25 kW per person<br />

given a heat-up time of 8 h.<br />

■ This supplement will only be taken into consideration if the sum total<br />

of the additional heat load is greater than 20 % of the heat load calculated<br />

in accordance with DIN EN 12831.<br />

DHW demand at a DHW temperature<br />

of 45 °C<br />

Specific available heat<br />

Recommended heat load supplement<br />

for DHW heating *1<br />

in l/d per person in Wh/d per person in kW/person<br />

Low demand 15 to 30 600 to 1200 0.08 to 0.15<br />

Standard demand *2 30 to 60 1200 to 2400 0.15 to 0.30<br />

5457 919 GB<br />

*1 With a DHW cylinder heat-up time of 8 h.<br />

*2 Select a higher supplement if the actual DHW demand exceeds the stated values.<br />

VITOCAL <strong>300</strong>-G VIESMANN 35


Design information (cont.)<br />

or<br />

Apartment<br />

(billing according to demand)<br />

Apartment<br />

(flat rate billing)<br />

Detached house *2<br />

(average demand)<br />

Reference temperature of<br />

45 °C<br />

Specific available heat<br />

Recommended heat load supplement<br />

for DHW heating *1<br />

in l/d per person in Wh/d per person in kW/person<br />

30 approx. 1200 approx. 0.150<br />

45 approx. 1800 approx. 0.225<br />

50 approx. 2000 approx. 0.250<br />

3<br />

Supplement for setback mode<br />

A supplement for setback mode in accordance with DIN EN 12831 is<br />

not required as the heat pump control unit is equipped with a temperature<br />

limiter for setback mode.<br />

In addition, the control unit is equipped with start optimisation, which<br />

means that there is also no need for a supplement for heating up from<br />

setback mode.<br />

3.6 Heat source for brine/water heat pumps<br />

Frost protection<br />

To safeguard a trouble-free heat pump operation, use anti-freeze<br />

based on glycol in the primary circuit. This must protect against frost<br />

down to at least -15 °C and contain suitable anti-corrosion inhibitors.<br />

Ready-mixed solutions ensure an even distribution of concentrate.<br />

For the primary circuit, we recommend the ready-mixed solution "Tyfocor"<br />

which is based in ethylene glycol.<br />

Both functions must be enabled in the control unit. If any of the supplements<br />

are omitted because of the activated control unit functions<br />

then this must be documented when the system is handed over to the<br />

operator.<br />

If these supplements are to be taken into account in spite of the control<br />

options, calculate them in accordance with DIN EN 12831.<br />

Note<br />

When selecting the anti-freeze, always observe the stipulations of the<br />

authorising body.<br />

Geothermal collector<br />

The thermal properties of the upper layer of the earth, such as the<br />

volumetric thermal capacity and thermal conductivity, are largely<br />

dependent on the consistency and properties of the ground.<br />

The wetter the soil, the higher the proportion of mineral constituents<br />

(quartz or feldspar) of the soil and the smaller the proportion of pores,<br />

the better the storage characteristics and thermal conductivity.<br />

The specific extraction rate q E for the ground lies between approx. 10<br />

and 35 W/m 2 .<br />

F<br />

B<br />

C<br />

D<br />

E<br />

A<br />

1500 mm<br />

1.2 - 1.5 m<br />

F<br />

Dry sandy soil q E = 10–15 W/m 2<br />

Damp sandy soil q E = 15–20 W/m 2<br />

Dry loamy soil q E = 20–25 W/m 2<br />

Damp loamy soil q E = 25–30 W/m 2<br />

Ground with groundwater q E = 30–35 W/m 2<br />

H<br />

G<br />

These details enable the required ground area to be calculated subject<br />

to the heat load of the building and the refrigerating capacity ² K of the<br />

heat pump.<br />

² K = ² WP – P WP<br />

² K is the difference between the heat pump heating output (² HP ) and<br />

its power consumption (P HP ).<br />

Manifolds and headers<br />

The manifold and the header should be installed so that they are<br />

accessible for future inspections, e.g in their own distribution ducts<br />

outside the house or in the basement window duct.<br />

Every pipe circuit should be able to be isolated individually on the flow<br />

and return side to enable the collector to be filled and vented.<br />

Example of a common duct<br />

A Access point 7 600 mm<br />

B Concrete rings<br />

C Primary flow<br />

D Primary return<br />

E Brine distributor<br />

F Collector pipes<br />

G Crushed stone<br />

H Drainage<br />

*1 With a DHW cylinder heat-up time of 8 h.<br />

*2 Select a higher supplement if the actual DHW demand exceeds the stated values.<br />

5457 919 GB<br />

36 VIESMANN VITOCAL <strong>300</strong>-G


Design information (cont.)<br />

2°<br />

Example of a wall outlet<br />

A To the heat pump<br />

B Building<br />

C Foundations<br />

D Drainage<br />

E Seal<br />

F Pipe liner<br />

G Crushed stone<br />

H PE 32 × 3.0 (2.9)<br />

K Ground<br />

All pipes, profiles etc. must be made from corrosion-resistant materials.<br />

Flow and return lines transport cold brine (brine temperature <<br />

cellar temperature). For that reason, all pipes inside the house and the<br />

wall outlets (even inside the wall structure) must be thermally insulated<br />

and vapour diffusion-proof to prevent the formation of condensation<br />

and subsequent damage from moisture. Alternatively, a drain can be<br />

installed to remove condensate. Practical experience has shown that<br />

a prepared brine mixture is satisfactory for filling the system.<br />

Pipework should be routed on the outside of the building with a slight<br />

slope to prevent ingress of water during heavy rain. A good drainage<br />

system will ensure that the rainwater drains away.<br />

The use of approved wall outlets (e.g. Doyma) is required if the site<br />

makes specific demands regarding pressing water.<br />

Rough sizing<br />

Basis for sizing is the refrigerating capacity ² K of the heat pump at<br />

operating point B0/W35.<br />

Required area F E = ² K /³ E (average extraction rate subject to ground<br />

conditions).<br />

Required number of pipe circuits @ 100 m length subject to F E and the<br />

pipe dimension:<br />

■ With PE 20 × 2.0:<br />

Pipe circuits @ 100 m length = F E · 3/100<br />

■ With PE 25 × 2.3:<br />

Pipe circuits @ 100 m length = F E · 2/100<br />

■ With PE 32 × 3.0 (2.9):<br />

Pipe circuits @ 100 m length = F E · 1.5/100<br />

The detailed design depends on the ground structure and can only be<br />

determined following a local inspection.<br />

3<br />

Required brine distributor 100 m length at ³ E = 25 W/m 2 (estimated sizing)<br />

Heat pump ² K F E PE 20 × 2.0 PE 25 × 2.3 PE 32 × 2.9<br />

type<br />

(rounded)<br />

Pipe circuits Brine distributor<br />

Pipe circuits<br />

Brine distributor<br />

Pipe circuits Brine distributor<br />

kW m 2 Part no. Part no. Part no.<br />

Single stage heat pump<br />

BW 121 17 700 21 3 x 7143 762 14 2 x 7182 043<br />

12 4 x 7373 329<br />

2 x 7373 331<br />

BW 129 23.3 940 28 4 x 7143 762 19 on-site 14 2 x 7143 763<br />

2 x 7373 329<br />

BW 145 34.2 1370 41 on-site 27 on-site 21 on-site<br />

Two-stage, both stages with the same output<br />

BW+BWS<br />

34 1360 41 on-site 27 on-site 20 on-site<br />

121+121<br />

BW+BWS<br />

46.6 1870 56 on-site 37 on-site 28 on-site<br />

129+129<br />

BW+BWS<br />

68.4 2740 82 on-site 55 on-site 41 on-site<br />

145+145<br />

Two-stage, stages with different output<br />

BW+BWS<br />

40.3 1620 49 on-site 32 on-site 24 on-site<br />

121+129<br />

BW+BWS<br />

51.2 2050 62 on-site 41 on-site 31 on-site<br />

121+145<br />

BW+BWS<br />

129+145<br />

57.5 2<strong>300</strong> 69 on-site 46 on-site 35 on-site<br />

5457 919 GB<br />

VITOCAL <strong>300</strong>-G VIESMANN 37


Design information (cont.)<br />

Note<br />

Up to 4 brine distributors can be connected to a flow or return pipe. If<br />

more than 4 brine distributors are required, additional geothermal collector<br />

circuits are also required. The brine distributors and geothermal<br />

collector circuits must be designed and sized by a specialist contractor<br />

(e.g. <strong>Viessmann</strong> geothermal department or an engineering consultancy).<br />

Example calculations for sizing the heat source<br />

Selection of the heat pump<br />

3<br />

Building heat load (net heat load)<br />

DHW heating supplement for<br />

a 3-person household<br />

Power-OFF periods<br />

Total heat load of the building<br />

System temperature (at min. outside temp. –14 °C) 45/40 °C<br />

Heat pump operating point<br />

B0/W35<br />

4.8 kW<br />

0.75 kW (see chapter "DHW heating supplement": 0.75 kW < 20 % of building heat<br />

load)<br />

3 × 2 h/d (only 4 h are taken into consideration, see chapter "Mono-mode operation")<br />

5.76 kW<br />

The heat pump with a heating output of 6.4 kW (incl. supplement for power-OFF periods, excl. DHW heating), refrigerating capacity<br />

² K = 4.9 kW corresponds to the required output.<br />

Sizing the geothermal collector<br />

Average specific extraction rate ³ E = 25 W/m 2<br />

² K = 4.9 kW<br />

F E = ² K /³ E = 4900 W/25 W/m 2 ≈ 200 m 2<br />

The number X of required pipe circuits (PE pipe 32 × 3.0 (2.9)) @ 100 m length each results from:<br />

X = F E · 1.5/100 = 200 m 2 · 1.5 m/m 2 /100 m = 3 pipe circuits<br />

Selected: 3 pipe circuits @ 100 m length (Ø 32 mm × 3.0 (2.9) mm with 0.531 l/m)<br />

Required amount of heat transfer medium (V R )<br />

Take the content of the geothermal collector including all supply lines, plus the volume of fittings and the heat pump into consideration.<br />

Provide manifolds corresponding to the number of pipe circuits.<br />

The low refrigerating capacity and the connection length mean that a supply line of PE 32 × 3.0 (2.9) is adequate.<br />

Supply line: 10 m (2 × 5 m) with PE 32 × 3.0 (2.9)<br />

V R = Number of pipe circuits × 100 m × Pipeline volume + Supply line length × Pipeline volume<br />

= 3 × 100 m × 0.531 l/m + 10 m × 0.531 l/m = 159.3 l + 5.31 l = 165 l<br />

Selected: 200 litre (incl. heat transfer medium in the fittings and the heat pump)<br />

Geothermal collector pressure drop<br />

Flow rate, heat pumps with 6.2 kW: 1200 l/h<br />

Flow rate per pipe circuit = (900 l/h)/(3 circuits of 100 m) each = <strong>300</strong> l/h per pipe circuit<br />

Δp = R value × pipe length<br />

R value (resistance value) for PE 32 × 3.0 (2.9) (see tables Pressure<br />

drop for pipelines):<br />

■ At <strong>300</strong> l/h ≈ 31.2 Pa/m<br />

■ At 1600 l/h ≈ 314.7 Pa/m<br />

Δp Pipe circuit = 32 Pa/m × 100 m = 3200 Pa<br />

Δp Supply line = 315 Pa/m × 10 m = 3150 Pa<br />

Δp permissible = 40000 Pa = 400 mbar (max. ext. pressure drop, primary side)<br />

Δp = Δp Pipe circuit + Δp Supply line = 3200 Pa + 3150 Pa = 6350 Pa ≙ 63.5 mbar<br />

Result:<br />

The intended geothermal collector can be used with a heat pump with 6.2 kW rated heating output, since Δp = Δp pipe circuit + Δp supply line does not<br />

exceed the value for Δp permissible .<br />

5457 919 GB<br />

38 VIESMANN VITOCAL <strong>300</strong>-G


Design information (cont.)<br />

Geothermal probe<br />

RL<br />

VL<br />

RL Primary return<br />

VL Primary flow<br />

A Bentonite-cement suspension<br />

B Protective cap<br />

On smaller plots, geothermal probes are an alternative to geothermal<br />

collectors when retrofitting existing buildings. In the following we consider<br />

the double U-shaped tubular probe.<br />

One version would be two double U-shaped tubular loops made from<br />

plastic in one borehole. All cavities between the pipes and the ground<br />

are filled with a highly conductive material (bentonite).<br />

We recommend the following spacing between 2 geothermal probes:<br />

■ Down to 50 m depth: 5 m (min.)<br />

■ Down to 100 m depth: 6 m (min.)<br />

For systems such as this, notify your local water board well in advance<br />

of commencing such installations.<br />

The geothermal probes are installed either by drilling or by ramming,<br />

subject to their respective design. Systems of this type require a permit<br />

from your local water board.<br />

Further information can be obtained from the geothermal probe manufacturer<br />

(see "Manufacturer's addresses" in the appendix).<br />

We recommend arranging the sizing to match the regional conditions<br />

and the drilling service to be carried out by the contractor suggested<br />

by your local <strong>Viessmann</strong> sales office.<br />

Possible specific extraction rates q E for double U-shaped pipe<br />

probes (to VDI 4640 sheet 2)<br />

Substructure<br />

Specific<br />

Extract rate q E in<br />

W/m<br />

General guidelines<br />

Poor ground (dry sediment)<br />

20<br />

(λ < 1.5 W/(m · K))<br />

Normal solid rock subsoil and<br />

50<br />

water-saturated sediment<br />

(1.5 ≤ λ ≤ 3.0 W/(m · K))<br />

Solid rock with high thermal conductivity<br />

70<br />

(λ > 3.0 W/(m · K))<br />

Individual rocks<br />

Gravel, sand (dry) < 20<br />

Gravel, sand (aquiferous) 55-65<br />

Clay, loam (damp) 30-40<br />

Chalk (solid) 45-60<br />

Sandstone 55-65<br />

Acidic magmatite (e.g. granite) 55-70<br />

Basic magmatite (e.g. basalt) 35-55<br />

Gneiss 60-70<br />

Rough sizing<br />

Basis for sizing is the refrigerating capacity ² K of the heat pump at<br />

operating point B0/W35.<br />

Required probe length l = ² K /³ E (³ E = average extraction rate subject<br />

to ground conditions).<br />

The detailed sizing depends on the ground structure and the watercarrying<br />

ground strata, and can only be determined following a local<br />

inspection by the drilling contractor.<br />

Note<br />

The reduction of the number of drilled holes in favour of probe depth<br />

increases the pressure drop to be overcome and the required pump<br />

rate.<br />

Information regarding dual mode parallel and mono-energetic<br />

operation<br />

In case of dual mode parallel and mono-energetic operation, consider<br />

the higher heat source load (see "Sizing"). As a guide, a geothermal<br />

probe system should not exceed an extraction of 100 kWh/m ∙ a p.a.<br />

3<br />

Required geothermal probes and brine distributors at ³ E = 50 W/m, probe (to VDI 4640) for 2000 operating hours (estimated sizing)<br />

