10.11.2012 Views

WTC _,

WTC _,

WTC _,

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>WTC</strong> _,


International PyfheHometer Comparisons<br />

IPC VII<br />

24 September to 12 October 1990<br />

Results änd Symposium<br />

Working Report No. 162<br />

Swiss Meteorologica! Institute<br />

Davos and Zürich, March 1991


Internationa! PyrheHometer Comparisons<br />

IPC VII<br />

24 September to 12 October 1990<br />

Results and Symposium<br />

Table of Contents<br />

IPC VII. Part 1: Measurements and Results , 1<br />

1. Introduction .......... 1<br />

2. Pafticipation ........... . .. , I<br />

3. Data Acquisition and Evaluation : . . 3<br />

4. Results . ..... .... .. . ......... 4<br />

IPC VII Part 2: Tables and Figures 7<br />

IPC VII Part 3: Contributions to Symposium 35<br />

Table of Contents . . . : 35


1. Introduction<br />

IPC VII Part 1: Measurements and Results<br />

IPC VII Part 1: Measurements and Results<br />

The Executive Council of the World Meteorological Organization (WMO) at its 4 Ist Session (Geneva, June 1989)<br />

authorized the 7th International Pyrheliometer Comparisons (IPC VII) combined with the RA I and RA VI Regional<br />

Pyrheliometer Comparisons to be held at the Physikalisch-Meteorologisches Observatorium Davos; World Radiation<br />

Center (PMOD/WRC) from 24 September to 12 October 1990. The technicai Organization was delegated to<br />

PMOD/WRC, whereas the overall responsibility, as to ratify and disseminate the final results is with the WMO<br />

Commission for Instruments and Methods of Observation (CIMO) Working Group on Radiation änd Atmospheric<br />

Turbidity Measurements. The chairman of this WG is D.Wardle and the secretary from WMO K.Schulze; who was<br />

also responsable for the Organization of the IPC as far as WMO was concerned..<br />

2. Participation<br />

A total of 27 WMO Me'mbers and 7 Institutions were represented by 54 participants with 58 instruments. They<br />

are listed in Table. 1.1. Not all the participants Hsted in the last column were present during the whoie period; the<br />

ones labelled') are members of the CIMO WG and some of them attended on!y the last wcek's mceting qf the WG.<br />

A list ofaddresses is given in Part 2.<br />

Country Instrument Manüfacturcr<br />

... or dcsigncr<br />

Worid Radiation Centers<br />

USSR<br />

Switzerland<br />

WSG<br />

A212<br />

PCC3-005<br />

PM06 80022<br />

PM06 10<br />

PM02<br />

PM05<br />

CROM2-L<br />

CROM3-L<br />

HF-18748.<br />

MKV1-67814<br />

. PAC-3<br />

Regiona! Radiation Centers<br />

Table 1.1: IPC Vn Participation<br />

SMHI<br />

MGO<br />

PMOD<br />

PMOD<br />

PMOD<br />

PMOD<br />

IRMB<br />

IRMB<br />

Eppley<br />

TMI<br />

JPL<br />

RA I (including National Centers of RPC)<br />

Algeria<br />

Ä 16491 Eppley<br />

Egypt<br />

Ä564 SMHI<br />

Ethiopia NIP-18653 Eppley<br />

Kenya<br />

Ä 13444 Eppley<br />

Nigeria<br />

Ä576 Eppley<br />

Tunisia<br />

Uganda<br />

A 9003<br />

HF 23725<br />

Ä6549<br />

Eppley<br />

Eppley<br />

Eppley<br />

Institute Participant<br />

Main Gcophysical Observatory,<br />

Leningrad<br />

Physikalisch-Meteorologisches<br />

Observatorium, Davos<br />

Office National M6teo., Alger<br />

Meteo. Auth. Koubry, Cairo<br />

NaL Metep. Serv., Addis Ababa<br />

Kenia Meteo. Dept., Nairobi<br />

Meteo. Dept,, Lagos<br />

V.Kievantsova<br />

M.KIimovskäya<br />

C. Fröhtich<br />

J.Romero<br />

Ch.WchrH<br />

A.Chevalier, IRMB<br />

D. Crommelynck, IRMB<br />

AGeisseler, PMOD/WRC<br />

S-.KoIIcr, PMOD/WRC<br />

A.Rohrer, PMOD/WRC<br />

H.J.Roth, PMOD/WRC<br />

A.Chabäne<br />

F. M.E!-Hussainy<br />

G. ZeIelew<br />

G.Muchemi<br />

K.Rufai<br />

INnodu<br />

Centre Regional, M6teo. NaL, Tunis B.Ben M'Rad<br />

R.Kenzari<br />

Meteo. Service, Kampala E.Bagarukayo<br />

1


IPC VII Part 1: Measurements and Results<br />

RA II<br />

India<br />

Japan<br />

RA in<br />

Argentina<br />

RA IV<br />

Cänada<br />

USA<br />

RA V<br />

Australia<br />

Fihland<br />

France<br />

FR of Germany<br />

Hungary<br />

EPÄC-13219 Eppley<br />

PMO6-8H107 CIR<br />

MKVI-67915 TMI<br />

HF-18747 , Eppley<br />

EPAC-12843<br />

MKV1-67502<br />

Ä 578<br />

PMO6-850407<br />

HF-27160<br />

Various Institutions<br />

DSET, USA HF-17142<br />

Eppley, USA HF-14915<br />

HF-21185<br />

HF-27798<br />

Table 1,1: IPC VII Participation (cont.)<br />

Eppley<br />

TMI<br />

SMHI<br />

CIR<br />

Eppley<br />

RA VI (including National Centers of RPC)<br />

Austria<br />

A 15192 Eppley<br />

MKVI-68025 TMI.<br />

Belgium<br />

A 7 Smiths.Inst.<br />

A 7190 Eppley<br />

A 7191 Eppley<br />

PMÖ6^850401<br />

A 7636<br />

MKVI-68016<br />

A 568<br />

PM06-5<br />

HF-19746<br />

Israel<br />

HF-27162<br />

Netherlands A559<br />

HF-27159<br />

Norway EPAC-13617<br />

Spain PMO6-811104<br />

Sweden<br />

A 171<br />

PMO6-811108<br />

Switzerland PM06-79121<br />

United Kingdom MKVI-67604<br />

2<br />

CIR<br />

Eppley<br />

TMI<br />

SMHI<br />

PMOD<br />

Eppley<br />

Eppley<br />

SMHI<br />

Eppley<br />

Eppley<br />

CIR<br />

SMHI<br />

CIR<br />

CIR<br />

TMI<br />

Eppley<br />

Eppley<br />

Eppley<br />

Eppley<br />

Meteo. Office, Pune<br />

Meteo. Agency, Tokyo<br />

Meteo. Service, Buenos Aires<br />

Atm. Env. Service, Toronto<br />

Nat. Ocea. Atm. Adm., Boulder<br />

Bureau Meteo., Melbourne<br />

Meteo. Zentralanstalt, Wien<br />

, Inst. Roy. Meteo., Bruxelles<br />

Meteo. Institute, Helsinki<br />

Centre Radiometr., Carpentras<br />

Dt. Wetterdienst; Hamburg<br />

Inst. Atmos. Phys., Budapest<br />

Meteo. Service, Bet Dagan<br />

Meteo. Institute, GK De Bilt<br />

Geophys. Institute, Bergen<br />

Inst. Nacional, Madrid<br />

Meteo. Institute, Norrköping<br />

Inst. Suisse M6teo., Payeme<br />

Meteo. Office, Wokingham<br />

DSET Lab, Phoenix<br />

Eppley Lab, Newport<br />

V.Desikan<br />

H.Shimura<br />

T.Grajnar<br />

B.McArthur')<br />

D.Wardle*)<br />

D.NeIson<br />

B.Forgan*)<br />

K.Gregory<br />

P.Novotny<br />

E. Wessely<br />

H.Boyen<br />

AJoukpff<br />

M.Lombaerts<br />

W.Vandenborre<br />

L.Laidnen<br />

J.Olivieri<br />

K.Dehne^)<br />

G.Major")<br />

F. Miskolczi<br />

Z.Nagy ^<br />

A.Manes<br />

W.Slob<br />

T.de Lange<br />

R.M.Ramlrez Marttn6z<br />

L.Dahlgren<br />

M.Collins<br />

J.Hickey


JPL.USA<br />

SIRI.USA<br />

TMI, USA<br />

Inst.Geo. Mdxico<br />

NTI, Sweden<br />

MKVI-67702<br />

MKVI-68018<br />

MKVI-69036<br />

MKVI-67401<br />

Ä 18587<br />

HF-15744<br />

Table 1.1: IPC Vit Participation (cont.)<br />

TMI<br />

TMI<br />

TMI<br />

TMI<br />

Eppley<br />

Eppley<br />

3. Data Acquisition and Evaluation<br />

IPC VII Part 1: Measurements and Results<br />

Jet Propulsion Lab!, Pasadena<br />

Solar Energy Res. Inst., Golden<br />

Technical Meas. Inc., La Canada_<br />

Univ. NaL Aut. Mexico, Mexico<br />

NaL festing InsL, Boras<br />

EJLaue<br />

C.V.WeUs<br />

TJ..Stoffel<br />

MlBerdahl<br />

J.Stallkamp<br />

A.Muhlia<br />

LJ^iedquist<br />

3.1 Timing<br />

The measurements are taken in runs lasting 2-1 minutes with a basic sampling of 90s,. Voice announcements before<br />

änd büzzer Signals during each event are used to inforrn the participant about the sequence. The timing for the<br />

different instrument. types isasfollows:<br />

a) Angstrom pyrheliomcters: during the first 90s the zero of the instrument is es^blished. From there on every<br />

90s a icft or right rcading is performed, stariing with exposing the right hand Strip to the Sun. The first Teadingis<br />

not taken into account. The following readings are combined as L-R, R-L, etc., yielding a total öf 11 irradiance<br />

values per run.<br />

b) PACRAD: the run Starts with shutter closed, after 60s the heater is turned pn during 30s (this was introdüced<br />

after IPC III in order tö have a. well defined thermal Status of the instrument independentof the Operation sequence<br />

beibr the run). At 270s the zero of the thermopile is read and the heater switched on again. At 360s the heatcr<br />

voltage, current and thermopile is read, the heater tumed off and the shutter opened; From 450s on every 90s<br />

readings are taken änd after the last one the shutter is clösed yielding 8 irradiance yalues during a tun;<br />

c) HF type pyrheliometers: the run Starts with the shuttcr'closed, after 90s the zero i$ read. Then the heater is<br />

turned on until 90s and then the voltage, current and thermopile is read, the heater tumed off and the shutter opened.'<br />

From 270s onward the in$tm^<br />

d) TMI type pyrheliometers: the run Starts with shutter closed and.the calibration procedure is performed until the<br />

end of the first 90s. Starting at. 180s readings are taken every 90$ yielding a total öf 12 irradiance yalues during a<br />

, run. - .. . * - '<br />

c) Active cavity type pyrheliometers : the run Starts with a reference phase (shutter closed) during the first 90s,<br />

foiiowed by a measuring phase (shutter open) for the next 90s. This is repeated for the next 18 minutes. A total pf<br />

6 open and 7 closed readings are taken yielding a total öf 6 irradiance välues during a run. PM02, as the working<br />

reference, is read at twice the pace, yielding 13 irradiances for each run. The reference phase lasts 38s and the<br />

measuring phase 52s.<br />

f) Other instruments: the NIP ahd PCC3-005 pyrheliometer take 12 irradiance values every 90s after a zero<br />

rcading during the first 90s. < . . '<br />

3.2. Acquisition<br />

The analog data-acquisition system is based on 8 parallel DVM HP3478A with scanners and is used for the WSG<br />

Instruments, the radiorneters of PMOD/WRC and the auxiliary data. For the input of data from thepartieipants micro-.<br />

terminals, Burr-Brown type TM27 and TM2700 are used. The whole System is controlled by a HP Computer Series<br />

9200, which also Stores and evaluates the data. The terminals are identified by an ünique address (terminal number)<br />

and the input from the partieipahts cönsists of up to 8 digits foiiowed by a label A to F; indicatihg the type of data.<br />

A maximum Of three different values ean be assigned to Ohe instrument. Thus two users can share a terminal.<br />

3.3. Data Evaluation ;<br />

For each instrument the irradiance and ratio to PM02 is obtained with the corresponding evaluation procedure.<br />

After each run, a summary of measured yalues and eyäluated irradiances is printed and distributed for checking by<br />

the parüeipants and; if necessary, the raw data can be edited for gross errors. Updated summaries with the mean


IPC VII Part 1: JMeasurements and Results<br />

Yalues of the ratio and the Standard deviation for each instrument are made available during the course of the<br />

comparison.<br />

For each type df instrument the procedure used to calculate the irradiance is described in the following. The<br />

notationsare: - -<br />

V^ Output of the thermopile<br />

UM voltage across heater (h) or Standard resistor (i)<br />

R. Standard resistor<br />

K calibration factor<br />

Ci correction factor for lead heating<br />

P electrica! power in the active cavities<br />

a) Ä-pyrheliometers: the current through the right or left Strip is measured as voltage drop across a Standard<br />

resistor and the irradiance obtained as :<br />

y = AT^l^<br />

This corresponds tö the geometric mean of the irradiances at the time of right and left reading. Thus, the ratio to the<br />

reference is calculated using the geometric mean of the irradiances at the corresponding instantes.<br />

b) PACRAD änd HF type pyrheliometers: the irradiance is calculated from the thermopile Output V^(irrad) when<br />

the receiver is irradiated. The sensitivity is determined by the calibration during which the cavity is electrically heated<br />

and U), and U; are measured together with the corresponding thermopile Output V^(cal).Furthermore, the zero of the<br />

thermopile V^(null) is measured and taken into account, .<br />

, e) TMI type pyrheliometers: most are operated in thg 'normal' way, that is by calibrating the readout directly (for<br />

an irradiance of 100 mWcm*^ a value of 100 mV is displayed).The values are entered in Wm** and no irradiance<br />

calculation is neede^. Others are operated and evaiuated as HF type pyrheliometersd)<br />

Active cavity pyrheliometers : the irradiance is obtained from. P^^ averaged from the closed values before<br />

and after the open reading P^. The power ca!cu!ation aecording tp the prescription of the type of instrument:<br />

wRA P = Uj^, or P - ^ or P - t/^ —i<br />

' ^.' * ' ' -<br />

e) Other. instruments: for the NTP the thermopile reading is multiplied with its calibration factor after substraction<br />

