05.01.2015 Views

Sanjeev Dhurandhar Colloqm - Indian Institute of Astrophysics

Sanjeev Dhurandhar Colloqm - Indian Institute of Astrophysics

Sanjeev Dhurandhar Colloqm - Indian Institute of Astrophysics

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

S. V. DHURANDHAR<br />

IUCAA<br />

PUNE<br />

12 th February 2008 <strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Astrophysics</strong> Colloquium


GRAVITATIONAL WAVES<br />

• Space-time warpage in the fabric <strong>of</strong> spacetime<br />

travels with the speed <strong>of</strong> light<br />

Decay in the orbit <strong>of</strong> the<br />

binary pulsar PSR 1913+16<br />

Nobel Prize to<br />

Hulse & Taylor 1993<br />

Gravitational Waves EXIST !<br />

12 th February 2008 <strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Astrophysics</strong> Colloquium


GRAVITATIONAL WAVE ASTRONOMY<br />

• Enormous differences between<br />

GW and EM<br />

- Produced by bulk motions <strong>of</strong> matter<br />

- Compact objects:<br />

Blackholes, neutron stars<br />

Binary Inspiral <strong>of</strong> NS, BH<br />

PROBES OF THE UNIVERSE<br />

GW ASTRONOMY !!<br />

12 th February 2008 <strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Astrophysics</strong> Colloquium


Effect on a ring <strong>of</strong> test particles<br />

Metric:<br />

∇ 2 − 1 c 2<br />

∂<br />

∂ t 2<br />

h ik = 0<br />

General Wave:<br />

h ik = h t − z/c e ¿<br />

ik h ¿<br />

t − z /c e ik<br />

12 th February 2008 <strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Astrophysics</strong> Colloquium


Quadrupole formula :<br />

But h is awfully small !<br />

h ~ 4G c 4<br />

K . E . ns<br />

R<br />

~<br />

<br />

E kin−ns<br />

0 . 1 M c 2 <br />

R<br />

100 Mpc −1 10 −21<br />

Change in arm-length:<br />

L ~ h L<br />

12 th February 2008 <strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Astrophysics</strong> Colloquium


Interferometer<br />

Concept<br />

• Laser used to measure<br />

relative lengths <strong>of</strong> two<br />

orthogonal arms<br />

…causing the<br />

interference pattern<br />

to change at the<br />

photodiode<br />

Arms in LIGO are 4km<br />

Measure difference in length to<br />

one part in 10 21 or 10 -18 meters<br />

Suspended<br />

Masses<br />

12 th February 2008 <strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Astrophysics</strong> Colloquium


LIGO Louisiana 4 km armlength (US)<br />

12 th February 2008 <strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Astrophysics</strong> Colloquium


CURRENT DETECTOR STATUS<br />

• Several large scale laser interferometric detectors<br />

constructed: armlength <strong>of</strong> 300 m to 4 km<br />

- LIGO, VIRGO, GEO, TAMA, AIGO<br />

- LIGO, TAMA, GEO : Already taking data, S5 run <strong>of</strong><br />

LIGO successfully completed: 2005 – 2007 (2 years)<br />

- VIRGO: Engineering runs, Science runs<br />

• Space based detector LISA – 5 million km<br />

- Launch<br />

12 th February 2008 <strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Astrophysics</strong> Colloquium


TAMA Japan<br />

300m<br />

Interferometric Detectors<br />

LIGO Louisiana<br />

4000m<br />

Virgo Italy<br />

3000m<br />

AIGO Australia<br />

future<br />

GEO Germany<br />

600m<br />

LIGO Washington<br />

2000m & 4000m<br />

12 th February 2008 <strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Astrophysics</strong> Colloquium


International Network <strong>of</strong> GW Interferometers<br />

1. Detection confidence 2. Source direction 3. Polarisation info<br />

LIGO-LHO: 2km, 4km<br />

GEO: 0.6km<br />

VIRGO: 3km<br />

TAMA: 0.3km<br />

LIGO-LLO: 4km<br />

AIGO: ()km<br />

12 th February 2008 <strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Astrophysics</strong> Colloquium