Heat pump type ² K PE 32 × 2.9<br />

Overall pipe length Geothermal probes Brine distributor<br />

kW m Length in m Part no.<br />

Single stage heat pump<br />

BW 121 17 340 4 × 85 2 × 7143 763<br />

BW 129 23.3 466 5 × 93 1 × 7143 763<br />

2 × 7373 329<br />

BW 145 34.2 820 8 × 103 4 × 7143 763<br />

Two-stage, both stages with the same output<br />

BW+BWS 121+121 34 820 8 × 103 4 × 7143 763<br />

BW+BWS 129+129 46.6 1120 11 × 102 on-site<br />

BW+BWS 145+145 68.4 1640 17 × 96 on-site<br />

Two-stage, stages with different output<br />

BW+BWS 121+129 40.3 970 10 × 97 on-site<br />

BW+BWS 121+145 51.2 1230 13 × 95 on-site<br />

BW+BWS 129+145 57.5 1380 14 × 99 on-site<br />

5457 919 GB<br />

VITOCAL <strong>300</strong>-G VIESMANN 39


Design information (cont.)<br />

Brine distributors for two-stage heat pump (BW+BWS) and single<br />

stage heat pump type BW 145<br />

The brine distributors for geothermal probes must be designed and<br />

sized by a specialist contractor (e.g. <strong>Viessmann</strong> geothermal department<br />

or an engineering consultancy). The guide values given above<br />

include an additional 20 %.<br />

Example calculations for sizing the heat source<br />

Selection of the heat pump<br />

Building heat load (net heat load)<br />

DHW heating supplement for<br />

a 3-person household<br />

Power-OFF periods<br />

Total heat load of the building<br />

System temperature (at min. outside temp. –14 °C) 45/40 °C<br />

Heat pump operating point<br />

B0/W35<br />

4.8 kW<br />

0.75 kW (see chapter "DHW heating supplement": 0.75 kW < 20 % of building heat<br />

load)<br />

3 × 2 h/d (only 4 h are taken into consideration, see chapter "Mono-mode operation")<br />

5.76 kW<br />

3<br />

The heat pump with a heating output of 6.2 kW (incl. supplement for power-OFF periods, excl. DHW heating), refrigerating capacity<br />

² K = 4.9 kW corresponds to the required output.<br />

Sizing the geothermal probe as double U-pipe<br />

Average extraction rate ³ E = 50 W/m probe length<br />

² K = 4.9 kW<br />

Probe length L = ² K /³ E = 4900 W/50 W/m = 98 m ≈ 100 m<br />

Selected pipe for the probe: PE 32 × 3.0 (2.9) with 0.531 l/m<br />

Required amount of heat transfer medium (V R )<br />

Take the content of the geothermal probe including all supply lines, plus the volume of fittings and the heat pump into consideration.<br />

Provide manifolds when using > 1 probe. Size the supply line larger than the pipe circuits; we recommend PE 32 to PE 63.<br />

■ Geothermal probe as double U-shaped pipe<br />

■ Supply line: 10 m (2 × 5 m) with PE 32 × 3.0 (2.9)<br />

V R = 2 × Probe length L × 2 × Pipeline volume + Supply line length × Pipeline volume<br />

= 2 × 100 m × 2 × 0.531 l/m + 10 m × 0.531 l/m = 217.7 l<br />

Selected: 220 litre (incl. heat transfer medium in the fittings and the heat pump)<br />

Pressure drop of the geothermal probe<br />

Heat transfer medium: Tyfocor<br />

Flow rate, heat pumps with 6.2 kW: 900 l/h<br />

Flow rate per U-shaped pipe: 900 l/h : 2 = 450 l/h<br />

Δp = R value × pipe length<br />

R value (resistance value) for PE 32 × 3.0 (2.9) (see tables Pressure<br />

drop for pipelines):<br />

■ At 450 l/h ≈ 46.9 Pa/m<br />

■ At 900 l/h ≈ 190 Pa/m<br />

Δp Double U-shaped pipe probe = 46.9 Pa/m × 2 × 100 m = 9380 Pa<br />

Δp Supply line = 190 Pa/m × 10 m = 1900 Pa<br />

Δp permissible = 40000 Pa = 400 mbar (max. ext. pressure drop, primary side)<br />

Δp Double U-shaped pipe probe + Δp supply line = 9380 Pa + 1900 Pa = 11280 Pa ≙ 112 mbar<br />

Result:<br />

The intended geothermal probe can be used with a heat pump with 6.2 kW rated heating output, since Δp =<br />

Δp double U-shaped pipe probe + Δp supply line does not exceed the value for Δp permissible .<br />

Expansion vessel for primary circuit<br />

A diaphragm expansion vessel with a capacity of 25 l is sufficient up<br />

to a supply line length of 20 m and up to a size of PE 40.<br />

Detailed calculations are required for greater lengths.<br />

V A = Total system volume (brine) in litres<br />

V N = Rated volume of the diaphragm expansion vessel in litres<br />

V Z = Increase in volume during system heat-up in litres<br />

= V A · β<br />

β = Expansion factor (β for Tyfocor = 0.01)<br />

V V = Safety hydraulic seal (heat transfer medium Tyfocor) in litres<br />

= V A × (hydraulic seal: 0.005), at least 3 l (to DIN 4807)<br />

5457 919 GB<br />

40 VIESMANN VITOCAL <strong>300</strong>-G


Design information (cont.)<br />

p e = Permiss. terminal pressure in bar<br />

= p si – 0.1 · p si = 0.9 · p si<br />

p si = Safety valve blow-off pressure = 3 bar<br />

V N = V Z + V V<br />

P e – P st<br />

· (P e + 1)<br />

p st = Nitrogen pre-charge pressure = 1.5 bar<br />

Expansion vessel capacity for geothermal collector<br />

V A = Geothermal collector content incl. supply line + heat pump content = 130 l<br />

V Z = V A · β = 130 l × 0.01 = 1.3 l<br />

V V = V A × 0.005 = 130 l × 0.005 = 0.65 l → selected 3 l<br />

V N =<br />

1.3 litres + 3.0 litres<br />

2.7 bar – 1.5 bar<br />

· (2.7 bar + 1) = 13.25 litres<br />

Expansion vessel capacity for geothermal collector<br />

V A = Geothermal collector content incl. supply line + heat pump content = 220 l<br />

V Z = V A · β = 220 l × 0.01 = 2.2 l<br />

V V = V A × 0.005 = 220 l × 0.005 = 1.1 l → selected 3 l<br />

3<br />

V N =<br />

2.2 litres + 3.0 litres<br />

2.7 bar – 1.5 bar<br />

· (2.5 bar + 1) = 15.17 litres<br />

Pipework, primary circuit<br />

5457 919 GB<br />

Pressure drop<br />

The areas in the following tables with a grey background are subject<br />

to laminar flow, thereafter turbulent flow.<br />

For optimum heat extraction from the ground, we recommend sizing<br />

the pipework in the turbulent area.<br />

R value (resistance value):<br />

■ R value = pressure drop/m line<br />

■ The specified R values refer to Tyfocor heat transfer medium:<br />

– Kinematic viscosity = 4.0 mm 2 /s<br />

– Density = 1050 kg/m 3<br />

PE pipe 20 × 2.0 mm, PN 10<br />

Flow rate<br />

R value for Tyfocor<br />

l/h<br />

Pa/m<br />

100 77.4<br />

120 92.9<br />

140 108.4<br />

160 123.9<br />

180 139.4<br />

200 154.9<br />

220 170.3<br />

240 185.8<br />

260 201.3<br />

280 216.8<br />

<strong>300</strong> 232.3<br />

320 247.8<br />

340 263.3<br />

360 278.7<br />

380 294.2<br />

400 309.7<br />

PE pipe 25 × 2.3 mm, PN 10<br />

Flow rate<br />

R value for Tyfocor<br />

l/h<br />

Pa/m<br />

100 27.5<br />

120 32.9<br />

140 38.4<br />

160 43.9<br />

180 49.4<br />

200 54.9<br />

220 60.4<br />

240 65.9<br />

260 71.4<br />

280 76.9<br />

<strong>300</strong> 82.3<br />

320 87.8<br />

340 93.3<br />

360 98.8<br />

380 104.3<br />

400 109.8<br />

420 115.3<br />

440 120.8<br />

460 126.3<br />

480 131.7<br />

500 137.2<br />

520 142.7<br />

540 246.3<br />

560 262.4<br />

PE pipe 32 × 2.9 mm, PN 10<br />

Flow rate<br />

R value for Tyfocor<br />

l/h<br />

Pa/m<br />

<strong>300</strong> 31.2<br />

320 33.3<br />

340 35.4<br />

360 37.5<br />

380 39.5<br />

400 41.6<br />

420 43.7<br />

440 45.8<br />

460 47.9<br />

480 49.9<br />

VITOCAL <strong>300</strong>-G VIESMANN 41


Design information (cont.)<br />

3<br />

Flow rate<br />

R value for Tyfocor<br />

l/h<br />

Pa/m<br />

500 52.0<br />

520 54.1<br />

540 56.2<br />

560 58.3<br />

580 60.3<br />

600 62.4<br />

620 64.5<br />

640 66.6<br />

660 68.7<br />

680 70.7<br />

700 122.5<br />

720 128.7<br />

740 135.0<br />

760 141.5<br />

780 148.1<br />

800 154.8<br />

820 161.6<br />

840 168.6<br />

860 175.7<br />

880 182.9<br />

900 190.2<br />

920 197.7<br />

940 205.3<br />

960 213.0<br />

980 220.8<br />

1000 228.7<br />

1020 236.8<br />

1040 245.0<br />

1060 253.3<br />

1080 261.7<br />

1100 270.2<br />

1120 278.9<br />

1140 287.7<br />

1160 296.6<br />

1180 305.6<br />

1200 314.7<br />

1240 333.3<br />

1280 352.3<br />

1320 371.8<br />

1360 391.7<br />

1400 412.1<br />

1440 433.0<br />

1480 454.2<br />

1520 475.9<br />

1560 498.1<br />

1600 520.6<br />

1640 543.6<br />

1680 567.0<br />

1720 590.9<br />

1760 615.1<br />

1800 639.8<br />

1840 664.9<br />

1880 690.4<br />

1920 716.3<br />

1960 742.6<br />

2000 769.3<br />

PE pipe 40 × 3.7 mm, PN 10<br />

Flow rate<br />

R value for Tyfocor<br />

l/h<br />

Pa/m<br />

1500 165.8<br />

1600 209.6<br />

2000 274.0<br />

2100 305.5<br />

2<strong>300</strong> 383.6<br />

2400 389.1<br />

2500 404.2<br />

2700 479.5<br />

PE pipe 50 × 4.6 mm, PN 10<br />

Flow rate<br />

R value for Tyfocor<br />

l/h<br />

Pa/m<br />

1500 56.9<br />

1600 61.7<br />

2000 96.0<br />

2100 102.8<br />

2<strong>300</strong> 117.8<br />

2400 128.8<br />

2500 141.8<br />

2700 163.7<br />

<strong>300</strong>0 189.1<br />

3200 216.5<br />

3600 202.8<br />

3900 315.1<br />

4200 356.2<br />

5200 530.2<br />

5400 569.9<br />

5500 596.0<br />

6200 739.8<br />

6<strong>300</strong> 771.3<br />

7200 1000.1<br />

7800 1257.7<br />

9200 1568.7<br />

9<strong>300</strong> 1596.1<br />

12600 2794.8<br />

15600 –<br />

18600 –<br />

PE pipe 63 × 5.8 mm, PN 10<br />

Flow rate<br />

R value for Tyfocor<br />

l/h<br />

Pa/m<br />

1500 17.8<br />

1600 25.3<br />

2000 30.1<br />

2100 34.0<br />

2<strong>300</strong> 42.7<br />

2400 45.2<br />

2500 48.0<br />

2700 56.2<br />

<strong>300</strong>0 63.0<br />

3200 69.9<br />

3600 84.9<br />

3900 102.8<br />

4200 121.9<br />

5200 161.7<br />

5400 187.7<br />

5500 191.8<br />

6200 227.4<br />

6<strong>300</strong> 239.8<br />

7200 316.5<br />

7800 367.2<br />

9200 493.2<br />

9<strong>300</strong> 509.6<br />

12600 956.3<br />

15600 1315.2<br />

18600 1808.4<br />

5457 919 GB<br />

42 VIESMANN VITOCAL <strong>300</strong>-G


Design information (cont.)<br />

Volumes in PE pipes, PN 10<br />

External Ø pipe × wall DN Volume per m pipe<br />

thickness<br />

mm l<br />

20 × 2.0 15 0.201<br />

25 × 2.3 20 0.327<br />

32 × 3.0 (2.9) 25 0.531<br />

40 × 2.3 32 0.984<br />

40 × 3.7 32 0.835<br />

50 × 2.9 40 1.595<br />

50 × 4.6 40 1.308<br />

63 × 5.8 50 2.070<br />

63 × 3.6 50 2.445<br />

Pump output supplements (percentage) for operation with Tyfocor<br />

Note<br />

Circulation pump curves, see chapter "Primary pump".<br />

Design flow rate<br />

² A = ² water + f Q (in %)<br />

Design residual head<br />

H A = H water + f H (in %)<br />

Select the pump with the higher pump rates ² A and H A .<br />

Note<br />

The supplements only comprise the corrections for the circulation<br />

pumps. System curve or data corrections can be determined with the<br />

help of technical literature or information provided by the valve manufacturer.<br />

<strong>Viessmann</strong> heat transfer medium "Tyfocor" (ready-mixed for temperatures<br />

down to –15 °C) has a ethylene glycol volume ratio of 28.6 °%<br />

(calculated as 30 %).<br />

3<br />

Volume ratio ethylene glycol % 25 30 35 40 45 50<br />

At an operating temperature of 0 °C<br />

– f Q % 7 8 10 12 14 17<br />

– f H % 5 6 7 8 9 10<br />

At an operating temperature of +2.5 °C<br />

– f Q % 7 8 9 11 13 16<br />

– f H % 5 6 6 7 8 10<br />

At an operating temperature of +7.5 °C<br />

– f Q % 6 7 8 9 11 13<br />

– f H % 5 6 6 6 7 9<br />

3.7 Heat source for water/water heat pumps<br />

Groundwater<br />

Water/water heat pumps utilise the energy content of groundwater or cooling water.<br />