öf the zerö. For the PCC3-005 the irradiance is evaiuated by the Operator (similar to an active cavity pyrheliometer<br />

with.reference and observätion phase).<br />

f) Reference values from PM02: As during the preeeding IPC PM02 is used äs the working reference instrument.<br />

the irradiance values of PM02 used as reference are obtained with the algorithm of the active cavity radiometers<br />

with P^,) as mean of the c!osed readings before and after the current open phase. At the end of the open phase, 8<br />

P°pcn readings are taken, separated by approxirhately 0^7s. The first of these readings is used as reference for the<br />

values entered by the terminals and the other 7 for the instruments connected to the analog data acquisition system<br />

at the appropriate time. The Standard deviation of these 8 readings is also used as quality control parameter to judge<br />

thestabilityoftheradiation.<br />

3.5. Auxiliäry Data<br />

The meteorological parameters are taken from the automaüe weather Station of the Swiss Meteorological Service<br />

located at PMOD/WRC. From this System 10 minutes values are available which are averaged over the period of<br />

a run. The values are: air temperature, relative humidity, atmospheric pressure (p.34), global radiation, sky radiation<br />

(p.31). Ciose to the measuring benches the wind speed and direetiön is measured, not as meteorological parameter,<br />

but as an indication öf the Situation at the measuring site (p.33). Mpreover, an instrument temperature is also given


IPC VII Part 1: Measurements and Results<br />

(p.33). Sunphotometer measurements are used to determine total vertical optica! depth at 368,500 and 778 nm (p.32).<br />

The daily Ozone values are measured at Arosa and amount to: 28.09: 273.0, 2.10: 282.8, 3.10: 278.5, 9.10: 270.0,<br />

10.10: 260.0 and 11.10: 261.6 mcm (Dobsön units).<br />

4. Results<br />

A total of 36 runs taken during 7 days (1 to 11 runs per day) have been selected for the finai evaluation.- The<br />

value of PM02 readings are plotted in Fig.2.28 (p,31) and the individual ratios to PM02 on Fig.2.1-2.57 (pp.12-30)<br />

together with the frequency distribution of the data to ülustrate possible deviaüons from a normal distribution. The<br />

sky eonditions were not always ideal and the criteria for keeping a specific reading is based on the Standard deviation<br />

of the 8 readings of PM02, which had to be lower than 0.8 Wm"^. If this criterion was not reached the readings of<br />

all instruments at that particular time were dismissed. The mean results are summarized in Table 1!2 with the<br />

calibration faetdrs (C„ Q, C3) used in the evaluation and the WRR calibration factor from IPC VI if available.<br />

Instrument<br />

PM02<br />

PM05<br />

CROM 2L<br />

CROM 3L<br />

PAC 3<br />

MKVI-67814<br />

HF-18748<br />

PM06-5<br />

PMO6-10<br />

PM06-79121<br />

PMÖ6-80022<br />

PMO6r811104<br />

PMO6-811107<br />

PMO6-811108<br />

PMO6-850401<br />

PMO6-850407<br />

EPAC-12843<br />

EPAC-13219<br />

EPAC-13617<br />

HF-14915<br />

HF-15744<br />

HF-17142<br />

HF-18747<br />

HF-19746<br />

HF-21185<br />

HF-23725<br />

HF-27159<br />

HF-27160<br />

HF-27162<br />

HF-27798<br />

Calibration Cönstants<br />

C2 C3<br />

24.18<br />

31.615<br />

127.687<br />

127.549<br />

9962.6 .07 75<br />

10007. 10.<br />

19989. .07 75<br />

23/729 '<br />

22.6395<br />

23.847<br />

23i9l5<br />

23.855<br />

24.031<br />

24.0887<br />

24.095<br />

24.046<br />

1.0035<br />

10079.<br />

10024.<br />

20010.<br />

20020.<br />

20020.<br />

20014;<br />

19975.<br />

20020.<br />

19970.2<br />

20030.<br />

20030.<br />

20020.<br />

20020.<br />

.064<br />

.064<br />

.066<br />

.066<br />

.066<br />

.066<br />

066<br />

.066<br />

Table 1.2: Ratios to PM02 and WRR-WSG<br />

Comments<br />

WRR (IPC VI) 24^1546<br />

WRR (IPC VI) 31.6384<br />

WRR (IPC VI) 128.0215<br />

WRR (IPC VI) 127.4852<br />

WRR (IPC VI) 9965.59<br />

WRR (IPC VI) 10015.3<br />

WRR (IPC VI) 23.7314<br />

WRR (IPC VI) 22.7346<br />

WRR (1987)<br />

WRR (IPC VI) 23.9205<br />

Charäcterization 1982<br />

WRR (IPC VI) 24.0120<br />

Change in electronics<br />

WRR (1985)<br />

WRR (1986) 24.196<br />

WRR (IPC VI)<br />

WRR (IPC VI)<br />

WRR (IPC VI) 10052.1<br />

WRR (IPC VI) 19978.4<br />

WRR (IPC VI) 20020.6<br />

WRR (TPC VI) 19982.<br />

WRR (IPC VI) 19998.6<br />

WRR (IPC VI) 19973.8<br />

WRR (IPC VI)<br />

Ratio to PM02<br />

with C used<br />

1.00000<br />

.99881 + .00092<br />

' .99651 + .00140*<br />

1.00054 ± .00140<br />

.99917 ± .00085<br />

.99850 ± .00090<br />

(1.00022 ± .00197<br />

1.00073 ± .00417<br />

.99717 ± .00219<br />

.99320 ± .00090<br />

1.00232 ± .00090<br />

1.00044 ± .00119<br />

.99995 ± .00153<br />

.99947 + .00087<br />

1.00085 + .00189<br />

.99141 ± .00187<br />

1.00152 + .00169<br />

1.00031 + .00541<br />

.99716 + .00193<br />

1.00104 + .00129<br />

.99976 ± .00098<br />

1,00244 ± .00158<br />

1.00027 + .00132<br />

.99790 ± .00122<br />

1.00012+ .00161<br />

.99838 ± 00188<br />

1.00016 ± .00113<br />

1.00217 ±.00115<br />

, .99907 ± .00133<br />

L00107 ±.00146<br />

Ratio to Change Fig.<br />

WRRwsG PP*^ ' page<br />

-.99951 -487<br />

1.000H 113<br />

.99984 -157<br />

1.00060 603<br />

1.00003 33<br />

.99989 -107<br />

31<br />

12<br />

12<br />

12<br />

13<br />

13<br />

1.00078)') 13<br />

1.00140 1396 14<br />

1.00192 1924 14<br />

.99376<br />

14 ..<br />

L00312 3117 15<br />

1.00101 15<br />

.99969 -306 15<br />

1.00003 16<br />

1.00142 16<br />

.99816 16<br />

1.00209 2085<br />

1.00088 1 875<br />

17<br />

17<br />

1.00052 520 17<br />

1.00002 .23 18<br />

1.00035 . 354 18<br />

1.00110 1102 18<br />

1.00007 65 19<br />

.99840 -1597 19<br />

1.00069 19<br />

.99894 1056 20<br />

1.000731 20<br />

1.00274 20<br />

.99963<br />

21<br />

1.00164<br />

21<br />

') After the comparison a bug was found in the cavity; although it was not in beam the results have to be discarded.<br />

5


IPC VII Part 1: Measurements änd Results<br />

MKVI-67401<br />

MKVI-67502<br />

MKVI-67604<br />

MKVI-67702<br />

MKVI-67915<br />

MKVI-68016<br />

MKVI-68018<br />

MKVI-68025<br />

. MKVI-69036<br />

A-7 .<br />

A-171<br />

. A-212<br />

A-559<br />

A-564<br />

A-568<br />

A-576<br />

A-578<br />

A-6549<br />

A-7190<br />

A-7191<br />

A-7636<br />

A-9003<br />

A-13444<br />

A-15192<br />

A-16491<br />

A-18587<br />

^ PCC3-0Ö5<br />

NIP-18653<br />

1.0028<br />

1.0039<br />

1.0028<br />

1.0035<br />

1.00406<br />

1.0037<br />

1.0046<br />

1.0020<br />

1.0020<br />

30044.3<br />

5715.<br />

10535,<br />

5724.<br />

5913.6<br />

5767.<br />

5885.6<br />

6241.<br />

4418.6<br />

4586.<br />

4502.<br />

4321.4<br />

4564.8<br />

4428.67<br />

4479.<br />

4540,<br />

4516.3<br />

50.9933<br />

9.6<br />

Table 1,2: Ratios to PMOl^nd WRR-WSG (cont.)<br />

3.0<br />

2.0<br />

250<br />

WRR (IPC VI) 1.00486 .99956 ± .00134 1.00218 2179<br />

WRR (IPC VI) 1.00236 1.00058 ± .00132 .99961 -391<br />

WRR(IPC VI) 1.00373 .99711 ± .00123 .99860 -1402<br />

WRR (IPC VI) 1.00066 1.00127 ± .00129 .99900 -1000<br />

WRR (IPC VI) 1.00583 1.00071 ± .00126 1.00304 3040<br />

WRR (IPC VI) 1.00353 .99836 + .00124 .99876 -1245<br />

1.00074 ± .00090 1.00131<br />

.99997 ± .00172 1.00054<br />

.99854 ± .00101 .99910<br />

WRR (IPC VI)<br />

.99835 + .00153 .99891 -1086<br />

WRR (IPC VI<br />

.99902 + .00244 .99958 -416<br />

WRR (IPC VI) 10527.8 .99858 ± .0Q224 .99846 -1539<br />

WRR (RPC-VI IV) .99838 + .00363 .99894 -1056<br />

WRR (IPC VI) .99754 ± .00354 .99810 ^1897<br />

WRR (IPC VI)<br />

.99845 ± .00234 .99901 -986<br />

WRR (IPC VI) .99837 + .00304 .99893 -1066<br />

WRR (IPC VI) 6237.3 .99779 ± .00141 .99776 ^2239<br />

..98726 ± .00238 .98782<br />

WRR (RPCrVI IV) .4616. .99527 ± .00444 .99583<br />

WRR (RPC-VI IV) 4544. . .99255 + ,00772 .99311<br />

WRR (IPC VI) '<br />

WRR (IPC VI)<br />

.99793 + .00147 .99849 -1507<br />

^99966 ± .00499 1.00022 224<br />

.98909 + ,00146 .98965<br />

WRR (Budapest 1987) 1.00030 ± .00216 1.00087 $65<br />

1.00374 + .00200 1.00431<br />

WRR (IPC VI)<br />

.99442 + .00354 .99498 -5029<br />

1.00085 + .00477 1.00142<br />

.99527 + .00211 .99583<br />

The mean of the ratios öf all absolute radiometers having participated in IPC VI (26 instruments) amounts to<br />

1.00039 ± .00131 and the mean taking all (including the A-pyrheliometers, 37 instruments) is .99984 + .00156. These<br />

results demonstrate the stability of the WSG and most of the instruments. In order to define the WRR for the<br />

evaluation of JPC VII the results of the WSG members are analyzed first. According to the decisions of CIMO IX<br />

the WSG consists of PM02, PM05, CROM 2L, CROM 3L, PAC 3, HF 18748 and the MKVI 67814. After the<br />

comparison a bug was foünd in the cavity of HF 18748; although it was not in beam its results have to be discarded.<br />

6<br />

21<br />

22<br />

22<br />

22<br />

23<br />

23<br />

23<br />

24<br />

24<br />

24<br />

25.<br />

25<br />

25<br />

26<br />

26<br />

26<br />

27<br />

27<br />

27<br />

28<br />

28<br />

28<br />

29<br />

29<br />

29<br />

30<br />

30<br />

30


IPC vn Part 1: Measurements and Results<br />

The remaining 6 are used to deHne the WRR with their WRR factors of IPC VI. The WRR result qf each WSG<br />

instrument can bc calculated from<br />

and yields the follöwing WRR values:<br />

WSG Instrument<br />

PM02:<br />

PM05:<br />

CROM 2L:<br />

CROM3L:<br />

PAC 3:<br />

MKVI 67814<br />

Mean:<br />

.. ' . , * \ - '< ' ' '<br />

fwRR(X) - X/fwm,(PM02) WRR(X) Deviation<br />

6.99895 ' (1.OOOOO/099895)<br />

1.00074 ' (0.99881/0.99895)<br />

1.00278 -(0.99651/0.99895)<br />

0.99950 -(1.00054/0.99895)<br />

1.00030 -(0.99917/0.99895)<br />

1.00083 -(0.99850/0.99895)<br />

1.00000<br />

1.00060<br />

1.00033<br />

1.001Ö9<br />

1.00052<br />

1.00038<br />

1.000487<br />

The Standard deviation of the mean for all 6 WSG instruments amounts to 10*^=361 ppm. The deviations of PM02<br />

and CROM 3L exceed lo* which might be due to a real change of the instrument or the influenae of the atmospheric<br />

eonditions being different from IPC VI. The mean is not significäntly changed (-27 ppm) if they are left out, only<br />

the Standard deviation is decreased to 124 ppm. Thus, the WRR is well represented by the mean of the WSG and<br />

the results shown in Table 1.2. This choice of the WRR is also süpported by the results from the partieipating<br />

instruments having IPC VI WRR factor. The mean deviation pf all absolute radiometers (inciuding 'the WSG) is<br />

about Icwsaand 387 ppm above one or about 0.5o*wsG and* 163 ppmbelow one if the A-pyrheliometers are included.<br />

ppm<br />

-487<br />

113<br />

-157<br />

603<br />

33<br />

-107<br />

7


IPC VII Part 2: TäMes and Figures<br />

8<br />

IPC VU Part 2: Tables and Figures<br />

Table 2.2: View limiting geometries of absolute radiometers and NIP<br />

Instrument Dimensions[mm]<br />

R r I<br />

PM02 3.6 2.5 85,0<br />

PM05 , 3.7 .2.5 95.4<br />

CROM 2L 6.29 . 4,999 144.05<br />

CROM 3L 6.25 5.0 144.0<br />

PAC 3 8.18 5.64 190.5<br />

HF 18748 5.81 3,99 134.7<br />

MKVI 67814 8.2 5.65 187,6<br />

PM06 genertc 4.1 2.5 94.0<br />

PM06-5 3.6 2.5 84.2<br />

PMO6L10 4.25 . 2.5 95.4<br />

EPAC ggheric 8.32 5.64 190.5<br />

HFgeneric 5.81. 3,99 . 134.7<br />

MKVI genertc 8.2 5.65 187.6<br />

MKVI-67401 8.2 5.64 190.5<br />

PCC3-005 10.0 5.0 114:5<br />

NIP-1865.3 10.3 4.0 203.0<br />

R t radius of front aperture, r : radius of receiver aperture, ! : distance between apertures<br />