Technology pushed to the limits<br />

Vacuum better than 10 -6 torr<br />

1.22 m aperture x 4000 m arms<br />

~9.4 x 10 3 m 3 (each site)<br />

~10 9 Joule <strong>of</strong> stored energy<br />

10 kg test masses<br />

0.99999 @ λ =1.024 µm<br />

5m<br />

10 W @ λ =1.024 µm<br />

~10 20 γ /s to split fringe to 10 -10<br />

Seismic isolation <strong>of</strong><br />

δν/ν~10 -10<br />

ground motion by > 10 -6<br />

12 th February 2008 <strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Astrophysics</strong> Colloquium


LIGO beam tube (January 1998 )<br />

12 th February 2008 <strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Astrophysics</strong> Colloquium


The noise floor<br />

• Seismic noise at low<br />

frequencies<br />

• Thermal noise at mid<br />

frequencies<br />

• Shot noise at high<br />

frequencies – quantum<br />

nature <strong>of</strong> light<br />

• Technical issues: alignment,<br />

electronics limit us to reach<br />

design sensitivities<br />

12 th February 2008 <strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Astrophysics</strong> Colloquium


Experimental noise curves: Initial LIGO from S1 – S5<br />

*http://www.ligocaltech.edu/~lazz/distribution/LSC_Data<br />

12 th February 2008 <strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Astrophysics</strong> Colloquium


Astrophysical Sources<br />

• Compact binary inspiral: “chirps”<br />

– NS-NS waveforms are well described<br />

– BH-BH need better waveforms<br />

– search technique: matched templates<br />

• Supernovae / GRBs: “bursts”<br />

– burst signals in coincidence with signals in<br />

electromagnetic radiation<br />

– prompt alarm (~ one hour) with neutrino detectors<br />

• Pulsars in our galaxy: “periodic”<br />

– search for observed neutron stars (frequency, doppler<br />

shift)<br />

– all sky search (computing challenge)<br />

• Cosmological Signals “stochastic background”<br />

12 th February 2008 <strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Astrophysics</strong> Colloquium


Source Strengths<br />

Binary inspiral:<br />

h ~ 2.5 × 10 −23 [<br />

M<br />

]5/3<br />

M sun<br />

f a<br />

[<br />

r<br />

] −1[<br />

100 Mpc 100 Hz<br />

]2/3<br />

Periodic:<br />

h ~ 1. 9 × 10 −25 [<br />

I<br />

] 10 45 gm. cm 2<br />

[<br />

f<br />

] 2 [ 500 Hz<br />

r<br />

] −1[<br />

ε<br />

]<br />

10 kpc 10 −5<br />

Stochastic background:<br />

~<br />

h<br />

f ~ 10 −26 [<br />

f<br />

] −3/ 2<br />

10 Hz<br />

[ GW<br />

f <br />

10 −12<br />

]1/ 2<br />

Data Analysis !<br />

12 th February 2008 <strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Astrophysics</strong> Colloquium


Inspiraling compact binaries<br />

GW<br />

• Broadband source best for interferometric detectors<br />

• Waveform is well modeled by PN approximations<br />

• Numerical Relativity: great advances - merger<br />

12 th February 2008 <strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Astrophysics</strong> Colloquium


Matched filtering the inspiraling binary signal<br />

cτ =∫ x t q t τ dt<br />

~<br />

~<br />

q f = h f <br />

S h<br />

f <br />

12 th February 2008 <strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Astrophysics</strong> Colloquium


Parameter space: 1 – 30 solar masses<br />

Sathya & SVD (91)<br />

SVD & Sathya (94)<br />

Owen (96)<br />

LIGO I psd:<br />

Minimal match: 0 .97<br />

f a<br />

= 40 Hz<br />

Number <strong>of</strong> templates: ~ 10 4<br />

Online speed: ~ 3 GFlops<br />

eraFlops for MACHOS, Spins …<br />

12 th February 2008 <strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Astrophysics</strong> Colloquium


Event rate, data analysis<br />

• Event rate (from inspiral SNR):<br />

~ 1 event / yr initial LIGO (20 Mpc), 10 events/day for<br />

advanced (350 Mpc)<br />

- Rate computed from survey volume, beaming fraction,<br />

luminosity function, short orbital period etc<br />

• Efficient data analysis techniques (IUCAA):<br />

Hierarchical search Sengupta, <strong>Dhurandhar</strong> & Lazzarini (2003)<br />