5457 919 GB<br />

VITOCAL <strong>300</strong>-G VIESMANN 43


Design information (cont.)<br />

B<br />

F<br />

E<br />

C<br />

F<br />

approx. 1.3 m<br />

D<br />

-12.0 m<br />

-14.0 m<br />

-15.0 m<br />

-16.0 m<br />

G<br />

H<br />

K<br />

A<br />

min. 5 m<br />

-11.0 m<br />

-14.0 m<br />

-15.0 m<br />

O<br />

3<br />

-20.0 m<br />

-21.0 m<br />

L<br />

M<br />

-23.0 m<br />

-24.0 m<br />

N<br />

A Flow limiter, well circuit<br />

B Primary pump (integrated subject to type)<br />

C To the heat pump<br />

D Frost stat, primary circuit<br />

E Heat exchanger, primary circuit<br />

F Well shaft<br />

G Supply pipe<br />

Water/water heat pumps achieve high performance factors. Groundwater<br />

offers an almost constant temperature of 7 to 12 °C all year<br />

round. Therefore the temperature level needs to be raised only a little<br />

higher (compared to other heat sources) in order for it to be able to be<br />

utilised for heating purposes.<br />

Depending on the design, the heat pump cools the groundwater by up<br />

to 5 K, although its consistency remains otherwise unchanged.<br />

■ On account of the costs for pumping systems, for detached houses<br />

and two-family homes, we recommend the pump groundwater from<br />

depths of not more than approx. 15 m (see the above diagram). For<br />

commercial or large scale systems pumping from even greater<br />

depths could still be viable.<br />

■ Maintain a distance of 5 m between the point of extraction (delivery<br />

well) and the point of re-entry (return well). Supply and return wells<br />

must be located in the line of flow of the groundwater to prevent a<br />

"flow short circuit". Construct the return well so that the water exits<br />

below the groundwater level.<br />

H Non-return valve<br />

K Well pump<br />

L Delivery well<br />

M Flow direction of the groundwater<br />

N Return well<br />

O Pressure pipe<br />

■ Due to fluctuating water quality, we generally recommend a system<br />

separation between wells and heat pump.<br />

■ The groundwater flow and return lines to/from the heat pump must<br />

be protected against frost and must slope towards the well.<br />

Calculating the required groundwater volume<br />

The required ground water flow rate depends on the heat pump output<br />

and the rate of ground water cooling.<br />

For the minimum flow rates, see the heat pump specification (e.g.<br />

minimum flow rate for <strong>Vitocal</strong> <strong>300</strong>-G, type WW 121 = 5.2 m 3 /h).<br />

D<br />

Permits for a groundwater/water heat pump system<br />

This project requires permission from the "local water authority" [check<br />

local regulations].<br />

Where buildings must be connected to the public water system, the<br />

utilisation of the groundwater as a heat source for heat pumps must<br />

be authorised by your local authority [check local regulations].<br />

When sizing the primary pumps observe that higher flow rates result<br />

in increased internal pressure drop.<br />

Permits can be subject to certain stipulations.<br />

5457 919 GB<br />

44 VIESMANN VITOCAL <strong>300</strong>-G


Design information (cont.)<br />

Sizing the heat exchanger, primary circuit/separating heat exchanger<br />

10 °C<br />

8 °C<br />

Note<br />

Fill primary circuit with anti-freeze mixture (brine, min. –5°C).<br />

A<br />

B<br />

6 °C 4 °C<br />

A Water<br />

B Brine (antifreeze mixture)<br />

The operational reliability of a water/water heat pump improves when<br />

it is used with a primary circuit heat exchanger. Subject to the correct<br />

sizing of the primary pump and the optimum layout of the primary circuit,<br />

the coefficient of performance of the water/water heat pump will<br />

be reduced by a maximum of 0.4.<br />

We recommend the use of the threaded stainless steel plate heat<br />

exchanger from the <strong>Viessmann</strong> Vitoset pricelist (manufacturer: Tranter<br />

AG); see the following selection table.<br />

Selection list for plate heat exchangers for water/water heat pumps<br />

Heat pump Refrigerating Plate heat Flow rate<br />

Pressure drop<br />

capacity exchanger Well circuit Primary circuit Well circuit Primary circuit<br />

(threaded)<br />

Type kW Part no. m 3 /h m 3 /h kPa kPa<br />

Single stage heat pump<br />

WW 121 23.7 7248 338 5.09 5.44 20 25<br />

WW 129 31.4 7248 339 6.74 7.21 25 30<br />

WW 145 48.9 7199 407 10.49 11.23 20 30<br />

Two-stage, both stages with the same output<br />

WW+BWS<br />

47.4 7199 407 10.17 10.88 20 30<br />

121+121<br />

WW+BWS<br />

62.8 7199 409 13.48 14.42 20 30<br />

129+129<br />

WW+BWS<br />

97.8 7199 410 20.99 22.46 20 30<br />

145+145<br />

Two-stage, stages with different output<br />

WW+BWS<br />

55.1 7199 408 11.82 12.65 20 30<br />

121+129<br />

WW+BWS<br />

72.6 7199 409 15.58 16.67 20 30<br />

121+145<br />

WW+BWS<br />

129+145<br />

80.3 7199 410 17.23 18.44 20 30<br />

3<br />

Cooling water<br />

If cooling water from an industrial waste heat process is used as heat<br />

source for a water/water heat pump, observe the following:<br />

■ The water quality must be within the limit values (see "Basic principles",<br />

chapter "Heat recovery from groundwater", table "Resistance<br />

of copper soldered or welded stainless steel plate heat exchangers<br />

to substances contained in the water").<br />

■ If the water quality falls outside these limits, use a stainless steel<br />

heat exchanger in the primary circuit (see table on page 45). Sizing<br />

is carried out by the manufacturer of the heat exchanger.<br />

■ The available amount of water must satisfy the minimum flow rates<br />

of the primary side of the heat pump (see specification).<br />

■ The max. inlet temperature for water/water heat pumps is 25 °C.<br />

With higher cooling water temperatures, low-end controllers (e.g. as<br />

offered by Landis & Staefa GmbH, Siemens Building Technologies)<br />

on the primary side of the heat pump must limit the max. inlet temperature<br />

to 25 °C by adding cool return water.<br />

Note<br />

The utilisation of cooling water is also possible in conjunction with a<br />

brine/water heat pump. The max. inlet temperature must<br />

then be limited to 25 °C as for the water/water heat pump.<br />

5457 919 GB<br />

VITOCAL <strong>300</strong>-G VIESMANN 45


Design information (cont.)<br />

A<br />

B<br />

C<br />

D<br />

F<br />

VL<br />

RL<br />

E<br />

RL<br />

H<br />

3<br />

K<br />

G<br />

A Overflow<br />

B Supply<br />

C Dirt trap (on-site)<br />

D Low-end controller and valve (on-site)<br />

E Primary pump<br />

F To the heat pump<br />

G Primary circuit heat exchanger (see page 45)<br />

H Circulation pump (≙ well pump)<br />

K Water container<br />

(min. <strong>300</strong>0 litre capacity, on-site)<br />

3.8 Central heating/central cooling<br />

Heating circuit<br />

Minimum flow rate<br />

Heat pumps require a minimum heating water flow rate (see specification),<br />

which must be maintained. To ensure the minimum flow rate,<br />

install an overflow valve or low loss header in systems without a heating<br />

water buffer cylinder.<br />

Low loss header<br />

When using a low loss header, ensure that the flow rate on the heating<br />

circuit side is greater than the flow rate on the secondary side of the<br />

heat pump.<br />

To prevent a fault shutdown, the minimum flow rate<br />

of the low loss header must be 3 litres per kW rated heating output.<br />

The heat pump control unit treats a low loss header like a small heating<br />

water buffer cylinder. Therefore, configure the low loss header by<br />

means of the control unit settings as a heating water buffer cylinder.<br />

Systems with large water volumes<br />

Systems with large water volumes (for example, underfloor heating<br />

systems) can operate without a heating water buffer cylinder. In these<br />

heating systems, install an overflow valve at the heating circuit distributor<br />

of the underfloor heating system that is furthest away from the<br />

heat pump. This safeguards the minimum flow rate, even in sealed<br />

heating circuits.<br />

In conjunction with an underfloor heating system, install a temperature<br />

limiter as maximum temperature limiter (accessory, order no.<br />

7151 728 or 7151 729).<br />

Systems without heating water buffer cylinder<br />

To safeguard the minimum heating water flow rate (see specification),<br />

never install a mixer in the heating circuit.<br />

Note<br />

An additional circulation pump is then required.<br />

Heating circuit and heat distribution<br />

Different heating water flow temperatures are required depending on<br />

the heating system design.<br />

The heat pump reaches a maximum flow temperature of 60 °C.<br />

When using radiators or when modernising or replacing boilers, the<br />

heat pump can be used, subject to the max. flow temperature of<br />

60 °C being observed.<br />

The lower the selected maximum heating water flow temperature, the<br />

higher the seasonal performance factor of the heat pump.<br />

5457 919 GB<br />

46 VIESMANN VITOCAL <strong>300</strong>-G


Design information (cont.)<br />

90<br />

Flow temperature in °C<br />

80<br />

70<br />

65<br />

60<br />

50<br />

40<br />

30<br />

20<br />

E<br />

10<br />

+18 +14 +10 +2 0 -2 -10 -14<br />

Outside temperat. t A<br />

in °C<br />

A<br />

B<br />

C<br />

D<br />

F<br />

A Max. heating water flow temperature = 75 °C<br />

B Max. heating water flow temperature = 60 °C<br />

C Max. heating water flow temperature = 55 ºC, requirement for<br />

mono-mode operation of the heat pump<br />

D Max. heating water flow temperature = 35 ºC, ideal for monomode<br />

operation of the heat pump<br />

E Heating systems that are conditionally suitable for dual mode<br />

operation of the heat pump<br />

F Max. heat pump flow temperature = 60 ºC<br />

3<br />

Cooling operation<br />

Cooling mode is possible either with one of the available heating circuits,<br />

or with a separate cooling circuit (e.g. chilled ceilings or fan convectors).<br />

Operating modes<br />

Cooling operation via the heating circuits is carried out in the "Standard"<br />

and "Fixed value" operating modes. The separate cooling circuit<br />

is additionally cooled in "Reduced" and "DHW only" operating modes.<br />

The latter enables continuous cooling of a room, e.g. a warehouse<br />

during the summer months.<br />

The cooling output is subject to either weather-compensated control<br />

according to the heating or cooling curve, or room temperaturedependent<br />

control.<br />

Note<br />

For cooling mode in the following cases, a room temperature sensor<br />

must be installed and enabled:<br />

■ Weather-compensated cooling mode with room influence<br />

■ Room temperature-dependent cooling mode<br />

■ "Active cooling"<br />

A room temperature sensor must always be installed for a separate<br />

cooling circuit.<br />

Weather-compensated control<br />

In weather-compensated cooling mode, the set flow temperature is<br />

calculated from the relevant set room temperature and the current<br />

outside temperature (long-term average) according to the cooling<br />

curve. Their level and slope are adjustable.<br />

Standard operation<br />

The cooling output for the heating circuits is subject to either weathercompensated<br />

control according to the cooling curve, or room temperature-dependent<br />

control.<br />

Fixed value operation<br />

In "Fixed value" mode, the room is cooled with the minimum flow temperature.<br />

3.9 Systems with heating water buffer cylinder<br />

Heating water buffer cylinder operated in parallel<br />

5457 919 GB<br />

Systems with small water volumes<br />

For systems with small water volumes (for example, heating systems<br />

with radiators), use a heating water buffer cylinder to prevent excessive<br />

heat pump cycling (starting/stopping).<br />

Benefits of a heating water buffer cylinder:<br />

■ Bridging power-OFF periods:<br />

At peak times, heat pumps may be switched off by your local power<br />

supply utility, subject to your electricity tariff. A heating water buffer<br />

cylinder supplies the heating circuits even during this power-OFF<br />

period.<br />

■ Constant flow rate through the heat pump:<br />

Heating water buffer cylinders provide hydraulic separation of the<br />

flow in the secondary and heating circuits. For example, the flow rate<br />

in the secondary circuit remains constant even if the heating circuit<br />

flow rate is reduced via thermostatic valves.<br />

■ Longer heat pump operating times<br />

VITOCAL <strong>300</strong>-G VIESMANN 47


Design information (cont.)<br />

Because of the increased water volume of the heat source and the fact<br />

that it may have a separate shut-off facility, an additional (or larger)<br />

expansion vessel should be provided.<br />

Protect the heat pump in accordance with EN 12828 [or local regulations].<br />

Note<br />

The flow rate of the secondary pump should be greater than that of the<br />

heating circuit pumps.<br />

Heating water buffer cylinder for optimised runtimes<br />

V HP = Q HP · (20 to 25 litres)<br />

Q WP = Absolute rated heat pump heating output<br />

V HP = Heating water buffer cylinder volume in litres<br />

Example:<br />

Type BW 110 with Q WP = 10.2 kW<br />

V HP = 10.2 · 20 litres = 204 litre cylinder capacity<br />

Selection: Vitocell 100-E with 200 litre capacity<br />

Note<br />

With two-stage heat pumps and heat pump cascades, the volume of<br />

the heating water buffer cylinder can be sized for runtime optimisation<br />

to match the highest possible rated heat pump heating output.<br />

3<br />

Heating water buffer cylinder for bridging periods when the supply is blocked<br />

This version is offered for heat distribution systems without additional<br />

cylinder mass (e.g. radiators, hydraulic fan convectors).<br />

Storing 100 % of heating energy for the duration of the power-OFF<br />

periods is feasible, but not recommended, otherwise cylinders would<br />

become too large.<br />

Example:<br />

Φ HL = 10 kW = 10000 W<br />

t Sz = 2 h (max. 3 x per day)<br />

Δϑ =10 K<br />

= 1.163 Wh/(kg∙K) for water<br />

c P<br />

V HP<br />

10000 W · 2 h<br />

=<br />

Wh =1720 kg<br />

1.163 kg · k · 10 k<br />

1720 kg water represent a cylinder capacity of approx. 1720 l.<br />

Selection: 2 Vitocell 100-E each with 1000 l capacity.<br />

Rough sizing<br />

(subject to the utilisation of the delayed building heat loss)<br />

V HP = Φ HL ∙ (60 to 80 l)<br />

c P Spec. thermal capacity in kWh/(kg ∙ K)<br />

Φ HL Heat load of the building in kW<br />

t Sz Period in h during which the supply is blocked<br />

V HP Heating water buffer cylinder volume in litres<br />

Δϑ System cool-down in K<br />

V HP<br />

V HP<br />

= 10 ∙ 60 l<br />

= 600 litre cylinder capacity<br />

Selection: 1 Vitocell 100-E with 750 litre cylinder capacity.<br />

100 % sizing<br />

(subject to the existing heating surfaces)<br />

V HP =<br />

Φ HL ·<br />

c · Δ<br />

P<br />

t SZ<br />

3.10 Water quality<br />

Heating water<br />

Unsuitable fill and top-up water increases the level of deposits and<br />

corrosion and may lead to system damage.<br />

Regarding the quality and amount of heating water, incl. fill and top-up<br />

water, observe the VDI 2035 [or local regulations].<br />

■ Thoroughly flush the entire heating system prior to filling it with water.<br />