Table 2,2: View Iimitihg geometries of A-pyrheliometers<br />

Instrument Dimcnstons [mm]<br />

1 v w<br />

A-7 150.0 . . 9.5 7.5.<br />

A-171 ,. 72.2 10.25 2.4<br />

A-212 50.0 11.8 2.5<br />

A-559 70.0 10.0 8.0<br />

A-564 75.1 10.3 2.5<br />

A-568 55.5 10.6 4.0<br />

A-576 . .82.0 10.0 2.5<br />

, A-578 70.5 10.3 2.5<br />

A-Eppley 111.0 10.3 4.1<br />

V, w : half tength of the sides df the front aperture rectangle.J : distance between receiver and front aperture


E. Bagarukayo<br />

DepL of Meteoroiogy ,<br />

Min. Environment Prot.<br />

P.O. Box 7025<br />

Kampala<br />

Uganda<br />

Tel: ..25 6 41 258 537<br />

B. Ben M'Rad<br />

Ihst. National de la Meteorologie<br />

BP. 22 ;.<br />

2035 Tunis Carthage .<br />

Tunisia .<br />

Tel: ..21 61 782 400<br />

Fax: ..21 61 784 608<br />

M.C. Bcrdah!<br />

Tcchn. Measurements, Inc.<br />

RO. Box 838<br />

Lä Canada, CA 91012 *'<br />

U:S.A.<br />

Tel: ..I 818 248.1035<br />

Fax: ..i 818 790 4257<br />

H. Boyen<br />

IRMB<br />

3, avenue Circulairc<br />

B-1180 Bruxelles<br />

Tel: ..32 2 373 0626<br />

Fax: ..32 2 375 5062<br />

A. Chäbane<br />

O N M Dar-Et-Beida<br />

Route de. §idi-Mouissa<br />

Algcr -<br />

A!gir '<br />

Tel: .21 ß 250 8950<br />

Ai Chevalier<br />

IRMB<br />

3, avenue Circulaire<br />

B-1180 Bruxelles<br />

Tel: ..32 2 373 0602<br />

Fax: ..32 2 374 6788<br />

Table 2 J: Address Hst of the Participants<br />

M, Coliins<br />

Nadönal Radiation Centre<br />

Meteoroiogicai Office .<br />

Beaufort Park<br />

Eästhampstead<br />

UK-Wokingham, RG11 3DN<br />

Tel: .^44 3 4485 5879<br />

Fax: ..44 3 4485 5878<br />

Dr. D. Crommelynck<br />

I R MB<br />

3, Avenue Circulairc<br />

B-1180 Bruxelles<br />

Tel: ..32 2 373 0600<br />

Fax: ..32 2 374 6788<br />

Dr. L. Dahlgren<br />

Swedish Meteo. Hydro. Inst.<br />

S-60176 Nörrköping<br />

Tel: ..46 11 158 186<br />

Fax: .;46 H 158 26!<br />

T.de Lange '<br />

Geophys. Inst, Dept. Meteo.<br />

University of Bergen<br />

Aüegtcn 70<br />

N-5007 Bergen ,<br />

Tel: .47 5 212 687<br />

Fax: ..47 5.960 566<br />

K. Dehne<br />

Meteorologisches Observatorium<br />

Deutscher Wetterdienst<br />

Frahmreddcr 95<br />

D-2000 Hamburg 65<br />

Tel: ..49 40 601 73220<br />

Fax: ..49 40 601 73299<br />

S.V. Desikan<br />

Instruments Division<br />

Meteorological Office<br />

Poona 411 005<br />

India<br />

Tel: ..91 0212 339 015<br />

Fax: ..91 0212 58 289<br />

tPC VII Part 2: Tables and Figures<br />

F.M. El.-Hussainy<br />

Meteorological Authority<br />

Koubry El-Quobba<br />

Cairo<br />

Egypt<br />

Tel: ..20 2432 830 105<br />

B.W. Forgan<br />

Bureau of Meteoroiogy<br />

GTOBox 1289K<br />

Melbourne, Victoria 3001<br />

Aüstralia<br />

Fax: ..61 3 669 4050<br />

T. Grajnar<br />

Atmosph. Environment Service<br />

4905 Dufferin: Street<br />

Dowhsview, Ontario M3H 5T4<br />

Canada<br />

Tel: ..1 416 739 4464 .<br />

Fax: ..1 416 739 4521<br />

K.J. Gregory<br />

Bureau of Meteoroiogy<br />

GPO Box I289K<br />

Melbourne, Victoria 3001<br />

Aüstralia,<br />

Tel: .,61 3 669 4050<br />

Fax: ..61 3 669 4168<br />

Dr. J.R. Hickey<br />

Eppley Laboratory, Inc.<br />

12 Sheffield Avenue<br />

P.O.B. 419<br />

Newpört, R.I. 02840<br />

U.S.A,<br />

Tel: .1 401 847 1020<br />

Fax: .1 401 847 1031<br />

A. Joukoff<br />

IRMB<br />

3, avenue Circulaire<br />

B-1180 Bruxelles<br />

Tel: ...32 2 373 0623<br />

Fax: ..32 2 374 6788<br />

9


IPC VII Part 2: TaMes and Figures<br />

R. Kenzari<br />

Inst. National de la Meteorologie<br />

BP. 22<br />

2035 Tunis Carthäge<br />

Tunisia<br />

Tel: ..21 61 782 400<br />

Fax: ..21 61 784 608<br />

V.A. Klevantsova<br />

Main Geophysical Observatory<br />

Karbyshcva 7<br />

Leningrad 194018<br />

U.S.S.R<br />

Tel: ..7 812 247 0103<br />

Fax: ..7 812 247 8661<br />

M;V. Klimovskaya<br />

Main Geophysical Observatory<br />

Karbysheva 7<br />

Leningrad 194018<br />

USSR<br />

. Tei: ..7 812 247 0103<br />

Fax: .,7 812 247 8661<br />

L. Laitinen 1<br />

Finnish Meteoroiogicai inst.<br />

Box 503<br />

Vuorikatu 24<br />

SF^OOlOl Helsinki 10 .<br />

fei: ..35 8 0192 9443<br />

E.G. Laue<br />

Jet Propulsion Laboratory<br />

4800 Oak Grove Drive<br />

Mai! Stop 125-177<br />

Pasadcna, CA 91109<br />

U.S.A.<br />

Te!: ..1 818 354 3304<br />

Fax: ..1 818 354 8153<br />

L. Liedquist<br />

Physics and Electrot&hnics<br />

Swedish Nat-Testing + Res.Insti<br />

Box 857<br />

S-50115 Boras<br />

Tel: ..46 33 165 448<br />

Fax: ..46 33 135 502<br />

TaMe 2 J: Adresslist of the Participants (cont.)<br />

M- Lombaerts<br />

IRMB<br />

3, avenue Circulaire<br />

B-1180 Bruxelles<br />

Tel: .32 2 373 0602<br />

Fax: ..32 2 374 6788<br />

Dr. G. Major<br />

Inst, for Atmospheric Physics<br />

P.O.Box 39.<br />

H l675 Budapest<br />

Tel: 0036 1 585 711<br />

Dr. A. Manes \<br />

Director, R&D<br />

Meteorological Service<br />

P.O.Box 25<br />

50250 Bet Dagan<br />

Israel<br />

Te!: .,97 23 968 2187 ;<br />

Fax: ..97 23 968 2126<br />

B. McArthur<br />

Atmosph. Environment Service<br />

4905 Dufferin Street<br />

Downsview, Ontario, M3H 5T4<br />

Canada<br />

Te!: ..1 416 739 4464<br />

Fax: ..1 416 739 4521<br />

Dr. F. Miskolczi<br />

Inst, for Atmospheric Physics<br />

P.O.Box 39<br />

H-1675 Budapest<br />

Te!: ..3 61 158 5711<br />

G.M. Muchemi<br />

Kenya Meteo. Dept.<br />

Min. Transp. & Communication<br />

P.O. Box 30259<br />

Nairobi<br />

Kenya<br />

Tel: ..2542 56 788 018<br />

A. Muhlia V.<br />

Insütuto de Gebfisica<br />

Univ. Nac. Autonoma de Mexico<br />

Circ. Ext., Deleg. Coyoacan<br />

04510 Mexico D.F.<br />

Mexico<br />

Tel: ..52 5 *572 36 22<br />

Fax: ,.52 5 550 2486<br />

Z. Nagy<br />

Inst, for Atmospheric Physics<br />

P.O. Box 39<br />

H-1675 Budapest<br />

Tel: . 36 1 158 5711<br />

D.W. Nelson<br />

ARL/GMCC /R/E/AR4<br />

NOAA<br />

325 Broadway<br />

Boulder, CO 80303<br />

U.S.A.<br />

Tel: ..1 303 497 6662<br />

Fax: ..1 303 497 6290<br />

N. Nnodu<br />

Headquarters<br />

Meteorologica! Department<br />

Private Mai! Bag 12542<br />

Lagos<br />

Nigeria<br />

Tel: .23 41 633 371<br />

P.M. Növotny<br />

Bureau of Meteoroiogy<br />

P O. Box 1289K<br />

Melbourne, Victoria 3001<br />

Australia<br />

Tel: ..61 3 669 4050<br />

Fax: ..61 3 669 4168<br />

J. Olivieri<br />

Centre Radiometrique<br />

Meteorologie Nationale<br />

P-8426oCarpentras<br />

Tel: ..33 9063 1271<br />

Fax:, ..33 9060 1078


R.M. Ram&ez Martfhez<br />

Inst. Naciönal de Meteorologia<br />

Paseo de las Mqreras S/N<br />

E-Madrid 28071<br />

Tel: ..34 91 581 9738<br />

Fax: ..34 91 581 9767<br />

K.R. Rufai<br />

Headquarters<br />

Meteorological Department<br />

Private Mail Bag 12542<br />

Lagos<br />

Nigeria<br />

Tel: . 23 41 63 33 71<br />

K. Schulze<br />

WMO<br />

Case postale Nö. 5.<br />

1211 Geneve 20 .<br />

Tel: 022 730 81 11<br />

Fax: 022 73 40 954<br />

H. Shimura<br />

Japan Meteorological Agency<br />

1-3-4, Ote-maehi<br />

Chiyoda-ku<br />

Tokyo 100<br />

Japan<br />

Tel: . 81 3211 4966<br />

Fax: ..81 3211 2032<br />

Table 2.3: Adresslist of the Participants (cont)<br />

W H. Slob<br />

Royal NL Meteorological Inst.<br />

P.O.Box 201<br />

Wilhelminalaan 10<br />

NL-3730 AEDeBilt .<br />

Tel: .31 30 206 911<br />

Fax: .31 30 210 407<br />

J.A. Stallkamp<br />

Techn. Measurements, Inc.<br />

Box 838 '<br />

La Canada, CA 91011<br />

U.S.A.<br />

Tel: ..1 818 248 1035<br />

Fax: .1 818 790 4257<br />

T.L. Stoffel .<br />

Solar Energy Research Inst.<br />

1617 Cöle Boulevard<br />

Golden, CO 80401-3393<br />

U.S.A<br />

Tel: :.l 303 231 1814<br />

Fax: ..1 303 231 1381<br />

W. Vandenborrc<br />

IRMB<br />

3, avenue Circulairc<br />

B-1180 Bruxelles<br />

Tel: ..32 2 374 6787<br />

Fax: ..32 2 375 5062<br />

IPC VII Part 2: TaMes and Figures<br />

DJ. Wardle<br />

Atmosph. Environment Service<br />

4905 Dufferin Street<br />

Downsview, Ontario M3H 5T4<br />

Canada<br />

Tel: ..1 416 739 4464<br />

Fax: .1 416 739 4521<br />

Ch. Wells<br />

Solar Energy Research Inst.<br />

1617 CoieBlvd.<br />

Golden, CO 80401<br />

U.S.A.<br />

Tel: .;! 303 231 1981<br />

Fax: ..1 303 231 1381<br />

Dr, E. Wcssely<br />

Zentraianstalt für Meteorologie<br />

und Geodynamik<br />

Höhe Warte 38 .<br />

A^l 190 Wien<br />

Tel: ..43 1 364 453<br />

Fax: . 43 1 369 1233<br />

G. Zclelew<br />

Nat. Meteorol. Service Agency.<br />

P.O. Box 1090<br />

Addis Ababa<br />