Interpolated search Mitra, <strong>Dhurandhar</strong> & Finn (2005)<br />

Coherent network search: Pai, <strong>Dhurandhar</strong> & Bose (2002),<br />

Indo-Japanese: Mukhopadhyay, SVD, Tagoshi, Kanda (2007)<br />

12 th February 2008 <strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Astrophysics</strong> Colloquium


Breakthrough in Numerical Relativity<br />

Numerical Relativity<br />

solves<br />

• merger waveform<br />

• 3.5% <strong>of</strong> total<br />

restmass energy as<br />

compared to 1.5 % in<br />

inspiral waveform!<br />

Work in progress on stitching together waveforms<br />

India has the right talent/aptitude for NR<br />

12 th February 2008 <strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Astrophysics</strong> Colloquium


Setting upper limits<br />

• Although at this early stage no detection can be announced we<br />

can place upper limits for example on the inspiral event rate<br />

For example for S2 data:<br />

P ρ ρ ¿ = 1 − e −ε R T<br />

R 90 50 y −1 MWEG −1<br />

A rate > than above means there is more than 90% probability<br />

that one inspiral event will be observed with SNR > highest SNR<br />

observed in the data.<br />

Much better event rate from S3, S4, S5 data!<br />

12 th February 2008 <strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Astrophysics</strong> Colloquium


Astrophysical Results<br />

• Chirps<br />

– S2: 355 hours <strong>of</strong> coincident (2X, 3X) interferometer operation<br />

– Sensitive to D ~ 2 Mpc<br />

– R 90% < 50 events/year/MWEG (1 Msun < M1,2 < 3 Msun)<br />

• Bursts<br />

– S1: For h > 10 -18 , R90% < 2/day (limited by observation time)<br />

– Minimum h ~ 2 x 10 -19<br />

– S2: 50% detection efficiency h ~ 10 -20<br />

• Periodic, or “CW”<br />

– S2: (LIGO and GEO600) interferometers -- Targeted 28 known pulsars<br />

– h < 1.7 x 10 -24 (J1910-5959D)<br />

– e < 4.5 x 10 -6 (J2124-3358)<br />

– Crab limit on h within 30X <strong>of</strong> spindown rate, if spindown were due to GW emission<br />

• Stochastic background<br />

– S3: 240 hours <strong>of</strong> cross-correlation measurements for H-L, H-H<br />

– Sensitivity estimated to be Ω GW<br />

< 5 x 10 -4 50 Hz < f < 250 Hz<br />

12 th February 2008 <strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Astrophysics</strong> Colloquium


The LIGO Scientific Collaboration<br />

500 scientists at 42 institutions<br />

27 US & 15 international<br />

12 th February 2008 <strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Astrophysics</strong> Colloquium


Stochastic GW background: Directed search<br />

S.Mitra, SVD, T. Souradeep, A. Lazzarini, V. Mandic, S. Bose, S.<br />

Ballmer (2007) - Ligo Science Collaboration<br />

• Produced by unresolved gravitational wave sources<br />

– Blackhole mergers, r-modes, LMXBs, …<br />

Waveforms not well modelled<br />

• Statistic: : Cross-correlation between two detectors<br />

with a directed optimal filter Q<br />

¿<br />

dt ∬ dt ' dt ``s rSub { size 8{1} } ` \( t' \) `s rSub { size 8{2} } } ` \( t Q <br />

¿<br />

S = ∫¿<br />

¿<br />

; t , t ' − t \) } {}<br />

12 th February 2008 <strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Astrophysics</strong> Colloquium


The Kernel or Point Spread Function<br />

LIGO detectors<br />

Point Source on the equator – Image not a point !<br />

12 th February 2008 <strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Astrophysics</strong> Colloquium


De-convolving the GW sky-map<br />

The integral equation must be inverted !<br />

D = B .P + n, D = D ( W )<br />

D : data<br />

B : known beam matrix<br />

P : GW power distribution over sky pixels<br />

i<br />

i<br />

n : noise<br />

Solution:<br />

ML estimator:<br />

T - 1 - 1 T -1<br />

P = ( B N B ) B N .D<br />

12 th February 2008 <strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Astrophysics</strong> Colloquium


Solution for a broadened point source<br />

Source 4 pixels:<br />

Dirty:<br />

Cleaned:<br />

12 th February 2008 <strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Astrophysics</strong> Colloquium