■ Only use fill water of potable quality.<br />

■ Soften fill water with a hardness above 16.8 °dH (3.0 mol/m 3 ), e.g.<br />

with the small softening system for heating water (see the<br />

<strong>Viessmann</strong> Vitoset pricelist).<br />

5457 919 GB<br />

48 VIESMANN VITOCAL <strong>300</strong>-G


Design information (cont.)<br />

3.11 DHW heating<br />

DHW connection<br />

Example with Vitocell 100-V, type CVW<br />

Connection to DIN 1988.<br />

O<br />

H<br />

A<br />

B<br />

C<br />

D<br />

G<br />

K<br />

L<br />

M NF K<br />

K F P R K S O<br />

3<br />

E<br />

F<br />

A DHW<br />

B DHW circulation line<br />

C DHW circulation pump<br />

D Spring-loaded check valve<br />

E Expansion vessel, suitable for drinking water<br />

F Drain<br />

G Visible blow-off line outlet<br />

H Safety valve<br />

K Shut-off valve<br />

Information on potable water filter<br />

According to DIN 1988-2, a drinking water filter should be installed in<br />

systems with metal pipework. We also recommend the installation of<br />

a drinking water filter when using plastic pipes, as per DIN 1988, to<br />

prevent contaminants entering the DHW system.<br />

L Flow regulating valve<br />

(installation recommended)<br />

M Pressure gauge connector<br />

N Non-return valve<br />

O Cold water<br />

P Drinking water filter<br />

R Pressure reducer to DIN 1988-2 issue Dec,1988<br />

S Non-return valve/pipe separator<br />

Recommendation: Install the safety valve higher than the top edge of<br />

the cylinder. This protects the valve against contamination, scaling and<br />

high temperatures. The DHW cylinder does not then need to be<br />

drained when working on the safety valve.<br />

Safety valve<br />

Protect the DHW cylinder by means of a safety valve against undue<br />

excess pressure.<br />

Function description regarding DHW heating<br />

5457 919 GB<br />

Compared to central heating, DHW heating makes fundamentally different<br />

demands, as almost identical amounts of heat must be provided<br />

all the year round at the same temperature level.<br />

In the delivered condition, DHW heating by the heat pump takes priority<br />

over the heating circuits.<br />

The heat pump control unit switches the DHW circulation pump off<br />

during cylinder heating to prevent cylinder heating from being<br />

impaired.<br />

The max cylinder storage temperature is limited subject to the heat<br />

pump used and the individual system configuration. With a booster<br />

heater, storage temperatures above this limit are possible.<br />

Available booster heaters to reheat the DHW:<br />

■ External heat source<br />

■ Instantaneous heating water heater (on site)<br />

■ Immersion heater (on site)<br />

The integral load manager in the heat pump control unit decides which<br />

heat sources to use for DHW heating. Generally the external heat<br />

source has priority over the electric heaters.<br />

If one of the following criteria is met, the booster heaters begin cylinder<br />

heating:<br />

■ Cylinder temperature is below 3 °C (frost protection).<br />

■ Heat pump does not provide any heating output and actual temperature<br />

has fallen below set temperature at the top cylinder temperature<br />

sensor.<br />

VITOCAL <strong>300</strong>-G VIESMANN 49


Design information (cont.)<br />

Note<br />

The immersion heater in the DHW cylinder and the external heat<br />

source stop as soon as the set value at the top temperature sensor is<br />

reached, minus a hysteresis of 1 K.<br />

When selecting the DHW cylinder ensure that its indirect coil surface<br />

area is large enough for the purpose.<br />

DHW heating should ideally take place during the night after 22:00 h.<br />

This has the following advantages:<br />

■ The heat pump heating output is available for central heating during<br />

the daytime.<br />

■ Night tariffs can be utilised to the full.<br />

■ DHW cylinder heating and simultaneous drawing can be avoided.<br />

When using an external heat exchanger, the system may not always<br />

achieve the required draw-off temperatures because of the system<br />

design.<br />

Hydraulic connection, primary store system<br />

Cylinder with external heat exchanger (primary store system)<br />

DHW<br />

eU<br />

3<br />

eW<br />

eZ<br />

M<br />

eT<br />

W<br />

X<br />

eE<br />

eR<br />

eP<br />

KW<br />

W<br />

X<br />

DHW interface (see system examples)<br />

Solar interface or external heat source (see system examples)<br />

KW Cold water<br />

WW Domestic hot water<br />

Required equipment<br />

Pos. Description<br />

eP DHW cylinder<br />

eW Cylinder temperature sensor<br />

eE Cylinder primary pump (DHW side)<br />

eR Plate heat exchanger<br />

eT Flow limiter<br />

eZ Motorised two-way valve, normally closed<br />

eU DHW circulation pump<br />

5457 919 GB<br />

50 VIESMANN VITOCAL <strong>300</strong>-G


Design information (cont.)<br />

Cylinder with external heat exchanger (primary store system) and heating lance<br />

WW<br />

L<br />

A<br />

B<br />

E<br />

G<br />

H<br />

C<br />

D<br />

KW<br />

K<br />

3<br />

KW Cold water<br />

WW Domestic hot water<br />

B DHW inlet from the heat exchanger<br />

L<br />

Heat pump interface<br />

Further explanations see the following table.<br />

During cylinder heating (no draw-off) in the primary store system, cold<br />

water from the bottom of the cylinder is drawn by cylinder primary<br />

pump E, heated in heat exchanger K and returned to the cylinder<br />

via heating lance A fitted into the flange.<br />

The generously sized outlet apertures in the heating lance result in low<br />

flow velocities, which in turn provide a clean temperature stratification<br />

inside the cylinder.<br />

DHW booster heating is possible if an additional immersion heater is<br />

installed (on site).<br />

Equipment required<br />

Pos. Description Quantity Part no.<br />

A Heating lance 1 Z004 280<br />

C Cylinder temperature sensor 1 7170 965<br />

D Vitocell 100-L, (750 or 1000 litre capacity) 1 see <strong>Viessmann</strong> pricelist<br />

E Cylinder primary pump 1 7820 403<br />

or<br />

7820 404<br />

G Two-way motorised ball valve (N/C) 1 7180 573<br />

H Flow limiter 1 on-site<br />

K Plate heat exchanger Vitotrans 100 1 see <strong>Viessmann</strong> pricelist<br />

Selection, primary store system<br />

Primary store<br />

Primary store Capacity Optional booster heater Applications<br />

l<br />

Immersion heater (on site) Instantaneous heating<br />

water<br />

heater (on site, for preheated<br />

DHW)<br />

Vitocell 100-L, type CVL 750 x x up to 16 people<br />

1000 x x up to 16 people<br />

Plate heat exchanger Vitotrans 100<br />

Note<br />

Heat exchanger pressure drop values, see technical guides for DHW cylinders.<br />

5457 919 GB<br />

VITOCAL <strong>300</strong>-G VIESMANN 51


Design information (cont.)<br />

50 °C<br />

60 °C<br />

A<br />

B<br />

40 °C 42 °C<br />

A DHW cylinder (domestic hot water)<br />

B Heat pump (heating water)<br />

3<br />

Flow rate and pressure drop at B15/W35 °C<br />

Heat pump Heating output<br />

Flow rate Pressure drop Vitotrans 100<br />

A B A B<br />

Type kW m 3 /h m 3 /h kPa kPa Part no.<br />

Single stage heat pump<br />

BW 121<br />

31 2.70 2.70 14 15.5 <strong>300</strong>3 493<br />

WW 121<br />

BW 129<br />

41.2 3.60 3.60 24 26.7 <strong>300</strong>3 493<br />

WW 129<br />

BW 145<br />

WW145<br />

63.6 5.60 5.60 27.4 29.4 <strong>300</strong>3 494<br />

For higher DHW temperatures<br />

58 °C<br />

60 °C<br />

A<br />

B<br />

53 °C 55 °C<br />

A DHW cylinder (domestic hot water)<br />

B Heat pump (heating water)<br />

Flow rate and pressure drop at B15/W35 °C<br />

Heat pump Heating Flow rate Pressure drop Vitotrans 100<br />

output A B A B<br />

Type kW m 3 /h m 3 /h kPa kPa Part no.<br />

Single stage heat pump<br />

BW 121<br />

31 5.35 5.35 26 27.9 <strong>300</strong>3 494<br />

WW 121<br />

BW 129<br />

41.2 7.11 7.11 25.3 26.5 <strong>300</strong>3 495<br />

WW 129<br />

BW 145<br />

WW 145<br />

63.6 10.97 10.97 34 35 on request<br />

Notes for BW 145, WW 145<br />

In combination with Vitocell 100-L, type CVL, the flow rate of<br />

10.97 m 3 /h cannot be reached. On-site DHW cylinder required.<br />

Cylinder primary pump curves<br />

See page 22.<br />

5457 919 GB<br />

52 VIESMANN VITOCAL <strong>300</strong>-G


Design information (cont.)<br />

3.12 Cooling operation<br />

Types and configuration<br />

Subject to system version the following cooling functions are possible:<br />

■ "Natural cooling" (as option with or without mixer)<br />

– The compressor is shut down and heat exchange occurs directly<br />

with the primary circuit.<br />

■ "Active cooling"<br />

– The heat pump is used as a refrigeration unit, meaning a higher<br />

cooling capacity is possible than with natural cooling.<br />

– This function is only possible outside a power-OFF period, and<br />

must be enabled separately by the system user.<br />

Even if active cooling is selected and enabled, the control unit will initially<br />

start the natural cooling function. If the set room temperature<br />

cannot be achieved with this function for a prolonged period, the compressor<br />

starts.<br />

A mixer can only be used with natural cooling, and particularly in cooling<br />

mode on underfloor heating circuits, it keeps the flow temperature<br />

above the dew point. To ensure the transfer of the high cooling output<br />

in active cooling at all times, no mixer is provided.<br />

Cooling function Natural cooling<br />

Function description<br />

With natural cooling, the heat pump control unit regulates the following<br />

functions:<br />

■ Switching all necessary circulation pumps, diverter valves and mixers<br />

■ Recording all essential temperatures<br />

■ Dew point monitoring<br />

The control unit enables the natural cooling function if the outside temperature<br />

exceeds the cooling limit (adjustable). Control operated in<br />

weather-compensated mode when cooling via heating circuit (underfloor<br />

heating circuit). When a separate cooling circuit is used, e.g. a<br />

fan convector, then the control is room temperature-dependent.<br />

DHW heating by the heat pump is possible during the cooling operation.<br />

■ Carry out the diffusion-proof thermal insulation of all brine and cold<br />

water lines in accordance with standard practice to prevent condensation.<br />

■ Power supply (1/N/PE, 230 V/50 Hz) is required.<br />

Recommendation: Utilise the heat pump power supply from an onsite<br />

power distribution board.<br />

The maximum refrigerating capacity that can be transferred depends<br />

on the geothermal probe/geothermal collector system and the ground<br />

temperatures.<br />

For cooling, it is possible to connect either a heating/cooling circuit,<br />

e.g. underfloor heating circuit or a separate cooling circuit, e.g. a fan<br />

convector.<br />

Components required:<br />

Circulation pumps, diverter valves, mixers, sensors and a KM BUS<br />

interface to the heat pump control unit.<br />

The heat extracted from the heating/cooling circuit is transferred to the<br />

ground by a heat exchanger. This heat exchanger is connected in series<br />

and enables a system separation between the primary and the<br />

heating circuit.<br />

Note<br />

Thermally insulate all lines on site with vapour diffusion-proof material.<br />

3<br />

Hydraulic connection, natural cooling function<br />

iI<br />

iU<br />

iT<br />

iZ<br />

iR<br />

M<br />

uE<br />

uR<br />

iE φ<br />

iW<br />

uP<br />

M iQ<br />

uQ<br />

A Geothermal probe interface<br />

B Interface to heat pump primary circuit<br />

C Interface to heat pump/heating water buffer cylinder (secondary<br />

circuit)<br />

M<br />

iO<br />

uZ<br />

uU M<br />

A<br />

B<br />

C<br />

5457 919 GB<br />

VITOCAL <strong>300</strong>-G VIESMANN 53


Design information (cont.)<br />

Required equipment<br />

Pos. Description<br />

Natural cooling function (NC)<br />

Note<br />

All required components (with a suitably designed plate heat exchanger) for the cooling circuit must be provided on site.<br />

iQ<br />

iW<br />

iE<br />

iR<br />

iT<br />

iZ<br />

iU<br />

iI<br />

iO<br />

Three-way diverter valve<br />

Secondary cooling circuit pump<br />

Contact humidistat<br />

Primary cooling circuit pump<br />

Mixer motor - three-way mixer<br />

Frost stat<br />

Extension kit for NC<br />

Extension kit for heating circuit (cooling circuit) with mixer<br />

Motorised two-way valve, normally closed<br />

3<br />

Cooling with an underfloor heating system<br />

The underfloor heating system can be used for heating and for cooling<br />

buildings and rooms.<br />

Underfloor heating systems are integrated into the brine circuit via a<br />

cooling heat exchanger. A mixer is required to match the cooling load<br />

of the room to the outside temperature. Similar to a heating curve, the<br />

cooling capacity can be matched exactly to the cooling load via a cooling<br />

curve and the cooling circuit mixer that is regulated by the heat<br />

pump control unit.<br />

Surface temperature limits must be maintained to observe comfort criteria<br />

and to prevent condensation. The surface temperature of the<br />

underfloor heating system in cooling operation must not fall below<br />

20 °C.<br />

Install a natural cooling contact humidistat (for capturing the dew point)<br />

in the underfloor heating system flow to prevent condensation forming<br />

on the floor surface. This safely prevents the formation of condensate,<br />

even if weather conditions change quite rapidly (e.g.during a thunderstorm).<br />