Ethiopia<br />

Tel: ..25 11 512 299<br />

11


IPC VTI Part 2: Tables and Figures<br />

12<br />

- 4+<br />

Figure 2.1-23: Resuits of PM05, CROM2L, CROM3L<br />

IPC Vn Results for PM05/PM02: .99881 * .00092 n=191<br />

-t L. -< ) < t ' ' ' t ) ) ' ' ' ' ) ) ) t—) t t ) t—Lj—)—L—


2009 .0640<br />

2909 .0910<br />

2609: .0940<br />

2509 .1100<br />

2609, .1130<br />

2809. .1200<br />

2809. .1230<br />

2809. .1300<br />

2609. .1330<br />

2809. 1400<br />

2609. .1620<br />

02fÖ. .1230<br />

0210. .1430<br />

0210 1500<br />

0210. 1530<br />

0310. .1000<br />

0310. 1045<br />

0310. 1115<br />

0710. 1045<br />

0910. 1212<br />

0910. 1242<br />

091Ö. 1312<br />

1010. 0845<br />

1010. 0916<br />

1010. 0945<br />

1010. 1042<br />

1010. 1112<br />

1010. 1242<br />

1010. 1448<br />

1010. .1518<br />

1110. 0630<br />

1110. .0900<br />

1110. .0930<br />

1110. .1000<br />

liio. .1030<br />

1110. L1100<br />

-1<br />

Deviation from PM02 in X Deviation from PM02 in X<br />

t ! I<br />

)., ) t ! ) !<br />

! ! I' I I ! ! I<br />

"3<br />

ta<br />

C.<br />

?<br />

O.<br />

^<br />

.<br />

CD<br />

-


IPC Vn Part 2: Tables and Figures<br />

14<br />

t*:<br />

t -<br />

t -<br />

= 4-.<br />

Figure 2.7-2.10: Results of PM06-5, PMO6-10, PM06-79121<br />

IPC Vn Results for PM06-5/PM02: 1.00073 * .00417 n=179<br />

J I ) I L ) t ) t < ) < ) L-i-J ) ! ) t t t ' ' ' ' ' ' ' ! [ L-<br />

+<br />

+' '+<br />

+++ #+<br />

+<br />

+ +<br />

+ '<br />

' +- '<br />

+*<br />

'+'<br />

+'<br />

+<br />

+. +^ ++<br />

*i—t—t—t—


-1<br />

i i i i < i ;<br />

2809. .0640<br />

2609. .0910<br />

Z609. .0940<br />

2909. .1100<br />

c* -<br />

2609, .1130<br />

2809. .1200<br />

2809. .1230<br />

2809. .1300<br />

2609. .1390 ^<br />

2609. .1400 ^<br />

2909. .1620<br />

0210. .1230<br />

0210. .1430,<br />

0210. 1500 ^<br />

0210. .1530 **<br />

0310. .1000<br />

0310. .1045<br />

0310. .1115<br />

0710^ .1045 M<br />

0910, .1213 ***<br />

0910. 1242<br />

0910. .1312<br />

1010. .0645<br />

1010. 09i5 M<br />

1010. .0945 **<br />

1010. .1042<br />

1010. .1112<br />

10101 .12^2<br />

1010. .1448 es<br />

1010. .1516<br />

1110, .0830<br />

1110, .0900<br />

1110, .0930<br />

1110. .1000<br />

Uio. .1030<br />

1110. .1100 a- t r < i t i *r*T<br />

Deyiaüon from PM02 in X Deviation from PM02 in X<br />

< :+<br />

i ^<br />

4?<br />

4+<br />

3++ !<br />

rt-!<br />

+.<br />

4 ! +<br />

) ) ] ) ! ! ! ! !<br />

+ -<br />

*5<br />

t*3.<br />

ta<br />

s*<br />

s-<br />

o<br />

- ?<br />

C3<br />

o<br />

M<br />

CO<br />

CO<br />

CO<br />

CO<br />

O<br />

C3<br />

M<br />

P<br />

!)<br />

ca<br />

CO<br />

Ol -<br />

+4<br />

-4<br />

^1^<br />

++<br />

4 t<br />

^ !<br />

+ r,<br />

! ! t ! J_tJ ( ! !<br />

ca<br />

O<br />

o<br />

<<br />

09<br />

an<br />

o<br />

O<br />

o<br />

X<br />

CS<br />

Deviation from PM02 in X<br />

-.5 6 i.O<br />

Li_U H ! ! t i I<br />

++<br />

4#<br />

:t4<br />

< 4<br />

:4<br />

41.<br />

L4<br />

! ! ! ] n ! ! [ I<br />

!=3<br />

5t)<br />


M -<br />

Deviation from PM02 in X Deviation from PM02 in X Deviation from PM02 in X<br />

^1.5 -1.0 -.5 0<br />

! H 1,1 1,1 ),! Lt ! ) I I I<br />

+ .4<br />

^4<br />

+ 4<br />

am<br />

m<br />

:+<br />

t<br />

*3<br />

C3<br />

- 3<br />

K)<br />


3 -.<br />

O<br />

3<br />

o<br />

M<br />

a<br />

a<br />

o<br />

35<br />

M<br />

O<br />

R<<br />

H<br />

o<br />

a<br />

)0 .<br />

)*1<br />

7<br />

"4<br />

IPC VII Part 2: Tables and Figures<br />

Figure 2.16-2.18: Results of EPAC42843, EPAC-13219, EPAC-13617<br />

IPC VII Results for EPAC-12843/PM02: 1.00152 ± .00169 n=374<br />

j t—) [ J I I L<br />

+4<br />

' i i i t i ! i t < i i i ) i ) ! l ) — l l l L-<br />

^4<br />

z<br />

+ + ...-4-<br />

WS ^.^%4 -4+ ++ r-<br />

44<br />

44. +<br />

*T—i—r—I—i—i—i—i—[—t—r—r—i—t—i—t—i—i—i—t i t — i — I — t — i — r — i — r — i — i — — ) — r<br />

5 10 15 20 25 30 35<br />

4<br />

IPC VII Results for EPAC-13219/PM02: 1.00031 ± .00541 n=249<br />

+<br />

4^4'<br />

4^. %<br />

'4<br />

4-tt,'444-. +<br />

4*^<br />

"4^<br />

) : ! L.<br />

4<br />

+ 4<br />

i i i i i i i i<br />

4+'<br />

+<br />

'+ '4<br />

44+ '4<br />

10 15 20<br />

t 1<br />

&<br />

+ 4 4f<br />

# +<br />

+ 4 +<br />

4<br />

4+' -4-44-<br />

44-<br />

4r<br />

'<br />

4%.<br />

. 4<br />

) — i 1—t<br />

25 30 35<br />

IPC Vn Results for EPAC-13617/PM02: .99716 * .00193 n=246<br />

J I J ; I' ' ! t- ) 1 I I t- i t - ) t i t ! i ) ' ' t ! ) i ] ) ) L.<br />

4"<br />

-4-.i+#.-<br />

^1<br />

'"'4**<br />

4 4<br />

'^T<br />

4+^<br />

.4^.4.<br />

^4<br />

i—t—i—1—1—t—rn—r—1—1—1—1—1—i—1—1—1—1—t—1—1—i—1—1—1—r—t—1—<br />

5 10 15 20 25 30<br />

4:<br />

4<br />

-4<br />

-f-<br />

n—ryi—i—!<br />

35<br />

^1<br />

^. ^. o S:-<br />

O o' O o'<br />

17


IPC VII Part 2: Tables and Figures<br />

18<br />

a<br />

M<br />

O<br />

0k<br />

o<br />

A<br />

a<br />

e<br />

-3<br />

'P<br />

33<br />

a<br />

M<br />

O<br />

a<br />

o<br />

3<br />

a)<br />

'P<br />

Figure 2.!9-2.21: Results of HF-14915, HF-15744, HF 17142<br />

IPC VII Results for HF-14915/PM02: 1.00104 ± .00129 n=181<br />

i i ! t i i i i ! i t i ! ' i i i t i ! f t ; i i ' i i i — I — i — i j ] ] )_<br />

-Mr.<br />

-H-. 4<br />

^<br />

.4<br />

+r ^4<br />

- ) — i — 1 — i — 1 — T — i — t — i — i — i — i — i — l — t — i — t — i — i — i — t — i — t — t — i — i — i — i — ] — i — r — t r<br />

5 tO 15 20 35 30 35<br />

IPC Vn Results for HF-15744/PM02: .99976 * .00098 n=330<br />

I I ] I I ) I' I ) I I I I t I I I I [ I I; I t . I I I I I i < < I I ' '<br />

1—TT-]—[—]—y—]—]—I [ t — I — I — t — ] — [ — I — I — [ — ! — T<br />

5 10 15 20<br />

— t — t — i — t — r — [ — t — ) — t — r — i — r<br />

25 30 35<br />

IPC Vn Results for HF-17142/PM02: 1.00244 ± .00158 n=335<br />

I t t i i i i i I i ) I<br />

.+<br />

* ^ r — ! — ) — t — r — t — i — r — ] — r<br />

5 10<br />

i — i — i — r * r<br />

15<br />

! ) ) 1<br />

' 1 '<br />

20<br />

j ) t )—* I — i — ] I ] t-<br />

*T—r—r*<br />

25<br />

* i — r — t — r — f -<br />

30<br />

3 3 3 3 3 5 3 3 3 3 3 3.5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3<br />

±3^<br />

35<br />

6r<br />

3


Deviation from PM02 in X Deviation from PM02 in X<br />

0540<br />

0910<br />

.0940<br />

noo<br />

4-+<br />

1130<br />

1200<br />

1230<br />

1300<br />

1330<br />

3<br />

1400<br />

1520<br />

1230<br />

°<br />

1430<br />

1500<br />

-4 +-+ 3<br />

1530 °*<br />

1000<br />

1045<br />

++ +<br />

++ 09<br />

1115<br />

1045 M<br />

1212<br />

13<br />

SC<br />

.0945<br />

1515


Deviation from PM02 in X Deviation from PM02<br />

-.5 1.0<br />

I t I t t t ! I I I I I I<br />

44<br />

+4<br />

4 4t<br />

tu<br />

4^<br />

4*--<br />

11 ! I I m<br />

ta<br />

§<br />

M<br />

^!<br />

t-^<br />

OS<br />

es<br />

"0<br />

o<br />

M<br />

CS<br />

CS<br />

M<br />

CS<br />

CS<br />

tu<br />

n<br />

M<br />

tO<br />

tn<br />

: ) t t<br />

< 4-<br />

1.4<br />

' 4i<br />

4i<br />

47#<br />

44-<br />

: +<br />

!-r!<br />

^4-<br />

Eft 4-<br />

t t < < )<br />

Deviation from PM02 in X<br />

-1.0<br />

-.5<br />

III). ,.! U. . t I N!<br />

4i4+: 7*4^+ 4 4^<br />

44+ 4t-:<br />

++-<br />

4


Deviation from PM02 in % Deviation from PM02 in<br />

', ',_AJ )<br />

^3<br />

4-^<br />

4+<br />

;+ 3<br />

3<br />

4+'<br />

ri rt<br />

OS<br />

CS<br />

13<br />

SO<br />

to<br />

OS<br />

es<br />

es<br />

CK i<br />

M _<br />

et<br />

cx<br />

et<br />

-S 0 .5<br />

! ! ! ! t 11 ) ] ! ! ! !<br />

4-<br />

4^<br />

4^<br />

4-4t<br />

4<br />

+<br />

, f n t


IPC VII Part 2: Tabies and Figures<br />

22<br />

Figure 2.31-2.33: Results of MKVI-67502, MKVI-67604, MKVI-67702<br />

IPC Vn Results for MKVI-67502/PM02: 1.00058 * .00132 n=373<br />

' < < ) I ' ' ' ' ' ' ' t t _ j t t ] ) ) ] ) ) [ ] [ ) j ) ) ] [—t—) L<br />

a<br />

o<br />

t -<br />

'S<br />

---— ir**: ^ +**<br />

a<br />

) t . t I<br />

.5<br />

1 — ) — t — t — : — i — i — i — t — t — i — i — t — r *<br />

10 15 30<br />

.++<br />

" 1 — I — ! — ) — ! — I — ! — ) — I — ! — I —<br />

35 30 35<br />

IPC VII Results for MKVI-67604/PM02: .99711 i .00123 n=349<br />

t < i i i t<br />

) t t t t ) t t t t ! : t t—J t ) ) t t t t ) ), t i L.<br />

l — i — t — ) — t 1 !—i—]—i—t—t—)—n—irn—i—[—t—)—l—)—t—t—i—)—t—]—t—1—)—)—1—r* 4<br />