Solution for a `galactic distribution’<br />

Source:<br />

Dirty :<br />

Cleaned:<br />

12 th February 2008 <strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Astrophysics</strong> Colloquium


Initial<br />

Advanced<br />

• From Initial LIGO Advanced LIGO<br />

Next Generation LIGO (QND)<br />

• From 14 Mpc (NN inspiral) 200 Mpc and beyond<br />

• From Upper Limits Searches Detections<br />

• From Generic Waveforms Specified Waveforms<br />

• From Single Detectors Global Networks<br />

12 th February 2008 <strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Astrophysics</strong> Colloquium


LISA<br />

• A Collaborative ESA / NASA Mission to observe lowfrequency<br />

gravitational waves<br />

• Cluster <strong>of</strong> 3 S/C in heliocentric orbit at 1 AU<br />

• Equilateral triangle with 5 Million km arm-length<br />

• Trailing the earth by 20°<br />

• S/C contain lasers and free-flying test masses<br />

• Equivalent to a Michelson interferometer<br />

12 th February 2008 <strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Astrophysics</strong> Colloquium


LISA: Space based detector for detecting low<br />

frequency GW<br />

12 th February 2008 <strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Astrophysics</strong> Colloquium


LISA sensitivity curve<br />

• Confusion noise – problem not faced by ground-based detectors<br />

• Low frequency long duration sources<br />

12 th February 2008 <strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Astrophysics</strong> Colloquium


Space v/s Terrestrial<br />

12 th February 2008 <strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Astrophysics</strong> Colloquium


Fundamental Physics:<br />

LISA SCIENCE<br />

• Tests <strong>of</strong> strong field GR by mergers <strong>of</strong> comparable mass BHs:<br />

- Area theorem – before/after measurements <strong>of</strong> M and J<br />

- Cosmic Censorship – is a/M > 1 after merger<br />

- Stellar mass BH falling into a massive BH – few per year upto<br />

1 Gpc (Sigurdson and Rees, Phinney) - EMRIs<br />

High SNR - Test no-hair theorem ~ detailed waveforms with<br />

10 5 cycles in the last year 10 M falling into 10 6 M BH<br />

• Observe GW bursts from cosmic strings or other exotic sources<br />

12 th February 2008 <strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Astrophysics</strong> Colloquium


Αstrophysics:<br />

• Detect BH mergers in the<br />

range 10 5 - 10 7 M<br />

event rate ~ 15/yr<br />

• Study compact WD binaries<br />

- obtain mass spectrum …<br />

LISA SCIENCE contd<br />

• Detect hundreds <strong>of</strong> EMRIs – event rate ~ few hundred/yr<br />

- obtain spectrum <strong>of</strong> masses, spins<br />

• Discover unexpected sources, dark matter components<br />

12 th February 2008 <strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Astrophysics</strong> Colloquium


LISA data analysis at IUCAA<br />

Time-delay Interferometry<br />

• Cancellation <strong>of</strong> laser frequency noise and other systematic<br />

noises – optical bench motion, clock jitter, etc,<br />

SVD, Vinet, Nayak, Pai (2002 – 2003)<br />

Polynomial vectors in delay operators:<br />

Module <strong>of</strong> syzygies – space <strong>of</strong> data combinations cancelling<br />

laser frequency noise – Algebraic geometry<br />

• Current Work: General relativistic model needed to account<br />

for all effects<br />

Sagnac effect, changing arm-lengths, gravitational red-shift etc<br />

SVD, Vinet, Chauvineau (2006 - 2008) LISA simulator<br />

12 th February 2008 <strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Astrophysics</strong> Colloquium


FUTURE DIRECTIONS<br />

• Global Network <strong>of</strong> detectors LIGO, VIRGO, TAMA, GEO,<br />

AIGO<br />

• Sensitivity upgrades: Amplitude & bandwidth<br />

Advanced detectors: 2008 +<br />

Enhanced systems: lasers, seismic isolation, test-masses<br />

Event rate improvement: ~ 10 4<br />

• LISA will open the low frequency window: 10 -4 Hz – 1 Hz<br />

Many detections! High SNR<br />

Hopefully detections should begin soon with<br />

ground- based detectors<br />

12 th February 2008 <strong>Indian</strong> <strong>Institute</strong> <strong>of</strong> <strong>Astrophysics</strong> Colloquium

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!