The underfloor heating systems should be sized in accordance with a<br />

flow/return temperature pair of approx. 14/18 °C.<br />

The following table can assist in estimating the possible cooling<br />

capacity of an underfloor heating system.<br />

In principle, the following applies:<br />

The minimum flow temperature for cooling with an underfloor heating<br />

system and the minimum surface temperature are subject to the prevailing<br />

climatic conditions in the room (air temperature and relative<br />

humidity). These must therefore also be taken into consideration during<br />

the design phase.<br />

Estimating the cooling capacity of an underfloor heating system subject to floor covering and spacing between pipes (assumed flow<br />

temperature approx. 14 °C, return temperature approx. 18 °C; Source: Velta)<br />

Floor covering Tiles Carpet<br />

Spacing mm 75 150 <strong>300</strong> 75 150 <strong>300</strong><br />

Cooling capacity with pipe diameter<br />

–10 mm W/m 2 45 35 23 31 26 19<br />

–17 mm W/m 2 46 37 25 32 27 20<br />

–25 mm W/m 2 48 40 28 33 29 22<br />

Details accurate for:<br />

Room temperature 25 °C<br />

Relative humidity 60 %<br />

Dew point temperature 16 °C<br />

Cooling with fan convectors Vitoclima 200-C (accessory)<br />

■ Cooling operation possible either via separate cooling circuit or via<br />

a heating/cooling circuit. For max. cooling capacity, select operating<br />

mode "Fixed value".<br />

■ Select an installation location where the heat pump can be easily<br />

connected.<br />

■ Consider the connection of the condensate drain to the domestic<br />

drainage system or routing the condensate to the outside of the<br />

building.<br />

■ Power supply (1/N/PE,230 V/50 Hz) required.<br />

■ When creating wall outlets, consider supports, lintels and sealing<br />

elements (e.g. vapour barriers).<br />

■ Only fit appliances to solid level walls.<br />

■ Never install appliances near heat sources or places subject to direct<br />

solar irradiation.<br />

■ Install appliances only in locations with good air circulation.<br />

■ Ensure easy accessibility for service.<br />

Output matching<br />

The output of fan convectors can be modified. By changing the terminal<br />

connections, 3 of the available 5 speeds can be assigned to the<br />

three-stage speed selector of the fan convectors.<br />

The heating and cooling capacities available with the respective<br />

speeds are shown in the following table.<br />

5457 919 GB<br />

54 VIESMANN VITOCAL <strong>300</strong>-G


Design information (cont.)<br />

Test conditions<br />

■ Cooling capacity:<br />

At 27 °C room temperature, 48% relative humidity, cooling the cooling<br />

water from 12 to 7 °C.<br />

■ Rated output:<br />

At 20 °C room temperature, flow temperature 50 °C.<br />

■ Sound pressure level<br />

Measured at a distance of 2.5 m with a room volume of 200 m 3 and<br />

a reverberation time of 0.5 s.<br />

Speed-dependent heating and cooling capacities<br />

Type Fan speed Air flow Cooling mode Heating mode Sound<br />

rate Total cooling<br />

capacity<br />

Sensible<br />

cooling<br />

Flow rate Pressure<br />

drop<br />

Heating<br />

output<br />

Flow rate Pressure<br />

drop<br />

pressure<br />

level<br />

capacity<br />

m 3 /h W W l/h kPa W l/h kPa dB(A)<br />

V1 292 1971 1518 338 42 2463 216 6 42<br />

V2 260 1846 1390 317 37 2370 208 5 38<br />

V202H V3 205 1543 1141 266 27 2102 184 4 32<br />

V4 163 1327 954 227 20 1812 159 3 25<br />

V5 122 1075 755 184 14 1470 129 2 23<br />

V1 524 3398 2663 583 31 4544 398 25 41<br />

V2 433 <strong>300</strong>7 2289 515 25 4227 371 22 36<br />

V203H V3 354 2560 1920 439 19 3732 327 17 31<br />

V4 323 2409 1784 414 17 3517 309 16 29<br />

V5 272 2128 1550 367 14 3207 281 13 26<br />

V1 843 5614 3770 961 40 6651 583 15 50<br />

V2 708 4836 3200 828 31 6091 534 13 45<br />

V206H V3 598 4289 2796 735 25 5614 493 11 41<br />

V4 545 3984 2581 684 22 5327 468 10 38<br />

V5 431 3305 2168 569 16 4589 403 8 31<br />

V1 1266 8833 6708 1516 38 11558 1014 48 55<br />

V2 983 7402 5464 1271 28 10251 899 38 48<br />

V209H V3 859 6491 4779 1113 22 9429 828 33 45<br />

V4 730 5537 4076 951 16 8141 714 25 42<br />

V5 612 4627 3407 792 12 6745 592 18 38<br />

3<br />

Factory-set fan speed<br />

Sizing the cooling heat exchanger<br />

The following tables can be used to calculate the size of the required<br />

cooling heat exchanger.<br />

Recommendation for sizing the cooling system correctly: calculate the<br />

cooling load to VDI 2078.<br />

Brine/water heat pumps<br />

13 °C<br />

20 °C<br />

A<br />

B<br />

10 °C 12 °C<br />

A Cooling circuit primary side (brine)<br />

B Cooling circuit secondary side (water)<br />

5457 919 GB<br />

VITOCAL <strong>300</strong>-G VIESMANN 55


Design information (cont.)<br />

List for selecting cooling heat exchanger for brine/water heat pump at brine 10/13 °C, cooling system 20/12 °C<br />

Heat pump<br />

Refrigerating Flow rate, cooling circuit Pressure drop, cooling circuit Part no.<br />

capacity Primary side (brine) Secondary side<br />

(water)<br />

Primary side<br />

(brine)<br />

Secondary<br />

side (water)<br />

Type kW m 3 /h m 3 /h kPa kPa<br />

Single stage heat pump<br />

BW 121 17.5 5.42 1.89 30 5 7438 712<br />

BW 129 23.8 7.38 2.56 30 5 7438 713<br />

BW 145 35 10.85 3.77 30 7 738 714<br />

Two-stage, both stages with the same output<br />

BW+BWS 121+121 35 10.85 3.77 30 5 7438 714<br />

BW+BWS 129+129 47.6 14.76 5.13 30 5 7438 717<br />

BW+BWS 145+145 70 21.7 7.54 30 5 7438 719<br />

Two-stage, stages with different output<br />

BW+BWS 121+129 41.3 12.8 4.45 30 5 7438 715<br />

BW+BWS 121+145 52.5 16.27 5.66 30 5 7438 716<br />

BW+BWS 129+145 58.8 18.23 6.33 30 5 7438 718<br />

3<br />

Water/water heat pumps<br />

14 °C<br />

22 °C<br />

A<br />

B<br />

10 °C 12 °C<br />

A Cooling circuit primary side (water)<br />

B Cooling circuit secondary side (water)<br />

List for selecting cooling heat exchanger for water/water heat pump at groundwater 10/14 °C, cooling system 22/12 °C<br />

Heat pump Refrigerating Flow rate, cooling circuit Pressure drop, cooling circuit Part no.<br />

capacity Primary side<br />

(water)<br />

Secondary side<br />

(water)<br />

Primary side<br />

(water)<br />

Secondary side<br />

(water)<br />

Type kW m 3 /h m 3 /h kPa kPa<br />

Single stage heat pump<br />

WW 121 23.7 5.01 2.04 30 7 7438 703<br />

WW 129 31.4 6.75 2.71 30 7 7438 704<br />

WW 145 48.9 10.52 4.22 30 7 7438 705<br />

Two-stage, both stages with the same output<br />

WW+BWS<br />

47.4 10.2 4.09 30 7 7438 706<br />

121+121<br />

WW+BWS<br />

62.8 13.52 5.41 30 7 7438 709<br />

129+129<br />

WW+BWS<br />

97.8 21.04 8.43 30 7 7438 711<br />

145+145<br />

Two-stage, stages with different output<br />

WW+BWS<br />

55.1 11.85 4.75 30 7 7438 707<br />

121+129<br />

WW+BWS<br />

72.6 15.62 6.26 30 7 7438 708<br />

121+145<br />

WW+BWS<br />

129+145<br />

80.3 17.27 6.92 30 7 7438 710<br />

3.13 Swimming pool water heating<br />

Hydraulic connection, swimming pool<br />

Swimming pool water heating is effected hydraulically via the changeover<br />

of a second three-way diverter valve (accessory).<br />

If the temperature falls below the value set at the swimming pool thermostat<br />

(accessory), a demand signal is sent to the heat pump control<br />

unit via the external extension H1 (accessory). In the delivered condition,<br />

central heating and DHW heating have priority over swimming<br />

pool water heating.<br />

5457 919 GB<br />

56 VIESMANN VITOCAL <strong>300</strong>-G


Design information (cont.)<br />

For more detailed information regarding systems with swimming pool<br />

water heating, see "Heat pump system examples".<br />

Sizing the plate heat exchanger<br />

28 °C<br />

38 °C<br />

Use only stainless steel heat exchangers (threaded) that are suitable<br />

for potable water for heating swimming pool water.<br />

Size the plate heat exchanger subject to the max. output and the temperature<br />

specified for the plate heat exchanger.<br />

22 °C 28 °C<br />

Note<br />

The flow rate calculated during sizing must be maintained during the<br />

installation.<br />

External swimming pool for average water temperatures up to 24 °C.<br />

A Swimming pool (swimming pool water)<br />

B Heat pump (heating water)<br />

Selection list, plate heat exchangers for swimming pools<br />

Heat pump type Output in kW Flow rate in m 3 /h<br />

(for B15/W35) Swimming pool Heat pump (heating water)<br />

Single stage heat pump<br />

BW 121<br />

31 4.4 2.7<br />

WW 121<br />

BW 129<br />

41.2 5.9 3.5<br />

WW 129<br />

BW 145<br />

63.6 9.1 5.5<br />

WW 145<br />

Two-stage heat pump, both stages with the same output<br />

BW+BWS 121+121<br />

62 8.9 5.3<br />

WW+BWS 121+121<br />

BW+BWS 129+129<br />

82.4 11.8 7.1<br />

WW+BWS 129+129<br />

BW+BWS 145+145<br />

127.2 18.2 10.9<br />

WW+BWS 145+145<br />

Two-stage heat pump, stages with different output<br />

BW+BWS 121+129<br />

72.2 10.3 6.2<br />

WW+BWS 121+129<br />

BW+BWS 121+145<br />

94.6 13.6 8.1<br />

WW+BWS 121+145<br />

BW+BWS 129+145<br />

WW+BWS 129+145<br />

104.8 15.0 9.0<br />

3<br />

3.14 Connection of solar thermal systems<br />

5457 919 GB<br />

The installation of a Vitosolic solar control unit enables a solar thermal<br />

system to be controlled to provide DHW heating, central heating<br />

backup and swimming pool water heating. The heat-up priority can be<br />

selected individually at the heat pump control unit.<br />

Via the KM BUS certain values can be checked at the heat pump control<br />

unit.<br />

When there is a high level of insolation, all heat consumers can be<br />

heated to a higher set value, thereby raising the solar coverage. All<br />

solar temperatures and set values can be scanned and adjusted via<br />

the control unit.<br />

The operation of the solar thermal system will be suspended at collector<br />

temperatures > 120 °C to prevent steam hammer inside the solar<br />

circuit (collector protection function).<br />

Solar DHW heating<br />

The solar circuit pump starts and the DHW cylinder is heated up, if the<br />

temperature differential between the collector temperature sensor and<br />

the cylinder temperature sensor (in the solar return) is greater than the<br />

start temperature differential set at the solar control unit.<br />

The heat pump will be prevented from heating the cylinder if the temperature<br />

at the cylinder temperature sensor (in the DHW cylinder, top)<br />

exceeds the set value selected at the heat pump control unit.<br />

The solar thermal system heats the cylinder to the set value selected<br />

at the solar control unit.<br />

Note<br />

For the aperture area that can be connected, see the "Vitosol" technical<br />

guide.<br />

Solar central heating backup<br />

The solar circuit pump and the circulation pump for cylinder heating<br />

start, meaning the heating water buffer cylinder is heated up, if the<br />

temperature differential between the collector temperature sensor and<br />

the cylinder temperature sensor (solar) is greater than the start temperature<br />