10 15 20 25 30 35<br />

IPC Vn Results for MKVI-67702/PM02: 1.00127 i .00129 n=353<br />

' ' ' ' ' ' ' ' ' ' ' ' ! ] ] ] ] t L.<br />

m - ++<br />

-+-.+<br />

-+<br />

—— —<br />

10 15<br />

4^<br />

20 25 30 35<br />

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 o o 3 3 3 3 3 3


2809 0B40<br />

2609 0910<br />

2609 0940<br />

2609 1100<br />

2809 1130<br />

2809 1200<br />

2609 1230<br />

2809 1300<br />

2809 1330<br />

Deviation from PM02 in X Deviation from PM02 in %<br />

-.5 .5 1.0<br />

LU<br />

''!''"!<br />

2809 1400<br />

2809 1520<br />

0210 1230<br />

0210 1430<br />

0210 1500<br />

0210 1530<br />

0310 1000<br />

0310 1045<br />

0310 1115<br />

0710 1045 M _<br />

0910 1212<br />

0910 1242<br />

0910 1312<br />

1010 0845<br />

OS<br />

CO<br />

CS<br />

co<br />

13<br />

1010 0915<br />

1010 0945<br />

CS<br />

cs<br />

1010 1042<br />

1010 1112<br />

1010 1242<br />

1010 1446<br />

-h<br />

CS<br />

CS<br />

CS<br />

1010 1518<br />

1110 0830<br />

1110 0900<br />

CS<br />

1110 0930<br />

1110 1000<br />

1110 1030<br />

00<br />

1110 1100<br />


Deviation from PM02 in X Deviation from PM02 in %<br />

-l.o<br />

-.5<br />

!.! ! ! I I I<br />

2909 0940<br />

2809 .0910<br />

2909 0940<br />

4<br />

2909 1100<br />

CX<br />

2B09 1130<br />

2809 1200<br />

2809 1230<br />

2809 1300<br />

2B09 1330<br />

ZB09 1400<br />

2809 1520<br />

0210 1230 4r-<br />

0210 1430<br />

0210 ,1500<br />

0210 1530 ** + 44-<br />

0310 1000<br />

0310 1045 4++<br />

0310 1115<br />

0710 1045 M<br />

0910 1212<br />

4-4- 4+<br />

0910 .1242<br />

44<br />

0910 1312<br />

1010 0945<br />

4+<br />

1010 .0915<br />

1010 .0945 "* !+rr*r<br />

1010 1042<br />

1010 1112<br />

1010 1242 4t-<br />

1010 .1445 M<br />

O<br />

1010 .1519<br />

1110 .0930<br />

.0900<br />

4t<br />

1110<br />

.0930<br />

44<br />

1110<br />

1110 1000<br />

1110 1030 *^<br />

1110 1100<br />

L! ! t t<br />

3<br />

PO<br />

ta<br />

o<br />

- j<br />

13<br />

SS<br />

o<br />

M<br />

CO<br />

tO<br />

CO<br />

M<br />

o<br />

tn<br />

M<br />

P<br />

H<br />

M<br />

CO<br />

cn<br />

cx -<br />

M -<br />

1.0<br />

I ) < : i ] : ) t<br />


a<br />

o<br />

a<br />

o<br />

33<br />

a)<br />

'P<br />

.a<br />

M<br />

a<br />

'p<br />

4)<br />

.3<br />

M<br />

O<br />

Figure 2.40-2.42: Results of A171, A212, A559<br />

IPC Vn Resulta for A-171/PM02: .99902 * .00244 n=306<br />

! t t J t—! L ' ' ' ' 4- t t -< i—j ), t t<br />

4^-1- ,--.-JL_+.-tr__j4-___4,<br />

* i — i — r<br />

5<br />

! ' ' '<br />

10 15 -r-!—r-r-<br />

20<br />

+<br />

IPC VÜ Part 2: Tables and Figures<br />

. ^.— ^—<br />

4*-++<br />

" i — i — i — i — r<br />

25<br />

43:<br />

T-t—[<br />

)—!—I<br />

30 35<br />

IPC Vn Results for Ä-212/PM02: .99858 * .00224 n=264<br />

J L. J ] < ! L. -) ) < ) t-J t t- ' I L--L-J ] t L<br />

4-4i,' 4-<br />

,_.^...^......4.^..........+ . + +<br />


.OHIO<br />

.0910<br />

.0940<br />

Deviation from PM02 in X Deviation from PM02 in %<br />

-l.o -.5<br />

I ! ! !.D !.!.!<br />

1100<br />

1130<br />

1200<br />

1230<br />

+,+<br />

:++%<br />

1300 4t-<br />

1330<br />

4-4-<br />

44<br />

1400 ° tu4:<br />

1520<br />

1230<br />

1430<br />

:+4--c<br />

4#* 4-<br />

1500<br />

1530 * *^<br />

W4-<br />

41- 4* +<br />

1000<br />

1045<br />

1115<br />

1045<br />

4-4-<br />

4-<br />

44-<br />

4- + 4^<br />

„<br />

1212 °<br />

M<br />

.0945 °*<br />

44-<br />

4^ -t- ++t: ++<br />

44- # +<br />

4-+ + t<br />

1515 ° dt-<br />

ca<br />

1030 *^<br />

n<br />

4-4-:4j<br />

4-4-+!+^ .4- 4- 4-<br />

4- +<br />

-4-<br />

4*!<br />

^4<br />

3<br />

so<br />

CS<br />

to<br />

t?<br />

o<br />

en<br />

o<br />

CO<br />

CO<br />

09<br />

M<br />

O<br />

o<br />

M<br />

C3<br />


2809 0640<br />

2809 0910<br />

2B09_0940<br />

2609_1100<br />

2809_1130<br />

2809_1200<br />

2809 1230<br />

2809 1300<br />

2809 1330<br />

2809_1400<br />

Deviation from PM02 in X Deviation from PM02 in X<br />

-1.0 -.5 0<br />

i,! H U LH ],! ) i !,! !<br />

+ #4#<br />

4+4'-+<br />

^ + +44-<br />

?-.^4++,+<br />

4?++ + +<br />

4+-!L+<br />

2809 1520 + ^4.<br />

0210_1230<br />

0210_1430<br />

0210_1500<br />

0210 1530<br />

0310_1000<br />

0310_1045<br />

0410_H15<br />

0710_1045<br />

0910_1212<br />

0910 1242<br />

0910_1312<br />

1010 M45<br />

1010JM15<br />

1010_0945<br />

1010_1042<br />

10101112<br />

1010_1242<br />

1010_1446<br />

1010_1518<br />

H10_0830<br />

1110_0900<br />

1110-0930<br />

Hioiooo<br />

1110-1030<br />

U10_1100<br />

4+<br />

++<br />

4+<br />

+ + 4+<br />

+ +<br />

^4<br />

++ + 4<br />

4+<br />

4+,<br />

+ + +* +<br />

4+<br />

+ 44-<br />

rrrn rrm<br />

+ 4i<br />

11) ] ! 11<br />

3<br />


J<br />

00<br />

2809-0640<br />

2809_0910<br />

2B09_0940<br />

2809-1100<br />

2809-1130<br />

2609 1200<br />

2809 1230<br />

2609-1300<br />

2809_1330<br />

2609_1400<br />

2809 1520<br />

0210_1230<br />

0210 1430<br />

0210-1500<br />

0210 1530<br />

031C1000<br />

0310-1045<br />

0310_1115<br />

0710 1045<br />

-1<br />

Deviation from PM02 in X Deviation from PM02 in X<br />

^4<br />

+ +<br />

++<br />

++<br />

++44+<br />

+ ++ +t<br />

4tW<br />

++<br />

4 ^<br />

4^^<br />

4+t+" ++ =t^.<br />

. + +<br />

+ +<br />

+ ' 4^+<br />

.+.+<br />

++;b<br />

0910_1212 + +<br />

0910 1242<br />

+ +<br />

0910_1312<br />

+ 4*<br />

4f +t= + +<br />

1010 0645<br />

4+<br />

1010_0915<br />

t-44- +.<br />

1010-0945<br />

1010-1042<br />

1010 1112<br />

1010-1242<br />

1010-1448<br />

1010_151B<br />

11100630<br />

1110_0900<br />

1110^0930<br />

1110-1000<br />

1110-1030<br />

11101100<br />

+w<br />

+ f. + 4#+<br />

-+- + +<br />

+ +<br />

+ +-*! +<br />

+ +t+<br />

!)))))<<br />

33*<br />

))))!))))<br />

3<br />

PC<br />


1330 ^<br />

1500 ^<br />

1530 °*<br />

Deviation from PM02 in X Deviation from PM02 in X Deviation from PM02 in X<br />

^.5 0 .5 1<br />

! I ' ' ' ' ! ' ' ' ' ) ' ! ' '<br />

j < i 11 rm<br />

4- i +<br />

+<br />

ri<br />

PS<br />

O<br />

ta<br />

C<br />

- t?<br />

o<br />

OS<br />

-4co<br />

K<br />

o<br />

M<br />

es<br />

es<br />

os<br />

-3',<br />

4—<br />

CS<br />

es<br />

M<br />

es<br />

es<br />

CO<br />

es<br />

ot -<br />

^-1<br />

4+<br />

44<br />

4-^4-<br />

4h4i<br />


IPC VII Part 2: TaMes and Figures<br />

30<br />

.3<br />

a<br />

o<br />

.3<br />

M<br />

a'<br />

o<br />

33<br />


et<br />

o.<br />

et<br />

e<<br />

o -<br />

co<br />

et<br />

et -<br />

so<br />


IPC VII Part 2: Tables and Figures<br />

32<br />

Figure 2.61-2.63: Verticai Optica! Bepth at 778, 500 and 368 nm<br />

IPC VH: Verücal Opücal Depth 778 nm<br />

< - ' ' ' ' ' 1 ' ' ' ' ' ' < ' ' ' ' ' ' ' ) t t t t-J L—J—t—t—)—)<br />

— ) — t ^1 I 1<br />

10 15<br />

[ ' ' '<br />

— I<br />

20 25<br />

IPC VU: Verücal Opücal Depth 500 nm<br />

es ) ' ' ' ' ' ' ] ) ] ) ) t ) t L ' ' ' ' ' ' L-j t—J ) ) t ) ) )—!—L<br />

*s<br />

M<br />

^ "1—T—)—) )<br />

5<br />

r- _<br />

CO _<br />

cor<br />

— — — -&<br />

n — i — ] — t — t — t — t — ) — i — i — i — < [ t<br />

10 15 20<br />

30<br />

n — t — t — t — t — i — i — r<br />

25 30<br />

IPC Vn: Verücal Opücal Depüi 368 nm<br />

35<br />

t t<br />

35<br />

' ' ' ' ' ' ' ) ! t — i I—!—L-J<br />

t — t — t — t — r — [ — t — t — t ) t<br />

[—^—r*1—)—


a- -<br />

4)<br />

— o<br />

g §<br />

IPC VM Pärt 2: TaMes and Figures<br />

Figure 2.64-2.66: Instrument Temperature, Wind Speed and Direetiön at Measuring Site<br />

— r * i — t — r<br />

: + +<br />

4<br />

J L<br />

< t )<br />

.+ 4.<br />

4..<br />

4<br />

4 %<br />

*-4-.+<br />

IPC VH: mstrument Temperature of PM06-10<br />

"TT<br />

10<br />

*T—!—t—m—r<br />

15<br />

' ' ' ' ' ' ' ' ' ' ' ' < ' ' ' ) < L-<br />

! ' ' '<br />

20<br />

n^C VII: Wind Speed at Measuring Site<br />

4#W^'<br />

1—t t )—t—]—t t t<br />

25 30 35<br />

J t I ) t t ) ) < ) L-J ! ) ) ) ) ) ' ' ' L—L J t t ] ] L-<br />

4-<br />

+-t.<br />

4+ '<br />

+ +<br />

t_^4 u.4y 444 , 1 ' 4.4^.<br />

+ '4<br />

' .. +<br />

io<br />

4<br />

#r-r-<br />

15 20<br />

4<br />

44- ^<br />

+-IL<br />

4<br />

25<br />

+4<br />

+ +++<br />

+ +4 ^<br />

yc VU: Wind Direetiön at Measuring,Site<br />

< t t t t t j ' ' < .< < ' '<br />

1—t—r<br />

+ 4<br />

4<br />

4<br />

^4<br />

4.<br />

4.<br />

... ."^ ... t . . ^f4-. .A. . .<br />

'4 +<br />

30<br />

< - ' '<br />

4#;<br />

+' 44-<br />

] *") t—r*T<br />

Tri—' t ,')'<br />

10 15 20 25 30 35<br />

- - 3 3 3 3 3 g' 3 J 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3<br />

35<br />

4-<br />

4<br />

ML<br />

4<br />

-<br />

33


IPC VII Pärt 2: TaMes and Figures<br />

34<br />

Figure 2.67-2.69: Air Temperaturen Relative Humidity and Atmospheric Pressure<br />

D?C VH: Air Temperature<br />

o j ] t t t t i t ) ! < t t t t ' ' ' ' ! t ) t t ' ' ' ' ) ) < ) ) t t r<br />

s-^ tO. + + + + + + ++ +<br />

+ + + +<br />

.8 r<br />

a .<br />

tl)<br />

M<br />

et...<br />

+<br />

.+.<br />

+ + ^ + + + +<br />

+,<br />

+ +<br />

* i — t — 1 — i — t — t — < — t — [ — t — t — < — i — i — i — t — t — i — [ — < — f t i — t — t — ) — t — l — [ — t — r * ] — r — i — r *<br />

5 10 15 20 25 30 35<br />

+<br />

+<br />

+-<br />

IPC VH: Relative Humidity<br />

' ' t ' t ' ' ' < ' ' ' t t < t t ! ] ' t < t t t t < ), t ) ] ' ' ' '<br />

- +<br />

- -h + + + + + + + + +<br />

et + +<br />

+ + .+<br />

to<br />

to<br />

to.<br />

4-<br />

+ + + + ++' +<br />

+.<br />

+ 4- + +<br />

+ ^<br />

4-4.-<br />

1—i—t—i—t—m—r**y—t—t—t—t—m—t—t—t—]—1—t—t—r—ri—t—t—t—[—t—t—


TaMe of Contents<br />

IPC VII Part 3: Contributions to Symposium<br />

V.Klevantsova: Solar Radiation Measurement Metrology in USSR . ... .. 36<br />

LJ.B.McArthur, C.T.McElroy, DJ Wardle: The Use of a Self-scanning Photodiode Array<br />

in Sunphotometry. 37<br />

T.Stoffel: HBCU Solar Radiation Monitoring Network ...42<br />

PNovotny: Australian Radiation Network Plans ... 48<br />

T.Stoffel: Solar Radiation Research Laboratpry at SERI 53<br />

K.Dehne, U.Bergholten WMO Sunshine Duratiön Measurement Comparispn 1988/89 in Hamburg . 59<br />

J.Romero, N Fox, CJfÖhlich: Solar and Cryogenic Radiometrie Scales: A Preliminary Comparison — ........ 65<br />

I.RÜickey, R.CPrieden, DJ-Brinker Expehence with a Radiometer Cavity in Space ............. 66<br />

K,Dehne, U.Bergholten IEA Comparison of Leng-Wave Radiometers in Hamburg 1989/90 67<br />

Ch.Wehrli, CFröhlich: Sunphotometer Calibration and Results 73<br />

J.L.Bravo, AMuhlia: Some Statistical Aspects Results from the First Regional AR-IV<br />

Pyrheliometric Intercompansoh at Ensenada, Mexico < .'75<br />

LOiiyieri, SJMevel: Experience with CM-15 79<br />

K.Dehne, L.Liedquist, L Dahlgren: IEA Global Radiation Reference Radiometer Comparison ............ 85<br />

D Crommelynek, AJoukoff: Estimatiön of Spectral Radiation Distribution from Global Radiation 91<br />

/<br />

35


IPC VH Part 3: Contributions to Symposium<br />

SOLAR RADIATION MEASUREMENT METROLOGY IN USSR<br />

VA.Klevantsova and M.VKlimovskaya<br />

Voeikov Main Geophysical Observatory<br />

Karbysheva 7<br />

Leningrad 194018<br />

USSR<br />

This is the abstract of a paper presented at the Conference "New Developments and Applications in<br />

Opücal Radiometry III", September 20-22 at Davos and will appear in the proceedings published as a special<br />

issue ofMetrologia.<br />

The probiem of traceabiHty of measurements of solar radiation in USSR and transferof measurement unit<br />

to working instruments is discussed. In 1987 the State Standard of USSR has approMed thecomposition of<br />

radiation Standard group consisting of the absolute cavity pyrheliometer with cooled receiver, PCC3-005 and<br />

the A compensation pyrheliometers: A 212, A 250, A 196. Comparisons are made every year between the<br />

readings of the Standard group instruments and the results demonstrate good stability (inter-annual changes<br />

of less than 0.3 %). The limit of esümated error of radiation measurement at the stations of the radiometric<br />

network in the USSR do not exceed the following values (95% confidence level):<br />

36<br />

pyrheliometer<br />

pyranometer<br />

net-pyrradiometer<br />

3%<br />

11 %<br />

20%


Abstract<br />

The Use of a Self-scanning Photodiode<br />

Array in Sunphotometry<br />

LJ.B. McArthur, CT. McElroy, D.I. Wärdle<br />

Atmospheric Environment Service<br />

Downsview, Ontario, Canada, M3H 5T4<br />

Tins paper was presented at:<br />

New Developments and Applications in<br />

Optical Radiometry III<br />

20 - 22 September 1990<br />

Davos, Switzerland<br />

IPC VII Part 3: Contributions to Symposium<br />

The use of self-scanning photodiode arrays is Well established for low-light intensity multi-specträl<br />

measurement Systems such as those used in spectroscopy and astronomy. Using the newly deveioped EG & G<br />

Reticon random äccess self-scanning linear photodiode array an mstrument has been deveioped for solar<br />

observations which overcomes the difSculties associated with these detectors at high light levels. By coupling<br />

this technology with fiat-Seld concave holographic grating technology from American Holographie ä<br />

"sunphotospectrometer" has been built. This instrument is presently able to scan 1024 Channels of spectral<br />

införmation in less than 1 second. A prototype instrument is being tested with a second generation version<br />

expected to fly aboard the US. Space Shuttle within the next two years. The design of this instrument is<br />

described and preliminary spectra are presented to ülustrate the measurement of NQ using this portable system.<br />

1 Introduction<br />

To overcome some of the difSculties found in handheld sunphotometry, the Atmospheric Environment<br />

Service (AES) pf Environment Canada has deveioped a "sunphotospectrometer" which avoids the use of<br />

interference filters and single eiement photodiode detectors. This instrument was originally designed to be flown<br />

as a mid-deck experiment aboard a NASA space Shuttle in the early 1990's. The main purpose of this<br />

experiment is to measure verticai trace gas and aerosol profiies through the earth's atmosphere by using solar<br />

and lunar occultations at 20 or more wavelengths sünultaneously. Since this original design, the use of similarly<br />

designed instruments för surface-based measurements of SOg, NO2 and O3 is also being considered.<br />

2 Instrument Description<br />

The sunphotospectrometer is a handheld, battery powered instrument construeted from commercially<br />

available 'state-of-the-art' components. Software control of the mstrument and Output storage are via high-speed<br />

serial Communications to an IBM-compatible laptop. The instrument is able to be operated for approximately<br />

6 hours using four 9 volt batteries to supply power to the electronics and a further six 'AA' battcries are used<br />

to operate the two on-board stepper motors. Induding these, the mstrument weighs less than 3 kgi<br />

The detector is anEG&G 1024SR random access self-scanning photodiode array consisting of two 1024<br />

photodiode sensors construeted on a common Substrate, öne for the detectipn of incident energy with the second<br />

used for the removal pf the majority of Rxed pattern noise. Each individual sensor within the array has<br />

dimensions of 2.5mm high by 25/im wide. This array is styled after an array Erst deveioped in the late 1970's<br />

by Reticon Corporation (presently EG&G Reticon) as a response to demands of the spectroscopy Community<br />

[1]. The S series array, the SR's predecessor, has been described in [1,2]. A number of application papers using<br />

these avaläüche arrays have shown their usefulness in medlcal x-ray imaging [3], inductively coupled plasma<br />

emission spectrometry [4], weak light stellar spectroscopy [5,6] and more recently in near-infrared spectroscopy<br />

[71-<br />

The layout of the main optical components is shown in Figure 1. Light enters the instrument through<br />

37


IPC VII Part 3: Contributions to Symposium<br />

a 25 mm säpphire entrance aperture and is split between the spectrometer optics and the sighting optics by an<br />

osciliating beam Splitter. Eighty percent of the iight is reileeted into a 22 mm focal length F2.2 entrance iens<br />

which focuses a 2* field of view on the plane of the 2.5mm X 25pm slit. The transmitted Iight is used by the<br />

Operator to sight the instrument on the sun. The sht is imaged directly onto the photodiode array with an<br />

American Holographie concave diffraction grating, modei 44633. This is iocated 92 mm from the sht on an<br />

angle of 13.6* from the grating normal. The Hat Held grating disperses the light Over an angle of 14.? such that<br />

the spectrum is focused on the array at an average distance of 97^5 mm ± 0.05 mm. The grating is used in the<br />

first Order with a waveränge between 400 and 900 nm. This grating has a relative efficiency of 28% at 400 nm,<br />

peak at 29% ät 450 nm and then slowly and nearly monotonically decreasing to 14% at 9Ö0nm. The use öf a<br />

concave Bat-Reld grating reduces optical components and eliminates any moyements associated wth individual<br />

photodiodes, when used with array detector technology.<br />

Two instrument stepper motörs controlled by the on-board microcomputer are used to enhance overall<br />

Performance. Motor one, located inside the spectrometer box, controls the positioning of a double "filter" wheel,<br />

one of which contain optional blocking filters, while the second aecommodates live irises. By setting the iris and<br />

then reversing the motor to set the blocking filter up to 25 cbmbinations can be selected dependent upon light<br />

levels and the wavebänd being measured. The second motor, mounted at the rear of the instrument, operates<br />

the osciliating beam splifter. This is used to step the 2* total field of view of the instrument across the slit in<br />

steps öf 0.05^ at a rate öf 80 steps per second. Because the instrument is handheld shght movements by the<br />

observer will image different parts of the solar disk onto the entrance slit. By driving the field of view across<br />

the slit to obtain an Observation at each step, with a 50% overlap, observer error can be corrected to obtain<br />

maximum verticai resoiution. A further benefit of moving the image aeross the slit is the potential of obtaining<br />

solar aureole measurements during the occultation which wöuld äid in the determination of atmospheric aerosol<br />

characteristics.<br />

Light transmitted through the osciliating beam sphtter is focused by ä 30 mm plano-conVex lens though<br />

a onto an imbedded cross-hair. This, in tum, is magniRed by a pair of 8mm and 9mm bi-convex lenses onto two<br />

frosted viewing screens by means of a 50/50 beam sphtter. The design enables the observer to use the<br />

instrument in a manner either similar tö a übw camera" or4he-^ne^M^-!!t!ee!!^iAe^bns^aMt^men&- The<br />

sight has a 5* field of view to aid in locating the sun before the measurement sequence begins.<br />

3. Measurement of NOg<br />

The concentration of NC^ has long been of interest to the atmospheric sciences Community. The highly<br />

struetured absorption spectra of this species between 320 and 650 nm makes it relatively easy to identify.<br />

Furthermore, the very high absorptivities of NC^ between 380 and 450 nm provide an excellent means of<br />

identifying it even when part of the more complex mix of pollutants normaüy found over populated areas. To<br />

test the abihty of the instrument to measure NOg several unknown amount^ were compared using the<br />

sunphotospectrometer and the Perkin-Elmer Lambda 9 spectrometer. Figure 2 illustrates the results of one<br />

comparison between 475 and 525 nm for a concentration of 0.012 cm of NOg in a laboratory cell. The<br />

sunphotospectrometer used a 25/* m slit and had a photodiode integration time of 100 p s. The complete spectra<br />

was obtained in under 2 seconds. The spectra obtamed by the spectrometer has been degraded to the resoiution<br />

of the sunphotospectrometer and graphed using the approximate midpoints of the sunphotospectrometer spectra.<br />

Such a spectra would require 5 minutes to obtain. The conversion from photodiode position into central<br />

wäveiength for the sunphotospectrometer is approximated using a wäveiength offset and an assumed constant<br />

dispersion. For this wavebänd ränge and this intercomparison these simplifications are sufficient. A more<br />

precise mapping algorifhm will be deveioped for the actual flight instrument. Even with these estünates it is<br />

apparent that the sunphotospectrometer has the resoiution to detect the major spectral strueture of nitrogen<br />

dioxide even in spectral regions beyond the peak absorption bands between 425 and 445 nm. The overall<br />

increase in transmittance shown for the hand held instrument cannot be categorically explained, but it is<br />

postulated tö be due to the Variation in the source lamp intensity used in obtaining the spectrum. In independent<br />

tests, the short-term Variation in the lamp was greater than ± 1% at shorter wavelehgths.<br />

38


4. Summary<br />

IPC VfJ Part 3: Contributions to Symposium<br />

An sunphotometer mstrument has been designed and construeted using photodiode array and aberration<br />

corrected concave holographic grating technology. The instrument is speeifieally designed -to be handheld, use<br />

little power and accurately measure the concentrations of trace constituents in the atmosphere. Preliminary tests<br />

using a early prototype confirm that NOg can b% identißed with the resoiution necessary to measure optical<br />

depths and its verticai distribution when using solar occültation techniques from space. Further Software and<br />

hardware developments are antieipated with coneurrent increases in the resolving power of the spectrometer.<br />

A final yersion of the instrument is expeeted to fly ä NASA Shuttle in mid-1992 as a mid-deck cabin experiment.<br />

6. Relerences<br />

1. Talmi, Y, änd R.W. Simpson, Apphed Optics, 19,1401 (1980).<br />

2. Simpson, R.W., Rey. Sei. Instrum., 50, 730 (1979).<br />

3. Cunningham, LA. and A. Fenster, Med. Phys,, 11, 303 (1984).<br />

4. McGeorge, S.W. and E.D, Salin, Spectrochimica Acta, 40B, 435 (1985).<br />

5. Vogt, S.S., RG. Tull and P Kelton, Apphed Optics, 17, 574 (1978).<br />

6. Walker, G.A.H., R. Johnson and S. Yang, Adv. Elec. Electron Phys. 64A, 213 (1985).<br />

7. Mayes, P.M. and J B. Callis, Apphed Spect. 43, 27 (1989).<br />

7. Figure Captions<br />

Figure 1. Schematic diagram of the sunphotospectrometer optical layout.<br />

Figure 2. A comparison of transmission spectra for 0.01 cm NOg at a 1 nm resoiution. The Lambda 9<br />

spectrometer data (solid) was obtained at a resoiution of 0.1 nm and degraded fo the resoiution<br />

of the sunphotospectrometer (dashed).<br />

39


IPC VII Part 3: Contributions to Symposium<br />

Figure 1.<br />

40<br />

INPUT_<br />

LIGHT<br />

CONCAVE HOLOGRAPHIC<br />

GRÄTING^—=\<br />

FILTER<br />

MQTOR<br />

ENTRANCE<br />

LENS<br />

ENTRANCE<br />

SLIT<br />

SCILLATING<br />

^ - BEAM SPLITTER<br />

BAFFLE<br />

PHOTODIODE<br />

DETECTOR<br />

SIGHTINGU<br />

LENS/CROSSHAIRS<br />

OtSCILLATINC<br />

MOTOR<br />

BEAM<br />

SPLITTER SIGHTING<br />

EYE PIECE<br />

SIGHTING<br />

EYE PIECE


Figure 2.<br />

1.00<br />

(0 0.95<br />

0.90 -<br />

IPC VII Part 3: Contributions to Symposium<br />

NO2 Transmittance Spectra<br />

1 nm resotution, 0.01 cm NO2<br />

Lambda 9 Spectrometer<br />

Sunphotospectrometer<br />

0.85 [ I I I ! ! 1,1 ) ) I i t ! I ) I ) I ) ) t ! ! I ! 1 ! I ) I I ) ! ! ! ! ! t I I ! ! ! ! ! ! I ] I<br />

475.00 485.00 495.00 505.00 515.00<br />

Wavetength (nm)<br />

525.00<br />

41


IPC VII Part 3: Contributions to Symposium<br />

ABSTRACT<br />

HBCU SOLAR RADIATION MONITORING NETWORK<br />

T. Stoffe!<br />

So!ar Energy Research Institute<br />

Golden, Colorado 80401<br />

U.S.A<br />

The Historically Black Colleges and Universities (HBCU) Solar Radiation Monitoring<br />

Network has been in Operation since November 1985. Funded by the U.S. Department of Energy,<br />

the six-station network provides 5-minute averaged measurements of global and diffuse horizontal<br />

solar irradiance. The data are processed at the Solar Energy Research Institute (SERI) to improve<br />

the assessment of the solar radiation resources in the southeastern United States (Stoffel, 1989). Two<br />

of the stations also measure the directrnormal solar irradiance with a pyrheliometer mounted in an<br />

automatic sun tracker. All data are archived in the SERI Standard broadband forrrfat (SBF) with data<br />

quality-assessment indicators. Network data recovery has been better than 98%.<br />

1. BACKGROUND<br />

In i'981, President Reagan signed Executive Order 12320, directing all federal agencies to<br />

implement programs that couid strengthen the technicai capacity of the nation's Historically Black<br />

Colleges and Universities (HBCUs). In responding to this executive order and a subsequent<br />

congressional mandate (the Science and Technology Equal Opportunity Act), the Solar Energy<br />

Research Institute (SERI) noticed that the distribution of HBCUs in the southeastern United States<br />

corresponded with the lack of solar monitoring stations operated by the National Oceanic and<br />

Atmospheric Administration (NOAA). With funding provided by the U.S. Department of Energy,<br />

SERI deveioped a solar resource assessment project involving the HBCUs.<br />

The six-station HBCU solar-radiation monitoring network shown in Figure 1 is the result of<br />

a solicitation and selection proceSs that begaii in April 1984, when 22 HBCUs were invited to submit<br />

a letter of interest for participation in the project. Campus visits were arranged for the eight finalists.<br />

A source selection board reviewed the available information and made the final selection on the basis<br />

of geographic location, academic program, facilities, and faculty background and experience in the<br />

physical sciences and mathematics.<br />

2. STATION EQUIPMENT<br />

As shown in Table 1, all six HBCU stations measure the global and diffuse horizontal solar<br />

irradiance using the Eppley Laboratory's Precision Spectral Pyranometer (PSP). The pyranometer<br />

used to measure the diffuse solar irradiance is mounted under ashadow band. Two of the stations<br />

42


Columbia<br />

Lake Charles<br />

Nashvit e<br />

oMtsstsstppt vattey State<br />

. )<br />

Montgomery<br />

'' ^<br />

Tatlahassee<br />

. NOAA SOLRAD Network<br />

o HBCU/SER) Network<br />

IPC VH Part 3: Contributions to Symposium<br />

Sterling<br />

Btuefietd State<br />

^Elizabeth City State<br />

Ratetgh<br />

oSouth Caröltna State<br />

Savannah State<br />

Bethune-Cookman<br />

Figure 1. HBCU and NOAA/SOLRAp stations in the southeastern United States<br />

TaMe 1. HBCU Network Stations<br />

Station Name<br />

Bethune-Cookman College<br />

Daytona Beach, Florida<br />

BlueSeld State College<br />

Bluefield, West Virginia<br />

Elizabeth City State University<br />

Elizabeth City, North Carolina<br />

Mississippi Valley State University<br />

Ifta Bena, Mississippi<br />

South Carolina State College<br />

Orängeburg, South Carolina<br />

Savannah State College<br />

Savannah, Georgia<br />

Solar Irradiance Measured<br />

Global Diffuse Direct<br />

X<br />

X<br />

X<br />

X X<br />

X<br />

X<br />

43


IPC VH Part 3: Contributions to Symposium<br />

also measure the direct-normal solar irradiance with an Eppley Normal Incidence Pyrheliometer<br />

(NIP) mounted in a LI-COR Model 2020 Automatic Solar Tracker.<br />

A radiometer mounting platform was deveioped especially for this project (see Figure 2). The<br />

platform design and a list of readily available hardware materials was sent to each HBCU Station to<br />

aid on-site construction before a SERI scientist arrived for the final equipment Installation.<br />

SERI selected data-!ogging equipment to provide records of 5-minute and hourly averages,<br />

as well as daily totals of low-level direct current (de) voltage input Signals from the radiometers. The<br />

Campbell Scientific model CR21 is battery powered and capable of scanning each input channei every<br />

10 seconds, Converting the input voltages into engineering units (watts per square meter, W/m^), and<br />

recording averaged and total values. The primary recording is aecomplished magnetically on audio<br />

cassette tapes. Printed listings provide a backup record of the data in the event that the magnetic<br />

record is missing or unreadable. The printed data are also used for on-site data quality control and<br />

data base development because the information is available almost in real time and is presented in<br />

W/m^. The data-logging equipment is inexpensive and simple to operate, yet it provides the retiabitity<br />

needed to ensure that a high percentage of all possible data are collected from the network.<br />

* . . . . .<br />

Figure 2. Solar monitoring equipment mounted on a SERI-designed fixture at Bluefleld<br />

State College, Bluefield, West Virginia. (From left to right, diffuse radiation is<br />

monitored with an Eppley PSP under a shadow band; global horizontal radiation is<br />

measured with a second Eppley PSP; and direct normal radiation is measured with an<br />