differential selected at the heat pump control unit.<br />

VITOCAL <strong>300</strong>-G VIESMANN 57


Design information (cont.)<br />

Heating stops when the temperature differential between the collector<br />

temperature sensor and the cylinder temperature sensor (solar) is less<br />

than half the hysteresis (standard: 6 K) or when the temperature captured<br />

by the lower cylinder temperature sensor equals the selected set<br />

temperature.<br />

Solar swimming pool water heating<br />

See "Vitosol" technical guide.<br />

Sizing the solar expansion vessel<br />

Solar expansion vessel<br />

Construction and function<br />

With shut-off valve and mounting set.<br />

3<br />

A solar expansion vessel is a sealed unvented vessel where the gas<br />

space (nitrogen filling) is separated from the space containing liquid<br />

(heat transfer medium) by a diaphragm and the pre-charge pressure<br />

is subject to the system height.<br />

A Heat transfer medium<br />

B Nitrogen filling<br />

C Nitrogen buffer<br />

D Safety hydraulic seal min. 3 l<br />

E Safety water seal<br />

F Delivered condition (3 bar pre-charge pressure)<br />

G Solar thermal system filled, without heat effect<br />

H At maximum pressure and the highest heat transfer medium temperature<br />

Specification<br />

a<br />

a<br />

b<br />

b<br />

Expansion vessel Part no. Capacity Ø a b Connection Weight<br />

l mm mm kg<br />

A 7248 241 18 280 370 R ¾" 7.5<br />

7248 242 25 280 490 R ¾" 9.1<br />

7248 243 40 354 520 R ¾" 9.9<br />

B 7248 244 50 409 505 R1 12.3<br />

7248 245 80 480 566 R1 18.4<br />

Details regarding the calculation of the required volume see "Vitosol"<br />

technical guide.<br />

58 VIESMANN VITOCAL <strong>300</strong>-G<br />

5457 919 GB


Heat pump control unit<br />

4.1 Vitotronic 200, type WO1A<br />

Structure and functions<br />

Modular structure<br />

The control unit is integrated into the heat pump.<br />

The control unit comprises a standard unit, electronics modules and a<br />

programming unit.<br />

Standard unit:<br />

■ ON/OFF switch<br />

■ Optolink laptop interface<br />

■ Operating and fault display<br />

■ Fuses<br />

Flow temperature<br />

Heating/cooling<br />

DHW<br />

Solar energy<br />

Information<br />

Select with<br />

40°C<br />

i<br />

Programming unit:<br />

■ Easy operation through:<br />

– Plain text display with graphic ability<br />

– Large font and black & white depiction for good contrast<br />

– Context-sensitive help<br />

– Integral control of the solar thermal system in heat pumps with<br />

solar connection<br />

– Removable programming unit; can be mounted on the wall with<br />

separate accessory<br />

■ With digital time switch<br />

■ Control keys for:<br />

– Navigation<br />

– Confirmation<br />

– Help<br />

– Extended menu<br />

■ Setting the:<br />

– Standard and reduced room temperature<br />

– Standard and second DHW temperature<br />

– Operating program<br />

– Time programs for central heating, DHW heating, DHW circulation<br />

and heating water buffer cylinder<br />

– Economy mode<br />

– Party mode<br />

– Holiday program<br />

– Heating and cooling curves<br />

– Codes<br />

– Actuator tests<br />

■ Displaying:<br />

– Flow temperature<br />

– DHW temperature<br />

– Information<br />

– Operating details<br />

– Diagnostic details<br />

– Information, warning and fault messages<br />

(<br />

Functions<br />

■ Weather-compensated control of flow temperatures for heating or<br />

cooling mode:<br />

– System flow temperature or flow temperature of heating circuit<br />

without mixer A1<br />

– Flow temperature heating circuit with mixer M1<br />

– Flow temperature of heating circuit with mixer M2 in conjunction<br />

with the extension kit for one heating circuit with mixer<br />

– Flow temperature, separate cooling circuit<br />

■ Electronic maximum and minimum temperature limit<br />

■ Demand-dependent shutdown of the heat pump and pumps for primary<br />

and secondary circuits<br />

■ Adjustment of a variable heating and cooling limit<br />

■ Anti-seizing pump protection<br />

■ Heating system frost protection<br />

■ Integral diagnostic system<br />

■ Cylinder thermostat with priority control<br />

■ Auxiliary function for DHW heating (short-term heating to a higher<br />

temperature)<br />

■ Control of a heating water buffer cylinder<br />

■ Control of an instantaneous heating water heater<br />

■ Screed drying program<br />

■ Control for swimming pool water heating in conjunction with external<br />

extension H1 (accessory)<br />

■ External hook-up: Mixer OPEN, mixer CLOSED, operating mode<br />

changeover<br />

■ External demand (set flow temperature adjustable) and heat pump<br />

blocking; set flow temperature specified via external 0 to 10 V signal<br />

(with external extension H1, accessory)<br />

■ Data communication:<br />

– Remote operation, remote setup and remote monitoring of the<br />

heat pump and heating system with Vitocom <strong>300</strong>. Operation via<br />

the Vitodata 100 webserver integrated into the Vitocom, or via the<br />

central Vitodata <strong>300</strong> webserver with the additional option to configure<br />

all control parameters.<br />

Connection to the heat pump control unit via LON (with LON communication<br />

module, accessory)<br />

– Remote monitoring and remote operation via GSM phone networks<br />

with Vitocom 100<br />

Connection to the heat pump control unit via KM BUS<br />

The requirements of EN 12831 for calculating the heat load are met.<br />

To reduce the heat-up output, the "Reduced" operating status is<br />

switched to the "Standard" operating status if outside temperatures are<br />

low.<br />

According to the Energy Savings Order [Germany], the temperature in<br />

each room must be individually controlled, e.g. through thermostatic<br />

radiator valves.<br />

4<br />

5457 919 GB<br />

Time switch<br />

Digital time switch<br />

■ Individual and 7-day program<br />

■ Automatic summer/winter time changeover<br />

VITOCAL <strong>300</strong>-G VIESMANN 59


Heat pump control unit (cont.)<br />

■ Automatic function for DHW heating and DHW circulation pump<br />

■ Time, day and standard switching times for central heating, DHW<br />

heating, heating a heating water buffer cylinder and the DHW circulation<br />

pump are factory-set<br />

■ Switching times are individually programmable; up to 8 time phases<br />

per day<br />

Shortest switching interval: 10 minutes<br />

Power backup: 14 days<br />

Setting the operating programs<br />

The heating system frost protection (see frost protection function)<br />

applies to all heating programs.<br />

You can select the following operating programs with the program<br />

selectors:<br />

■ For heating/cooling circuits:<br />

Heating and DHW or heating, cooling and DHW<br />

■ For a separate cooling circuit:<br />

Cooling<br />

■ Only DHW; separate settings for each heating circuit<br />

The external operating program changeover is possible in conjunction<br />

with the external extension H1.<br />

Note<br />

If the heat pump is only required to operate for DHW heating, for<br />

example in summer, select operating program "Only DHW" for all<br />

heating circuits.<br />

■ Standby mode<br />

4<br />

Frost protection function<br />

■ The frost protection function will be started when the outside temperature<br />

falls below approx. +1 °C.<br />

With active frost protection, the heating circuit pump will be switched<br />

on and the boiler water is maintained at a lower temperature of<br />

approx. 20 °C.<br />

The DHW cylinder will be heated to approx. 20 °C.<br />

■ The frost protection function will be stopped when the outside temperature<br />

rises above approx. +3 °C.<br />

Heating and cooling curve settings (slope and level)<br />

The Vitotronic 200 regulates the flow temperatures for the heating circuits<br />

and cooling circuit in weather-compensated mode:<br />

■ System flow temperature or flow temperature of heating circuit without<br />

mixer A1<br />

■ Flow temperature heating circuit with mixer M1<br />

■ Flow temperature of heating circuit with mixer M2 in conjunction with<br />

the extension kit for one heating circuit with mixer<br />

■ Flow temperature, separate cooling circuit<br />

The flow temperature required to reach a specific room temperature<br />

depends on the heating system and the thermal insulation of the building<br />

to be heated or cooled.<br />

Adjusting the heating or cooling curves matches the flow temperatures<br />

to these conditions.<br />

■ Heating curves:<br />

The flow temperature of the secondary circuit is restricted at the<br />

upper end of the scale by the temperature limiter and the temperature<br />

set at the electronic maximum temperature limiter.<br />

Flow temperature in °C<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

Heating curve slope<br />

3.4<br />

3.2<br />

3.0<br />

2.8<br />

2.6<br />

2.4<br />

2.2<br />

2.0<br />

1.8<br />

1.6<br />

20<br />

20 10 0 -10 -20 -30<br />

Outside temperature in °C<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

5457 919 GB<br />

60 VIESMANN VITOCAL <strong>300</strong>-G


Heat pump control unit (cont.)<br />

■ Cooling curves:<br />

The flow temperature of the secondary circuit is restricted at the<br />

lower end of the scale by the temperature set at the electronic minimum<br />

temperature limiter.<br />

0.2<br />

0.4<br />

0.6<br />

0.8<br />

1.0<br />

1.2<br />

Outside temperature in °C<br />

35 30 25 20<br />

20<br />

1.4 1.6<br />

1.8 2.0 2.2 2.6 3.0 3.4<br />

Cooling curve slope<br />

15<br />

10<br />

5<br />

1<br />

Flow temperature in °C<br />

Heating systems with heating water buffer cylinder or low loss header<br />

If using hydraulic separation, fit a temperature sensor in the heating<br />

water buffer cylinder or low loss header and connect to the heat pump<br />

control unit.<br />

Outside temperature sensor<br />

Installation location:<br />

■ North or north-western wall of the building<br />

■ 2 to 2.5 m above the ground, for multi-storey buildings in the upper<br />

half of the second floor<br />

Connection:<br />

■ 2-core lead, length max. 35 m with a cross-section of 1.5 mm 2 (copper).<br />

■ Never route this lead immediately next to 230/400 V cables.<br />

Specification<br />

IP rating IP 43 to EN 60529;<br />

ensure through appropriate<br />

design/installation<br />

Permissible ambient temperature during<br />

operation, storage and transport -40 to +70 °C<br />

4<br />

80<br />

41<br />

66<br />

5457 919 GB<br />

Specification Vitotronic 200, type WO1A<br />

General<br />

Rated voltage 230 V~<br />

Rated frequency<br />

50 Hz<br />

Rated current<br />

6 A<br />

Protection class<br />

I<br />

Permissible ambient temperature<br />

– during operation 0 to +40 °C<br />

Installation in living spaces or boiler rooms (standard ambient conditions)<br />

– during storage and transport –20 to +65 °C<br />

Setting range for the DHW temperature 10 to +70 °C<br />

Heating and cooling curves setting range<br />

– Slope 0 to 3.5<br />

– Level –15 to +40 K<br />

VITOCAL <strong>300</strong>-G VIESMANN 61


Heat pump control unit (cont.)<br />

4<br />

Connection values of the function components<br />

Components Connected load [W] Voltage [V] Max. switching current<br />

[A]<br />

Primary pump/well pump 200 230 4(2)<br />

Secondary pump 130 230 4(2)<br />

Instantaneous heating water heater control, stage 1 10 230 4(2)<br />

Circulation pump for cylinder heating (on the heating 130 230 4(2)<br />

water side) or three-way diverter valve, heating/DHW<br />

heating<br />

NC signal control ("natural cooling") 10 230 4(2)<br />

Circulation pump, separate cooling circuit<br />

10 230 4(2)<br />

and<br />

AC signal control (active cooling)<br />

Heating circuit pump A1 100 230 4(2)<br />

DHW circulation pump 50 230 4(2)<br />

External heat source control zero volt contact 250 4(2)<br />

Central fault message zero volt contact 250 4(2)<br />

Primary pump, heat pump stage 2 200 230 4(2)<br />

Secondary pump, heat pump stage 2 130 230 4(2)<br />

Instantaneous heating water heater control, stage 2 10 230 4(2)<br />

Circulation pump for cylinder heating (on the heating 130 230 4(2)<br />

water side) or three-way diverter valve, central/DHW<br />

heating for heat pump stage 2<br />

Cylinder primary pump (DHW side) 130 230 4(2)<br />

Circulation pump for DHW reheating<br />

100 230 4(2)<br />

or<br />

Control of immersion heater EHE<br />

Heating circuit pump M2 100 230 4(2)<br />

Total current max. 5(3) A<br />

4.2 Control unit accessories<br />

Contactor relay<br />

Part no. 7814 681<br />

Contactor in small casing.<br />

With 4 N/C and 4 N/O contacts.<br />

With terminal strip for earth conductors.<br />

Specification<br />

Coil voltage<br />

Rated current (I th )<br />

230 V~/50 Hz<br />

AC1 16 A<br />

AC3 9 A<br />

180<br />

145<br />

95<br />

5457 919 GB<br />

62 VIESMANN VITOCAL <strong>300</strong>-G


Heat pump control unit (cont.)<br />

Contact temperature sensor as system flow temperature sensor<br />

Part no. 7426 133<br />

For capturing the system flow temperature.<br />

Ø 15<br />

26<br />

Specification<br />

Lead length<br />

IP rating<br />

2.0 m<br />

IP 32 to EN 60529; ensure<br />

through appropriate design<br />

and installation<br />

<strong>Viessmann</strong> Pt500<br />

Sensor type<br />

Permissible ambient temperature<br />

– during operation 0 to +120 °C<br />

– during storage and transport -20 to +70 °C<br />

Cylinder temperature sensor<br />

Part no. 7170 965<br />

For DHW cylinders and heating water buffer cylinders.<br />

On-site extension of the connecting lead:<br />

■ 2-core lead, length max. 60 m with a cross-section of 1.5 mm 2 (copper)<br />

■ Never route this lead immediately next to 230/400 V cables<br />

Specification<br />

Lead length<br />

IP rating<br />

3.75 m<br />

IP 32 to EN 60529; ensure<br />

through design/installation<br />

<strong>Viessmann</strong> Pt500<br />

Sensor type<br />

Permissible ambient temperature<br />

– during operation 0 to +90°C<br />

– during storage and transport -20 to +70°C<br />

4<br />

Thermostat for controlling the swimming pool temperature<br />

Part no. 7009 432<br />

60<br />

98<br />

45 16<br />

61<br />

Specification<br />

Connection<br />

3-core cable with a crosssection<br />

of 1.5 mm 2<br />

Setting range 0 to 35 °C<br />

Switching differential<br />

0.3 K<br />

Breaking capacity 10(2) A 250 V~<br />

Switching function<br />

with rising temperature<br />

from 2 to 3<br />

R<br />

3 2<br />

200<br />

1<br />

Stainless steel sensor well<br />

R½ x 200 mm<br />

Contact temperature sensor<br />

Part no. 7183 288<br />

For capturing the flow and return temperature.<br />

42<br />

40<br />

5457 919 GB<br />

76<br />

VITOCAL <strong>300</strong>-G VIESMANN 63


Heat pump control unit (cont.)<br />

Specification<br />

Lead length<br />

IP rating<br />

5.8 m, fully wired<br />

IP 32 to EN 60529; ensure<br />

through appropriate design<br />

and installation<br />

<strong>Viessmann</strong> Ni500<br />

Sensor type<br />

Permissible ambient temperature<br />

– during operation 0 to +120 °C<br />

– during storage and transport -20 to +70 °C<br />

Mixer motor<br />

Part no. 7450 657<br />

The mixer motor is mounted directly onto the <strong>Viessmann</strong> mixer DN 20<br />

to 50 and R ½" to 1¼".<br />

With system plug.<br />

For wiring on site.<br />

130<br />

180<br />

90<br />

Specification<br />

Rated voltage 230 V~<br />

Rated frequency<br />

50 Hz<br />

Power consumption<br />

4 W<br />

Protection class<br />

II<br />

Protection<br />

IP 42 to EN 60529; safeguard<br />

through appropriate<br />

design and installation<br />

Permissible ambient temperature<br />

– during operation 0 to +40 °C<br />

– during storage and transport -20 to +65 °C<br />

Torque<br />

3 Nm<br />

Runtime for 90° ∢<br />

120 s<br />

4<br />

Extension kit for one heating circuit with mixer with integral mixer motor<br />

Part no. 7301 063<br />

KM BUS subscriber<br />

Components:<br />

■ Mixer PCB with mixer motor for <strong>Viessmann</strong> mixer DN 20 to 50 and<br />