Eppley NIP mounted in a LI-COR LI-2020 solar tracker.)<br />

44<br />

r -


3. TRAINING<br />

IPC VU Pari 3: Contributions tö Symposium<br />

It was essential that the Station staff achieve a thorough understanding of the equipment and<br />

its maintenance to realize the project's goal of coHecting high-quality solar radiation data for the<br />

SoutheasL We deveioped ä training seminar and field Operations manuai to introduce the project<br />

änd serve as a reference. The seminar was presented by a SERI scientist when the equipment was<br />

Erst installed. The Eeld manuai contains a thorough review of the basic Station Operations, and a<br />

copy was left at each Station.<br />

Several staff changes have occurred at the HBCU stations, owing to the use of students for<br />

the routine Operations. The faculty has done an excellent job of retraining new students. The<br />

success of the project can be attributed to the demonstrated interest and enthusiasm of the Station<br />

staff.<br />

4. STATION OPERATION<br />

Routine maintenance and operational checks are made daily at each of the six HBCU solar<br />

monitoring stations. Using a Standard log form deveioped at SERI (see Figure 3), the observer<br />

systematically checks and records the Station equipment functions and current meteorologica!<br />

eonditions. This Information is then available for data reduction and analysis at SERI.<br />

The completed log fbrms and printed data output are coHected and sent to SERI biweekly.<br />

This provides an important record of the station's Performance and can be used to identify probiems.<br />

By the third day of each month, the cassette tape in the data-logging system is removed from the<br />

recorder; it is then annotated with the Station name, date, and time of removal and mailed to SERI.<br />

A new cassette is prepared for recording the next month of data. This tape exchange can be<br />

aecomplished between the regulär data transfers from the data logger memory and the tape recorder<br />

so that no data are lost in the process.<br />

As part of the quality assurance requirements för the project, all radiometers and data loggers<br />

are recalibrated at SERI's metrology laboratory (Myers, 1988). When equipment failures occur, we<br />

diagnose the probiem over the teiephone and quickly send the necessary replacement equipment to<br />

the Station.<br />

5. DATA PROCESSING AND ANALYSIS<br />

About 500,000 characters are stored monthly at each Station on cassette tape. At SERI, the<br />

data are transferred from cassette to ASCII Eies on personal Computer (PC) diskettes, which also<br />

serve as the archive media för the original data. The ASCII files are then transferred to a VAX/VMS<br />

Computer system for analysis. Each 5-minute data point is then ässessed for quality, a monthly report<br />

is prepared (summary data in hourly and daüy intervais), and the data are archived in SERI's Standard<br />

broadband format (SERI, 1988).<br />

Our data quality assessment Software (SERI QC) assigns a 2-digit flag describing the outcome<br />

of the evaluations. No measured data are replaced or changed in any manner. The flag is positioned<br />

next to each data vame as prescribed in the SBF archival format.<br />

As a result of the interest and dedication of the HBCU participants, the average annual data<br />

recovery for the network has been better than 98%.<br />

45


IPC VII Part 3: Contributions to Symposium<br />

SEM/HBCU Sotair Monitoring Station<br />

MAINTENANCE CHECKUST & WEATHER LOG<br />

Station Name: Mississippi Valley (MV) For the Period "4/-2'/9* to°y-/^7/7°<br />

DATZ AND TIMZ<br />

Day of Year<br />

Day of Week<br />

Month/Day/Year<br />

Standard Time<br />

Observer'3 Initials<br />

GLOBAL HORIZONTAL<br />

Dome Condition<br />

Sensor Level<br />

Desiccant<br />

Current Reading<br />

DITTCSZ HORIZONTAL<br />

Dome Condition<br />

Sensor Level<br />

Desiccant<br />

Current Reading<br />

Shading Band<br />

DATA ACQUISITICW<br />

Time Display<br />

Battery Voltage vctcjctoo<br />

Recorder Counter<br />

Tape Change (Y/N)<br />

Printer Status<br />

WBATHER OBSERVATION<br />

Cloud Amount<br />

Temperature °g<br />

C<br />

o<br />

M<br />

M<br />

E<br />

N<br />

T<br />

S<br />

3<br />

)))<br />

4**<br />

21<br />

'7M<br />

1/<br />

^2-<br />

ZT-<br />

2.Q 2.<br />

"4 77V<br />

17"<br />

17^<br />

f^7<br />

1?^<br />

^7<br />

3-4- z.-7<br />

-


6. REFBRENCES<br />

IPC VII Part 3: Contributions to Symposium<br />

Myers, D.R., 1988: Uhcerya/n/y y4na^M ^br 7%erwM%M/e J^rawwergr aw^f T^rAe/fomg^r<br />

Ca/^raffo/M PerfOHMea' ^ER/. SERVTR-215-3294, Soiar Energy Research Institute,<br />

Goiden, Colorado, 44pp. -<br />

SERI, 1988: -SER7 ^aw^anf ßroa^6aAMf FowMf, v4 ^o/ar an^ Me^oro/ogfca/ Da/a ^rc/aw/<br />

-Forma?. SERI/SP-320-3305, Solar Energy Research Institute, Goiden, Cotorado, 52pp.<br />

Stoffe!, T.L, and E.L. Maxweü, 1989: "Current Status of Solar Radiation Networks in the U.S."<br />

Piroc. iP6*9JiwwMaV Cow/grewcg v4wcncaM ^o/ar Energy 6*oda?y, Denver, Coiorado,<br />

June 19-23, 1989.<br />

47


IPC Vn Part 3: Contributions to Symposium A<br />

48<br />

ABSTRACT<br />

AÜSTRALIAN RADIATION NETWORK PLANS<br />

P. M. V. Novotny<br />

Bureau of Meteoroiogy<br />

Box 1289K<br />

Melbourne VIC 3001<br />

Australia<br />

Aüstralian Bureau of Meteoroiogy currently operates a solar<br />

radiation monitoring network, which was established in the late<br />

1960's consisting of 25 stations measuring global and diffuse<br />

solar exposure. The existing equipment reached the limits of its<br />

serviceable life and planning is in hand for the re-equipment of<br />

the network with a new generation system based on low maintenance<br />

and readily available modern technology. The implementation of<br />

the new system will enhance the quality of the data, and improve<br />

the quality control and data management.<br />

NETWORK HISTÖRY<br />

In the mid 1950's the Aüstralian Bureau of Meteoroiogy took<br />

over t^he responsibility for a small network rof 7 actinographs<br />

monitoring global solar radiation which was operated by the<br />

University of Melbourne. Following a survey of user requirements<br />

for the radiation data, including quality, quantity, and spatial<br />

distribution, the network was gradually upgraded, starting in the<br />

second half of 1960's. Low accuracy Sensors were replaeed by<br />

thermopile pyranometers, and a monitoring system, based on an<br />

analog chart recorder, mechanical integrator and electromechanical<br />

printer, was installed. The size of the network was<br />

increased to 22 stations monitoring global solar exposure, and 13<br />

at which diffuse solar exposure was monitored. The diffuse<br />

component of global exposure being monitored by a pyranometer<br />

with an occulting diBc driven by a synchronous motor.<br />

With the growing demand for solar radiation data at<br />

localities not previously covered by the existing network, nine<br />

stations were added to the network between 1982 and 1986, all<br />

monitoring both the global and diffuse exposure. Ät four new<br />

stations an in-house designed electronic integrator replaeed the<br />

mechanical integrator, and at five of the new stations an inhouse<br />

designed electronic integrator and electronic memory<br />

storage unit replaeed the mechanical Units. There has, been some<br />

fluctuation in the number of stations in the network for various<br />

reasons. The current number of active stations is 25.


IPC VII Part 3: Contributions to Symposium<br />

All stations provide half hourly radiant exposures as either<br />

a hard copy printout br on a removable electronic membry storage<br />

unit, depending on the type of the Station, in addition to ä hard<br />

copy continubus chart of the irradiance. The data are transferred<br />

each month from the stations to the National Climate Centre (NCC)<br />

by mail for quality control checks and ärehival.<br />

CURRENT DATA QUALITY MONITORING AND SYSTEM PERFORMANCE<br />

The data quality control is applied at four levels<br />

consisting of:<br />

1. initial pyranometer ahd auxiliary equipment calibration<br />

prior to-the depioyment at the Station and on return from the<br />

Station.;<br />

2. Continuous maintenance and Performance monitoring öf the<br />

sensor änd däta acquisition system by the field staff at the<br />

Station. The sensor Performance is monitored by a comparison of<br />

ah actüal clear sky half hourly radiant exposure around local<br />

äppärent npon to an expeeted value. The data acquisition system<br />

timing is monitored and time marks are inserted on the irradiance<br />

chart.<br />

3. Regulär maintenance of the system and calibration checks<br />

of the auxiliary equipment by regional field teohnicians using a<br />

Standard voltage source.<br />

4. Central data bank quality control program Monitors long<br />

term trends in senior and data acquisition system Performance<br />

based on the results obtained at levels 1, 2 and 3 of the initial<br />

and field quality control and the results are applied as a<br />

correction to the räw data. Individual half hourly radiant<br />

exposures are compared to maximum expeeted values and the night<br />

time dark Signals and the relation between global and diffuse<br />

radiant exposures are monitored. Spurious data are flagged by a<br />

computerised quality control program and investigated using hard<br />

copy irradiance Charts änd any other relevant meteorological<br />

observations. Quality control leid and corrected data are then<br />

stored in the NCC central data bank.<br />

It is estimated that the uncertainty of the archived data is<br />

within 5% and 7% for half hourly global and diffuse radiant<br />

exposure respectively at solar elevationsgreater then 20°.<br />

Up to 20 years of data are available in the central<br />

ärchives of the Bureäu of Meteoroiogy National Climate Centre.<br />

It is apparent that with the current network, the data<br />

quality control and Management is labour intensive with a Iarge<br />

volume of manuai data processing required. The quality control<br />

program does not cover periods of measurement under other than<br />

Clear sky eonditions for global irradiance and is inadequate for<br />

diffuse irradiance. Maintenance of the network equipped with<br />

three different types of auxiliary equipment is demahding and<br />

49


IPC VII Part 3: Contributions to Symposium<br />

extensive periods of data loss have occurred due to the<br />

increasing equipment failure and slow communication between<br />

stations and the central data quality control facility. Some pf<br />

the stations located in capital eitles do not provide<br />

representative data due to their exposure within the local<br />

polInted environment, These deficiencies have been addressed<br />

under the current Bureau capital re-equipment program and i t is<br />

expeeted that reliable data with smaller uncertainties will be<br />

obtained from a reconstrueted network.<br />

OUTLINE OF THE PLANNED SYSTEM<br />

The pbjeetive of the new solar radiation monitoring network<br />

is tö produce a reliable database of a broad band solar radiation<br />

measurement satisfyihg the needs öf users reqüiring long term<br />

climatological Information äs well as near real time data with a<br />

relatively high time resoiution.<br />

An efficient data quality control program managed by a PC<br />

based data acquisition System at the Station level will automate<br />

the quality control levels 2 and 3 noted above and provide<br />

objective information on the status pf a Station fünetion and<br />

data reliability. A daily communication of data and Status<br />

details via the Aüstralian telecommunication network to a central<br />

data management facility will provide near real time da^ta usefs<br />

with the required Information.and eoable the network management<br />

to täke immediate corrective action in case öf sub-system<br />

f ailures.. .<br />

. ^ 1 Th^ Station level quality control<br />

is in the redundancy of monitored parameters. The basic<br />

measurements are the 1 minute direct, diffuse and global exposure<br />

using first class sensors which are regularly characterised, and<br />

using the direct and diffuse components as a major eomponent of<br />

the information, with the global eomponent as a quality control<br />

indicator. Any discrepancy in the mutual relationship of<br />

monitored parameters will be evaiuated, interpreted and reported<br />

as both a warning to the Station staff to take a corrective<br />

action and as a data quality, flag to the central Office. Other<br />

quality control. indicators will mpnitor the dfift in calibration<br />

of the global pyranometer, the status of: an active sun tracking<br />

device proyiding for the measurement of direct and. diffuse<br />

irradiance; änalog/digitai conversion (zero, ränge, blas);<br />

individual sensors (temperature, cireuitry status); the system<br />

time base; and, the power supply.<br />

50<br />

The planned Aüstralian solar radiation network will consist<br />

of: twelve high quälity basic stations measuring direct, diffuse<br />

and global solar exposure and providing for the measurement of<br />

downward long wave radiation änd calculation , of sunshine<br />

duration; three high quality research stations monitoring the<br />

above pärameters on multiple basis as well as spectral<br />

measurements (Cape Grim, Darwin, Laverton); and; one high quality<br />

research Station (Alice Springs) taking part in the WMO Global<br />

Background Surface Radiation Network (GBSRN). A limited version


IPC VII Part 3: Contributions to Symposium<br />

of the upgraded data acquisition System is also planned for<br />

installation on the existing stations located in Aüstralian<br />

capital cities. The distribution of stations within the network<br />

is shown in Figure 1.<br />

The minimum information yielded by the network will consist<br />

of 1 minute values of radiant exposures together with flux<br />

variance indicators and data quality flags. This information will<br />

be stored for use by specific research programs and use by the<br />

central data bank for the data quality control program<br />

(equivalent to level 4 above). These data will then be used to<br />

generate a database of radiant exposure for individual<br />

quantities. The high quality research stations and GBSRN Station<br />

will also provide the solar radiation information required by<br />

other Short and long term research programs.<br />

The re-equipment program is planned to commence in the<br />

second half of 1991 with total cost of approximately A$1.2M.<br />

Conclusion<br />

Based on local daily precision checks and half yearly<br />

rotation of sensors, together with yearly re-calibration of the<br />

sensors, i t is expeeted that the planned network will yield the<br />

data with uncertainty of 2 to 3% and 5% for short wave and long<br />

wave components respectively. Labour intensive and highly<br />

subjective quality control will be replaeed by automated and<br />

objective procedures which will reduce workload requirements for<br />

the quality control, data archival, retrieval and dissemination.<br />

Effective feedback to the network management centre will reduce<br />

the data loss to a minimum.<br />

Despite the promise of significant improvement in the solar<br />

radiation data yielded by the planned network, the network reequipment<br />

plan effectively reduces the number of solar radiation<br />

monitoring sites. This will affect some users requiring data with<br />

higher spatial resoiution. Currently the Bureau is evaluating a<br />

program of retrieval of daily surface global radiant exposure<br />

from satellite measurements. When operational the program should<br />

provide daily global radiant exposure data for a variable grid<br />

displacement of between. 6 and 24 km, with an uncertainty<br />

estimated at or better than 7% under clear sky eonditions and<br />

approximately 3 to 5 MJm-* under cloudy skies. The high quality<br />

surface observations will serve as ground truth and quality<br />

control indicators for the satellite-derived data. The program is<br />

expeeted to be fully operational during 1991.<br />

51


IPC VII Part 3: Contributions to Symposium<br />

52<br />

-10OS-<br />

-400S-<br />

LSAHMONTH<br />

GERALDTON<br />

BROOME<br />

KALGOORLJE<br />

120°E tMACQUARiE !S.<br />

A!RNS<br />

ALICE SPR!NGS<br />

CHARLEVtLLE<br />

MT GAMBtER<br />

High Quality research stations<br />

WAGGA<br />

WAGGA<br />

LAVE3TON<br />

4-CAPE GR!M<br />

1ECOE<br />

WtLLJS tS.<br />

*ROCKHAMPTGN<br />

t'MLL!AMTOWN<br />

(multiple radiation quantities includin? spectral measureaents)<br />

High quality basic networi stations<br />

(measuring global, diffuse, direct and Ions wave radiation and<br />

sunshine duration)<br />

Publie information or partially capital iunded externally<br />

(measuring global and diffuse radiation)<<br />

Figure l<br />

Aüstralian solar radiation monitoring network.