R ½ to 1¼<br />

■ Flow temperature sensor (contact temperature sensor), lead length<br />

2.2 m, fully wired, for specification see below<br />

■ Connecting plug for the heating circuit pump<br />

■ Power cable (3.0 m long)<br />

■ BUS cable (3.0 m long)<br />

The mixer motor is mounted directly onto the <strong>Viessmann</strong> mixer DN 20<br />

to 50 and R ½ to 1¼.<br />

Mixer PCB with mixer motor<br />

Power consumption<br />

5.5 W<br />

IP rating IP 32D to EN 60529<br />

ensure through appropriate<br />

design/installation<br />

Protection class<br />

I<br />

Permissible ambient temperature<br />

– during operation 0 to +40 °C<br />

– during storage and transport –20 to +65 °C<br />

Rated breaking capacity of the relay<br />

output for heating circuit pump sÖ 2(1) A 230 V~<br />

Torque<br />

3 Nm<br />

Runtime for 90 ° ∢<br />

120 s<br />

Flow temperature sensor (contact sensor)<br />

42<br />

180<br />

130<br />

60<br />

66<br />

Secured with a tie.<br />

160<br />

Specification<br />

Rated voltage 230 V~<br />

Rated frequency<br />

50 Hz<br />

Rated current<br />

2 A<br />

Specification<br />

IP rating IP 32D to EN 60529<br />

ensure through appropriate<br />

design/installation<br />

Sensor type<br />

<strong>Viessmann</strong> NTC 10 kΩ at<br />

25 °C<br />

Permissible ambient temperature<br />

– during operation 0 to +120 °C<br />

– during storage and transport –20 to +70 °C<br />

5457 919 GB<br />

64 VIESMANN VITOCAL <strong>300</strong>-G


Heat pump control unit (cont.)<br />

Extension kit for one heating circuit with mixer for separate mixer motor<br />

Part no. 7301 062<br />

KM BUS subscriber<br />

For the connection of a separate mixer motor.<br />

Components:<br />

■ Mixer PCB for the connection of a separate mixer motor<br />

■ Flow temperature sensor (contact temperature sensor), lead length<br />

5.8 m, fully wired<br />

■ Connecting plug for the heating circuit pump<br />

■ Mixer motor terminals<br />

■ Power cable (3.0 m long)<br />

■ BUS cable (3.0 m long)<br />

Mixer PCB<br />

Protection class<br />

I<br />

Permissible ambient temperature<br />

– during operation 0 to +40 °C<br />

– during storage and transport –20 to +65 °C<br />

Rated capacity of the relay outputs<br />

Heating circuit pump sÖ 2(1) A 230 V~<br />

Mixer motor 0.1 A 230 V~<br />

Required runtime of the mixer motor<br />

for 90° ∢<br />

approx. 120 s<br />

Flow temperature sensor (contact sensor)<br />

42<br />

140<br />

60<br />

66<br />

58<br />

180<br />

Specification<br />

Rated voltage 230 V~<br />

Rated frequency<br />

50 Hz<br />

Rated current<br />

2 A<br />

Power consumption<br />

1.5 W<br />

IP rating IP 20D to EN 60529<br />

ensure through appropriate<br />

design/installation<br />

Secured with a tie.<br />

Specification<br />

IP rating IP 32D to EN 60529<br />

ensure through appropriate<br />

design/installation<br />

Sensor type<br />

<strong>Viessmann</strong> NTC 10 kΩ at<br />

25 °C<br />

Permissible ambient temperature<br />

– during operation 0 to +120 °C<br />

– during storage and transport –20 to +70 °C<br />

4<br />

Immersion thermostat<br />

Part no. 7151 728<br />

May be used as a maximum temperature limiter for underfloor heating<br />

systems.<br />

The temperature limiter is installed into the heating flow and switches<br />

the heating circuit pump OFF if the flow temperature is too high.<br />

72<br />

130<br />

95<br />

Specification<br />

Lead length<br />

4.2 m, fully wired<br />

Setting range 30 to 80 °C<br />

Switching differential<br />

max. 11 K<br />

Breaking capacity 6(1.5) A 250 V~<br />

Setting scale<br />

inside the casing<br />

Stainless steel sensor well<br />

R ½" x 200 mm<br />

DIN reg. no. DIN TR 116807<br />

or<br />

DIN TR 96808<br />

200<br />

5457 919 GB<br />

Contact thermostat<br />

Part no. 7151 729<br />

May be used as a maximum temperature limiter for underfloor heating<br />

systems (only in conjunction with metallic pipes).<br />

The temperature limiter is installed into the heating flow and switches<br />

the heating circuit pump OFF if the flow temperature is too high.<br />

VITOCAL <strong>300</strong>-G VIESMANN 65


Heat pump control unit (cont.)<br />

72<br />

130<br />

95<br />

Specification<br />

Lead length<br />

4.2 m, fully wired<br />

Setting range 30 to 80 °C<br />

Switching differential<br />

max. 14 K<br />

Breaking capacity 6(1.5) A 250V~<br />

Setting scale<br />

inside the casing<br />

DIN reg. no. DIN TR 116807<br />

or<br />

DIN TR 96808<br />

Vitotrol 200A<br />

4<br />

Part no. Z008 341<br />

KM BUS subscriber<br />

A Vitotrol 200A can be used for each heating circuit in a heating system.<br />

Up to 2 remote controls may be connected to the control unit.<br />

Functions:<br />

■ Display of room temperature, outside temperature and the operating<br />

condition.<br />

■ Setting the standard room temperature (day temperature) and operating<br />

program via the standard display.<br />

Note<br />

The reduced room temperature (night temperature) is set at the control<br />

unit.<br />

Connection:<br />

■ 2-core lead, length max. 50 m (even if connecting several remote<br />

control units)<br />

■ Never route this lead immediately next to 230/400 V cables<br />

■ LV plug as standard delivery<br />

20,5<br />

■ Party and economy mode can be enabled via keys<br />

■ Only for heating circuit with mixer:<br />

Room temperature sensor for room temperature hook-up<br />

Note<br />

For room temperature hook-up, the Vitotrol 200A must be installed<br />

in the living space (lead room).<br />

148<br />

97<br />

Installation location:<br />

■ Weather-compensated mode:<br />

Installation at any point in the building.<br />

■ Room temperature hook-up:<br />

Installation in the main living room on an internal wall opposite radiators.<br />

Never install inside shelving units, in recesses, or immediately<br />

by a door or heat source (e.g. direct sunlight, fireplace, TV set, etc.).<br />

The integral room temperature sensor captures the actual room<br />

temperature and effects any necessary correction of the flow temperature<br />

as well as a rapid heat-up at the start of the heating operation<br />

(if suitably encoded).<br />

Specification<br />

Power supply via KM BUS<br />

Power consumption<br />

0.2 W<br />

Protection class<br />

III<br />

IP rating IP 30 to EN 60529;<br />

ensure through appropriate<br />

design/installation<br />

Permissible ambient temperature<br />

– during operation 0 to +40 °C<br />

– during storage and transport -20 to +65 °C<br />

Set room temperature range 3 to 37 °C<br />

Room temperature sensor for separate cooling circuit<br />

Part no. 7408 012<br />

Installation in the room to be cooled on an internal wall, opposite radiators/heat<br />

sinks. Never install inside shelving units, in recesses, or<br />

immediately by a door or heat source (e.g. direct sunlight, fireplace,<br />

TV set, etc.).<br />

Connect the room temperature sensor to the control unit.<br />

5457 919 GB<br />

66 VIESMANN VITOCAL <strong>300</strong>-G


Heat pump control unit (cont.)<br />

□80<br />

Connection:<br />

■ 2-core lead with a cross-section of 1.5 mm 2 (copper)<br />

■ Lead length from the remote control up to 30 m<br />

■ Never route this lead immediately next to 230/400 V cables<br />

20<br />

Specification<br />

Protection class<br />

III<br />

IP rating IP 30 to EN 60529;<br />

ensure through appropriate<br />

design/installation<br />

Permissible ambient temperature<br />

– during operation 0 to +40 °C<br />

– during storage and transport -20 to +65 °C<br />

KM BUS distributor<br />

Part no. 7415 028<br />

For the connection of 2 to 9 devices to the KM BUS.<br />

84<br />

130<br />

217<br />

Specification<br />

Cable length<br />

3.0 m, fully wired<br />

Protection IP 32 to EN 60529;<br />

safeguard through appropriate<br />

design and installation<br />

Permissible ambient temperature<br />

– during operation 0 to +40 °C<br />

– during storage and transport -20 to +65 °C<br />

4<br />

External extension H1<br />

Part no. 7179 058<br />

Function extension inside a casing for wall mounting.<br />

Using the extension enables the following functions to be achieved:<br />

■ Cascade control for up to 4 <strong>Vitocal</strong> appliances<br />

■ Swimming pool water heating function<br />

■ Minimum boiler water temperature demand<br />

■ External blocking<br />

■ Set boiler water temperature specified via a 0-10 V input<br />

■ External heating program changeover<br />

84<br />

130<br />

217<br />

Specification<br />

Rated voltage 230 V~<br />

Rated frequency 50 Hz<br />

Rated current<br />

4 A<br />

Power consumption<br />

4 W<br />

Protection class<br />

I<br />

IP rating IP 32<br />

Permissible ambient temperature<br />

– during operation 0 to +40 °C<br />

Installation in living spaces or<br />

boiler rooms<br />

(standard ambient conditions)<br />

– during storage and transport –20 to +65 °C<br />

5457 919 GB<br />

Vitocom 100, type GSM<br />

■ Without SIM card<br />

Part no. Z004594<br />

■ With contract SIM card for the operation of the Vitocom 100 via<br />

mobile phone<br />

Part no. Z004615<br />

Note<br />

For further information regarding the conditions of contract, see the<br />

<strong>Viessmann</strong> pricelist.<br />

Functions:<br />

■ Remote switching via GSM mobile phone networks<br />

■ Remote scanning via GSM mobile phone networks<br />

■ Remote monitoring via SMS to 1 or 2 mobile phones<br />

■ Remote monitoring of additional systems via digital input (230 V)<br />

Configuration:<br />

Mobile phones via SMS<br />

Standard delivery:<br />

■ Vitocom 100 (subject to order with or without SIM card)<br />

■ Power supply cable with Euro plug (2.0 m long)<br />

■ GSM aerial (3.0 m long), magnetic foot and adhesive pad<br />

■ KM BUS cable (3.0 m long)<br />

VITOCAL <strong>300</strong>-G VIESMANN 67


Heat pump control unit (cont.)<br />

On-site requirements:<br />

Good reception for GSM communication of the selected mobile phone<br />

operator.<br />

Total length of all KM BUS subscriber cables up to 50 m.<br />

72<br />

130<br />

50<br />

Specification<br />

Rated voltage 230 V ~<br />

Rated frequency<br />

50 Hz<br />

Rated current<br />

15 mA<br />

Power consumption<br />

4 W<br />

Protection class<br />

II<br />

Protection<br />

IP 41 to EN 60529; safeguard<br />

through appropriate design<br />

and installation<br />

Function Type 1B to EN 60 730-1<br />

Permissible ambient temperature<br />

– during operation 0 to +55 °C<br />

Installation in living spaces or<br />

boiler rooms (standard ambient<br />

conditions)<br />

– during storage and transport -20 to +85 °C<br />

On-site connection<br />

Fault input DE 1 230 V~<br />

4<br />

Vitocom <strong>300</strong>, type FA5, FI2, GP2<br />

Part no: see current pricelist<br />

■ Type FA5 with integral analogue modem<br />

■ Type FI2 with integral ISDN modem<br />

■ Type GP2 with integral GPRS modem<br />

■ For up to 5 heating systems with one or more heat sources, with or<br />

without heating circuits downstream.<br />

In conjunction with Vitodata <strong>300</strong><br />

■ For remote reporting, remote monitoring and scanning of faults and/<br />

or data points via the internet<br />

■ For remote switching, remote setting of parameters and codes for<br />

heating systems via the internet<br />

Configuration<br />

The Vitocom <strong>300</strong> is configured via the Vitodata <strong>300</strong>.<br />

Fault messages<br />

Fault messages are reported to the Vitodata <strong>300</strong> server. These messages<br />

are transmitted via the following communication services from<br />

the Vitodata <strong>300</strong> server to the configured control devices:<br />

■ Fax<br />

■ Text messages (SMS) to mobile phones<br />

■ Email to PC/laptop<br />

On-site requirements:<br />

■ Telephone connection<br />

– Type FA5:<br />

TAE socket, coding "6N"<br />

– Type FI2:<br />

RJ45 socket (ISDN)<br />

■ Type GP2:<br />

Adequate GPRS radio signal for the D2 [Vodafone] mobile network<br />

at the location where the Vitocom <strong>300</strong> is installed<br />

■ LON communication module must be installed in the Vitotronic appliance<br />

Note<br />

For further information regarding the terms of contract, see the<br />

<strong>Viessmann</strong> pricelist.<br />

Standard delivery:<br />

■ Standard module *3 (with 8 digital inputs, 1 digital output and 2 analogue<br />

sensor inputs)<br />

– Type FA5:<br />

with integral analogue modem,<br />

Connecting cable for telephone socket TAE 6N, 2 m long<br />

– Type FI2:<br />

with integral ISDN modem,<br />

Connecting cable with RJ45 plug for ISDN socket, 3 m long<br />

– Type GP2:<br />

with integral GPRS modem,<br />

Aerial with connecting cable, 3 m long<br />

SIM card<br />

■ LON connecting cable RJ45 – RJ45, 7 m long, for data exchange<br />

between the Vitotronic and Vitocom <strong>300</strong><br />

■ Power supply unit *3<br />

■ Power cable from the power supply unit to the standard module<br />

Note<br />

For standard delivery of packs with Vitocom, see pricelist.<br />

Accessories:<br />

Accessories<br />

Part no.<br />

Wall mounting enclosure for the installation of the<br />

Vitocom <strong>300</strong> module, if no control panel or electrical<br />

distribution panel is available<br />

2 rows 7143 434<br />

3 rows 7143 435<br />

Extension module *3<br />

– 10 digital inputs (8 zero volt, two 230 V~)<br />

7143 431<br />

– 7 analogue inputs (2 can be configured as pulsed<br />

inputs)<br />

– 2 digital outputs<br />

– see the standard module for dimensions<br />

or<br />

– 10 digital inputs (8 zero volt, two 230 V~)<br />

7159 767<br />

– 7 analogue inputs (2 can be configured as pulsed<br />

inputs)<br />

– 2 digital outputs<br />

– 1 M BUS interface with connection of up to, for example,<br />

16 M BUS capable heat meters with M BUS slave<br />

interface to EN 1434-3<br />

– see the standard module for dimensions<br />

Uninterruptible power supply unit *3 (UPS) 7143 432<br />

*3 Mounting rail installation TS35 to DIN EN 50 022, 35 x 15 and 35 x 7.5.<br />

5457 919 GB<br />

68 VIESMANN VITOCAL <strong>300</strong>-G


Heat pump control unit (cont.)<br />

Accessories<br />

Additional rechargeable battery pack *3 for UPS<br />

– Recommended with 1 basic module, 1 extension<br />

module and all inputs allocated<br />

– Required with: 1 standard module and 2 extension<br />

modules<br />

Extension of the connecting cable<br />

Installation spacing 7 to 14 m<br />

– 1 connecting cable (7 m long)<br />

and<br />

1 LON coupling RJ45<br />

Installation spacing 14 to 900 m with plug-in connector<br />

– 2 LON plug-in connectors RJ45<br />

and<br />

– 2-core cable, CAT5, screened, solid cable, AWG<br />

26-22, 0.13 to 0.32 mm 2 , external diameter,<br />

4.5 to 8 mm<br />

or<br />

2-core cable, CAT5, screened, wire, AWG 26-22,<br />

0.14 to 0.36 mm 2 , external diameter, 4.5 to 8 mm<br />

Installation spacing 14 to 900 m with socket<br />

– 2 connecting cables (7 m long)<br />

and<br />

– 2 LON sockets RJ45, CAT6<br />

– 2-core cable, CAT 5, screened<br />

or<br />

JY(St) Y 2 x 2 x 0.8<br />

Standard module (standard delivery):<br />

90<br />

160<br />

73<br />

Part no.<br />

7143 436<br />

7143 495<br />

and<br />

7143 496<br />

7199 251<br />

and<br />

on-site<br />

or<br />

on-site<br />

7143 495<br />

and<br />

7171 784<br />

on-site<br />

or<br />

on-site<br />

Specification<br />

Rated voltage 24 V –<br />

Rated current<br />

– Type FA5 600 mA<br />

– Type FI2 500 mA<br />

– Type GP2 500 mA<br />

Protection class II to DIN EN 61140<br />

IP rating IP 20 to EN 60529;<br />

ensure through appropriate<br />

design/installation<br />

Function<br />

Type 1B to<br />

EN 60730- 1<br />

Permissible ambient temperature<br />

– during operation 0 to +50 °C<br />

Installation in living spaces<br />

or boiler rooms (standard<br />

ambient conditions)<br />

– during storage and transport -20 to +85 °C<br />

On-site connections:<br />

– 8 digital inputs DE 1 to DE 8 Zero volt contact, 2-pole,<br />

24 V–, max. 7 mA<br />

– 1 digital output DA1 Zero volt relay contact, 3-<br />

pole, changeover, 230 V~/<br />

30 V–, max. 2 A<br />

– 2 analogue inputs AE 1 and AE 2 For <strong>Viessmann</strong> Ni500 temperature<br />

sensors, 10 to 127<br />

ºC ±0.5 K<br />

Power supply unit (standard delivery):<br />

90<br />

72<br />

58<br />

Specification<br />

Rated voltage 85 to 264 V ~<br />

Rated frequency<br />

50/60 Hz<br />

Rated current<br />

0.55 A<br />

Output voltage 24 V –<br />

Output current<br />

1.5 A<br />

Protection class II to DIN EN 61140<br />

IP rating IP 20 to EN 60529;<br />

ensure through appropriate<br />

design/installation<br />

Potential separation<br />

primary/secondary SELV to EN 60950<br />

Electrical safety EN 60335<br />

Permissible ambient temperature<br />

– for operation with supply voltage U E -20 to +55 °C<br />

187 to 264 V<br />

Installation in living spaces<br />

or boiler rooms (standard<br />

ambient conditions)<br />

– for operation with supply voltage U E<br />

100 to 264 V<br />

-5 to +55 °C<br />

Installation in living spaces<br />

or boiler rooms (standard<br />

ambient conditions)<br />

– during storage and transport -25 to +85 °C<br />

For further technical details and accessories, see the data communication<br />

technical guide.<br />

4<br />

LON communication module<br />

Part no. 7172 173<br />

PCB for data exchange<br />

For connecting one Vitocom 200 or <strong>300</strong> to the heat pump control<br />

unit.<br />

5457 919 GB<br />

*3 Mounting rail installation TS35 to DIN EN 50 022, 35 x 15 and 35 x 7.5.<br />

VITOCAL <strong>300</strong>-G VIESMANN 69


Heat pump control unit (cont.)<br />

LON connecting cable for data exchange between control units<br />

Part no. 7143 495 Cable length 7 m, fully wired (RJ 45).<br />

4<br />

Extension of the connecting cable<br />

■ Installation spacing 7 to 14 m:<br />

– 1 connecting cable (7 m long)<br />

Part no. 7143 495<br />

and<br />

– 1 LON coupling RJ45<br />

Part no. 7143 496<br />

■ Installation spacing 14 to 900 m with plug-in connector:<br />

– 2 LON plug-in connector RJ45<br />

Part no. 7199 251<br />

and<br />

– 2-core cable, CAT5, screened, solid cable, AWG 26-22, 0.13 to<br />

0.32 mm 2 , external diameter, 4.5 to 8 mm<br />

on-site<br />

or<br />

2-core cable, CAT5, screened, wire, AWG 26-22, 0.14 to 0.36<br />

mm 2 , external diameter, 4.5 to 8 mm<br />

on-site<br />

■ Installation spacing 14 to 900 m with sockets:<br />

– 2 connecting cables (7 m long)<br />

Part no. 7143 495<br />

and<br />

– 2 LON sockets RJ45, CAT6<br />

Part no. 7171 784<br />

– 2-core cable, CAT 5, screened<br />

on-site<br />

or<br />

JY(St) Y 2 x 2 x 0.8<br />

on-site<br />

and<br />

Terminator<br />

Part no. 7143 497<br />

2 pce<br />

To terminate the LON BUS at the first and last LON user.<br />

5457 919 GB<br />

70 VIESMANN VITOCAL <strong>300</strong>-G


Keyword index<br />

5457 919 GB<br />

A<br />

Active cooling...................................................................................53<br />

Air separator.....................................................................................12<br />

Application procedure (details).........................................................22<br />

B<br />

Brine accessory pack.......................................................................11<br />

Brine distributor<br />

■ Geothermal collectors...................................................................13<br />

■ Geothermal probes/geothermal collectors....................................14<br />

C<br />

Central heating/central cooling.........................................................46<br />

Connectable components................................................................33<br />

Connections on secondary side (two-stage heat pumps)................31<br />

Connections on the primary side (brine/water)<br />

■ Single stage heat pump................................................................26<br />

■ Two-stage heat pumps.................................................................26<br />

Connections on the primary side (water/water)<br />

■ Single stage heat pump................................................................28<br />

■ Two-stage heat pumps.................................................................29<br />

Contact thermostat...........................................................................65<br />

Cooling<br />

■ Selecting a plate heat exchanger..................................................55<br />

Cooling circuit...................................................................................47<br />

Cooling curve<br />

■ Level.............................................................................................60<br />

■ Slope.............................................................................................60<br />

Cooling function...............................................................................47<br />

■ Natural cooling..............................................................................53<br />

Cooling mode<br />

■ Operating modes..........................................................................47<br />

■ Weather-compensated control......................................................47<br />

Cooling operation.......................................................................47, 53<br />

■ Types and configuration................................................................53<br />

Cooling water...................................................................................45<br />

Cooling with an underfloor heating system......................................54<br />

Cooling with fan convectors.............................................................54<br />

D<br />

Data exchange.................................................................................69<br />

Delivered condition.............................................................................4<br />

DHW cylinder...................................................................................49<br />

DHW demand...................................................................................35<br />

DHW heating<br />

■ Connection on the DHW side........................................................49<br />

■ Selecting a plate heat exchanger..................................................51<br />

■ Selecting a primary store system..................................................51<br />

■ Solar..............................................................................................57<br />

■ Via an external heat exchanger....................................................22<br />

Dimensions........................................................................................7<br />

Diverter valve...................................................................................19<br />

Double U-shaped pipe probe...........................................................39<br />

Dual mode operation........................................................................35<br />

E<br />

Electrical connections......................................................................23<br />

Electrical demand.............................................................................22<br />

Electricity meter................................................................................23<br />

EnEV................................................................................................59<br />

Ethylene glycol.................................................................................36<br />

Expansion vessel<br />

■ Calculating the volume..................................................................58<br />

■ Primary circuit...............................................................................40<br />

■ Solar..............................................................................................58<br />

■ Structure, function, specification...................................................58<br />

External extension H1......................................................................67<br />

External heat source........................................................................35<br />

F<br />

Fan convectors...........................................................................19, 54<br />

Federal tariffs [Germany].................................................................22<br />

Fill water...........................................................................................48<br />

Flow rate..........................................................................................44<br />

Frost protection................................................................................36<br />

Frost protection function...................................................................60<br />

Function description<br />

■ DHW heating.................................................................................49<br />

■ Heating circuit...............................................................................46<br />

■ Heating water buffer cylinder........................................................47<br />

■ Instantaneous heating water heater..............................................35<br />

■ Power-OFF...................................................................................24<br />

G<br />

Geothermal collector<br />

■ Manifolds and headers..................................................................36<br />

■ Pressure drop...............................................................................38<br />

■ Sizing............................................................................................38<br />

Geothermal probe<br />

■ Pressure drop...............................................................................40<br />

■ Sizing............................................................................................40<br />

Groundwater....................................................................................43<br />

H<br />

Heat exchanger, primary circuit.......................................................45<br />

Heating circuit and heat distribution.................................................46<br />

Heating curve<br />

■ Level.............................................................................................60<br />

■ Slope.............................................................................................60<br />

Heating lance...................................................................................51<br />

Heating output..................................................................................34<br />

Heating water buffer cylinder...........................................................47<br />

Heating water flow temperature.......................................................46<br />

Heat load..........................................................................................34<br />

Heat pump control unit<br />

■ Functions......................................................................................59<br />

■ Programming unit..........................................................................59<br />

■ Standard unit.................................................................................59<br />

■ Structure.......................................................................................59<br />

Heat pump sizing.............................................................................34<br />

Heat transfer medium.................................................................16, 43<br />

Hydraulic connection<br />

■ Cooling function............................................................................53<br />

■ Primary store system....................................................................50<br />

Hydraulic connections......................................................................26<br />

Hydraulic connection set..................................................................48<br />

I<br />

Immersion thermostat......................................................................65<br />

Installation accessories<br />

■ Primary circuit...............................................................................11<br />

■ Secondary circuit..........................................................................17<br />

Instantaneous heating water heater.................................................35<br />

K<br />

KM BUS distributor...........................................................................67<br />

L<br />

LON..................................................................................................69<br />

LON communication module............................................................69<br />

VITOCAL <strong>300</strong>-G VIESMANN 71


Keyword index<br />

M<br />

Minimum clearances........................................................................23<br />

Mixer extension<br />

■ Integral mixer motor......................................................................64<br />

■ Separate mixer motor...................................................................65<br />

Mixer extension kit<br />

■ Integral mixer motor......................................................................64<br />

■ Separate mixer motor...................................................................65<br />

Mono-energetic operation................................................................35<br />

Mono-mode operation......................................................................34<br />

Motorised ball valve...................................................................19, 22<br />

N<br />

Natural cooling.................................................................................53<br />

O<br />

Operation<br />

■ Dual mode.....................................................................................35<br />

■ Mono-energetic.............................................................................35<br />

■ Mono-mode...................................................................................34<br />

Output diagrams.................................................................................8<br />

Output matching, fan convectors.....................................................54<br />

Outside temperature sensor.............................................................61<br />

Oversizing........................................................................................34<br />

P<br />

Positioning........................................................................................22<br />

Power-OFF...........................................................................22, 34, 48<br />

Power-OFF period......................................................................22, 48<br />

Power-OFF time...............................................................................34<br />

Power supply....................................................................................22<br />

Power tariffs.....................................................................................22<br />

Pressure drop in the pipework.........................................................41<br />

Primary pump...................................................................................12<br />

Product information............................................................................4<br />

Pump output supplements...............................................................43<br />

T<br />

<strong>Technical</strong> connection requirements.................................................23<br />

Temperature sensor<br />

■ Outside temperature.....................................................................61<br />

■ Room temperature..................................................................19, 66<br />

Thermostat<br />

■ Contact temperature.....................................................................65<br />

■ Immersion temperature.................................................................65<br />

Time switch......................................................................................59<br />

Tyfocor.............................................................................................43<br />

U<br />

Underfloor heating............................................................................54<br />

V<br />

Vitocom<br />

■ 100, type GSM..............................................................................67<br />

■ <strong>300</strong>, type FA5, FI2, GP2...............................................................68<br />

Vitotrol..............................................................................................66<br />

Volumes in pipes..............................................................................43<br />

W<br />

Wall clearances................................................................................23<br />

Water Board.....................................................................................39<br />

Water quality....................................................................................48<br />

Weather-compensated control.........................................................47<br />

■ Operating programs......................................................................60<br />

Weather-compensated control unit<br />

■ Frost protection function...............................................................60<br />

R<br />

Required equipment.............................................................26, 50, 54<br />

Return well.......................................................................................44<br />

Room temperature sensor.........................................................19, 66<br />

S<br />

Safety equipment block....................................................................18<br />

Secondary pump..............................................................................17<br />

Sizing the heat pump.......................................................................34<br />

Sizing the heat source<br />

■ Brine/water heat pumps................................................................36<br />

■ Water/water heat pumps...............................................................43<br />

Solar central heating backup............................................................57<br />

Solar DHW heating..........................................................................57<br />

Solar expansion vessel....................................................................58<br />

Solar swimming pool water heating.................................................58<br />

Solar thermal system.......................................................................57<br />

Specification.......................................................................................5<br />

Standard delivery...............................................................................4<br />

Standard heat load of the building...................................................34<br />

Supplement for DHW heating..........................................................35<br />

Supplement for setback mode.........................................................36<br />

Supply well.......................................................................................44<br />

Swimming pool water heating..........................................................56<br />

System separation...........................................................................44<br />

System versions...............................................................................33<br />

5457 919 GB<br />

72 VIESMANN VITOCAL <strong>300</strong>-G


5457 919 GB<br />

VITOCAL <strong>300</strong>-G VIESMANN 73


74 VIESMANN VITOCAL <strong>300</strong>-G


5457 919 GB<br />

VITOCAL <strong>300</strong>-G VIESMANN 75


Printed on environmentally friendly,<br />

chlorine-free bleached paper<br />

Subject to technical modifications.<br />

<strong>Viessmann</strong> Werke GmbH&Co KG<br />

D-35107 Allendorf<br />

Telephone: +49 6452 70-0<br />

Fax: +49 6452 70-2780<br />

www.viessmann.com<br />

<strong>Viessmann</strong> Limited<br />

Hortonwood 30, Telford<br />

Shropshire, TF1 7YP, GB<br />

Telephone: +44 1952 675000<br />

Fax: +44 1952 675040<br />

E-mail: info-uk@viessmann.com<br />

5457 919 GB<br />

76 VIESMANN VITOCAL <strong>300</strong>-G

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!