ABSTRACT<br />

IPC VH Part 3: Contributions to Symposium<br />

SOLAR RADIATION RESEARCH LABORATORY AT SERI<br />

T. Stoffe!<br />

So!ar Energy Research Institute<br />

1617 Co!e B!vd.<br />

Golden, Colorado 80401<br />

U.S.A.<br />

The Solar Radiation Research Laboratory (SRRL) was established in 1983 by the Solar<br />

Energy Research Institute (SERI) to collect high-quality solar radiation and surface meteorologica!<br />

data in support of SERI's research mission. The SRRL is located in Golden, Colorado, on South<br />

Table Mountain. In addition to continuously monitoring so!af radiation resources, the SRRL<br />

providcs an outdoor radiometer caübration faciüty, capabHities for instrumentation deve!opment and<br />

testing, and the data acquisition Systems ahd mounting p!atforms necded for research in solar energy<br />

conversion technölogies.<br />

1. RESEARCH DATA BASE<br />

The SRRL Baseüne Monitoring System (BMS) collects observations of the 17 so!ar radiation<br />

and meteorologica! parameters listed in Table 1. The battery-powered data acquisition system is<br />

programmed to sample the data Channels at 10-second intervais; it stores five-minute äverages of al!<br />

but wind-speed and wind-direction data, which are instantaneous samples. Data are stored on<br />

audiocassette tape for up to 14 days. The tapes are read onto disk files and are processed for quaiity<br />

control, reporting, and archiyal in SERI Standard broadband format (SERI, 1988). Routine<br />

maintenance of the BMS is performed daüy, except on Weekends and hoiidays. The condition of the<br />

equipment, adjustments to the System, and a simple weather Observation are recorded on a Standard<br />

!og form (Figure 1). Figure 2 is a sample monthly report of two-axis-tracking g!oba! so!ar irradiance.<br />

Simüar products are avaüable for the remaining data Channels.<br />

2. RADIOMETER CALIBRATIONS<br />

We have deveioped a Standard procedure for Broadband Outdoor Radiometer CALibrations<br />

(BORCAL) performed at SRRL. More than 200 radiometer caHbrations have been made as of<br />

December 1990. The procedure is based on direct comparisons with an abso!ute cavity radiometer<br />

for pyrheliometers and the Component Summation Technique (ASTM, 1986; Myers, 1989) for<br />

pyranometers.<br />

Pyrheliometers are caübrated by comparing the voltage signa! from the instrument under test<br />

with the dircct-normal solar irradiance as measured with ah electricaüy se!f-ca!ibrating absolute cavity<br />

radiometer traceable to the World Radiometric Reference (WRR). TypicaUy, the average of more<br />

53


IPC VII Part 3: Contributions to Symposium<br />

than 500 such comparisons, made over at least two däys, is used tö determine the mean calibration<br />

factor (in microvolts/watt/square meter).<br />

Pyknometers are calibrated by summing measurements of the direct-hormal sola r eomponent<br />

as measured with an absolute cavity radiometer and the diflüse-horizontal (sky) solar irradiance as<br />

measured with a thermopile-based pyranometer mounted under an automatic solar tracking disk. The<br />

reference solar irradiance is calculated from the sum of these two components, incorporating the<br />

effect of the solar zenith angle at the time of measurement. The reference irradiance is then compared<br />

with the voltage signal from each pyranometer under test to determine the calibration factor.<br />

The final reporting method allows the instrument owner to easily interpret the calibration<br />

process and results. A sample of the instrument calibration factor variations with solar zenith angle<br />

is shown in Figure 3.<br />

3. RESEARCH SUPPORT<br />

The SRRL facilities have been used to evaluate the Performance of prototype automatic solar<br />

trackers for the U.S. solar monitoring network. Spectral solar irradiance measurements, in<br />

conjunetion with the Baseline Monitoring System (BMS) data, are used to evaluate the Performance<br />

of photovoitaic cells and submodules under natural outdoor eonditions. The devclopment and<br />

evaluation of SERI's Atmospheric Optical Calibration System (AOCS) has also been aecomplished<br />

at the SRRL. The AOCS provides Photometrie data for estimating the spectral distribution of solar<br />

irradiance needed för photovoitaic device testing. Building thermal Performance methods have<br />

benefitted from the measurements of solar irradiance on verticai surfäces oriented north, east, south,<br />

and west. Recently, the monitoring of direct-normal ultraviolet solar irradiance has been added to<br />

the SRRL BMS in support of a research project on solar detoxification of hazardous wastes.<br />

4. REFERENCES<br />

ASTM, 1986: .SYaH&zra' M^Ao^/br Ca/^m^o^t o/Pyra?:owiefefY ü^mg r/:^ -S'MW Dfrgc/<br />

o/ta* D^/tMc Compo/teAt/y o/ Jo/ar /rraa'ifahcg. Ständard E913-R2, Committee E-44,<br />

American Society for Testing and Materials.<br />

Myers, D.R., 1989: "Application of a Standard Method of Uncertainty Analysis to Solar Radiometer<br />

Calibrations." Proceg^Mgy o/;/:e 796^9 Co/^re/!cg o/f/^v4manca/: 5*o/ar E;i


IPC VII Part 3: Contributions tö Symposium<br />

Table 1. Data Channels Cor the SRRL Baseline Monitoring System<br />

Channei<br />

No. Measurement Parameter Instrument*<br />

1 Global Horizontal Irradiance PSP<br />

Diffuse Horizontal Irradiance PSP<br />

Direct Normal Irradiance NIP<br />

Global Irradiance on a 40° South-Facing Till PSP<br />

Global Normal Irradiance on a Two-Axis Tracking Surface PSP<br />

Global Irradiance on a One-Axis Tracking Surface<br />

(Horizontal, North-South Axis)<br />

CM-11<br />

Global Horizontal Irradiance (780-3000 nm) PSP<br />

Direct Normal Irradiance (780-3000 nm) NIP<br />

Total Horizontal Ultraviolet Irradiance (295^385 nm) TUVR<br />

10 Ground-Reflected Radiation PSP<br />

11 Direct Normal Irradiance (500 nm) LCSP<br />

12 Wind Speed, 10 m above ground level TGT<br />

13 Wind Direetiön, 10 m above ground level TGT<br />

14 Dry Bulb Temperature CSI<br />

15 Relative Humidity CSI<br />

16 Barometric Pressure YSI<br />

17 Direct Normal Ultraviolet Irradiance (295-385 nm) TUVR<br />

*CM-11 = Kipp & Zonen Pyranometer, Model CM-11<br />

CSI = Campbell Scientific, Inc., Model 207 Probe<br />

LSCP = SERI-Designed Lpw-Cost Sun Photometer (T. Cännon)<br />

NIP = Eppley Laboratory Pyrheliometer, Model NIP<br />

PSP == Eppley Laboratory Pyranometer, Model PSP<br />

TGT = Teledyne-Geotech Wind System<br />

TLT/R = Eppley Laboratory Photometer, Model TUVR<br />

YSI = Yellow Springs Instrument Company<br />

55


IPC VII Part 3: Contributions to Symposium<br />

SRRL MAINTENANCE AND OPERATIONS LOG (Vol. 25)<br />

Observer: ToM Day: MT@)TF Date: ^./24/^ DOY: Time: ö4 : SZ(MST)<br />

(circle) Solar Declination (ö): - o.??^<br />

CR-21X<br />

Channel<br />

—RADIOMETERS/SENSORS—<br />

Measured<br />

Parameter<br />

1 GLOBAL HORIZONTAL WG7<br />

2 DIFFUSE (SB)<br />

3 DIRECT NORMAL WG7<br />

,4 GLOBAL 40-SOUTH<br />

5 2-AXIS GLOBAL<br />

6 1-AXIS GLOBAL<br />

7 GLOBAL HORIZONTAL RG780<br />

8 DIRECT NORMAL RG780<br />

9 TOTAL UV PHOTOMETER<br />

10 ALBEDO<br />

11 PHOTOMETER (500 NM)<br />

12 WIND SPEED<br />

13 WIND DIRECTION<br />

14 DRY BULB TEMPERATURE<br />

15 RELATIVE HUMIDITY<br />

16 PRESSURE<br />

17 UV DIRECT-NORMAL<br />

Condition<br />

Code*<br />

—DATA ACQUISITION SYSTEM (CR21X)—<br />

Clock (Reset at<br />

(slow/fast by<br />

—SURFACE WEATHER OBSERVATION—<br />

Temperature: Current _S]8_F Max 8^ F<br />

Cloud Cover: Total ^/p Type(s)<br />

MST)<br />

Reading<br />

(OT_:OOMST)<br />

//Ö<br />

^1<br />

-SUPPORT EQUIPMENT-<br />

W/m'<br />

W/m?.<br />

W/m'.<br />

W/m'<br />

4St W/m'.<br />

4/34 W/m'.<br />

44 W/m'<br />

w/m'.<br />

W/m'<br />

-Wl


STATION!<br />

SOOR<br />

1<br />

' DAY<br />

1<br />

2<br />

3<br />

4<br />

' 5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

1,9<br />

20<br />

2:1<br />

22<br />

23<br />

24<br />

25<br />

2 6<br />

2 7<br />

28<br />

29<br />

30<br />

AVS<br />

S D<br />

S/A<br />

MIN<br />

MAX<br />

Monthly Summary Prepared By The Solar Energy Research Inatitute<br />

SRRL 16-CBANNEL BASELINE MONITORING June 198 9<br />

3 9.74 N Latitude 105.18 tf Longitude 1829. Meters AMSL Time Zone -7.0<br />

SLOBAL SOLAR RADIATION ON A 2-AXIS TRACKIKS SURFACE<br />

HOURLY INtESRATED AND DAILY TOTALS<br />

WATT-HOURS PER SQUARE METER<br />

8 9 10 11 12 13 14 15 16 17 18 19 21 23 24 DAILY<br />

-[-<br />

2 6 3.8 7<br />

!-<br />

I<br />

866 990<br />

— - !<br />

96 6<br />

-!- -I.-<br />

671 613<br />

-1 -<br />

8 91 82 3<br />

- I -<br />

124<br />

-!- -! -<br />

468 4 37 361<br />

- I -<br />

264<br />

-!-<br />

308 7<br />

-1<br />

8201<br />

4,0- 3f28 677 960 1035 977 600 3 93 66 4 4 05 393 1019 931 7 4 26 1.<br />

6525<br />

0 8 40 149 632 7 40 7 97 210 201 172 2 4 10 7 2 4<br />

1' 16 43 58 139 144 157 160 18:7 86 155 53 58 39<br />

69 6,1"7 882 987 1039 10 6 3 10 80 108 4 952 1071 354 62 9 927 549<br />

23 152 8 32 876 881 1033 225 43 807 1105 227 205 124 77<br />

81 2 34 44 8 17 8 815 240 876 1201 1020 1021 1073 841 257<br />

10 2 36 222 911 90 6 10 69 1133 3 34 371 64 79 655 2 38' 540<br />

1 31 66 18 2 37 6 4 63 502 467 654 613 254 738 2 57 12 9<br />

4 4 577 871 953 1031 100 6 7 77- 175 219 477 669 276 1,74 19 4<br />

4 34 69 3F81 514 6 95 8 52 774 48 7 542 815 876 3 61 .122<br />

4:4 192 713 881 605 482


IPC Vn Part 3: Contributions to Symposium<br />

WMO SUNSHINE DURATION MEASUREMENT COMPARISON<br />

1988/89 IN HAMBURG<br />

Dehne, K., Bergholter, U.<br />

Deutscher Wetterdienst<br />

Meteorologisches Observatorium Hamburg<br />

1. INTRODUCTION<br />

The definition of the quantity "sunshine duration" recommended at CIMO-VIII (1981) as the<br />

sum of time intervais during which the direct (normal) solar irradiance exceeds the threshold<br />

of 120 Wm i has stimulated the development of automatic measurement methods. The WMO<br />

comparison described here was performed according to the terms of reference of the<br />

Working Group on Radiation and Atmospheric Turbidity Measurement (see Resol. 10 of<br />

CIMO IX) "in order to establish and maintain comparability of sunshine duration data<br />

throughout the world."<br />

This paper containing some preliminary results is a modified Version of a presentation at<br />

TECIMO IV (1). The final report on the comparison will be pubtished by WMO in 1991 as<br />

"Instruments and Observing Methods" report.<br />

2. PARTICIPATING INSTRUMENTS<br />

Totally 9 member countries participated in the comparison with 11 optoelectronicsensors, 4<br />

pyranometer combinations with shade devices ("GD"-methods) and 2 Campbell-Stokes<br />

sunshine recorders. In Table 1 opto-electronic sensors scanning periodically the sky<br />

irradiance of more or less narrow sectors are compiled in group A. The MS-91 is the only<br />

one using a "black receiver" (pyroelectric detector). The sensors in group B apply Silicon<br />

cell arrays to evaluate the contrast, which is amplified in the case of the model SOLAR by<br />

a rotating shade bow. To specify the "GD"-methods, Table 2 contains information about the<br />

pyranometers and shade rings used (incl. corrections) as well as the applied threshold<br />

formulae. Iii the case of method GD (GDR) threshold formula and ring corrections are<br />

approximated by simply calculable terms being derived from measurement values.<br />

Tab. 1<br />

group number model manufacturer owner conntry<br />

(abbr;)<br />

HeHogr. ä Fibre Optique HFO C1MEL<br />

MS -91 EKO<br />

SONIe 6.008 SIGGELKOW FRG, NL, SF<br />

SOLAR HIB HAENNI CH, FRG, NL<br />

DB - SS9 Stove. Hydr. Inst. CSSR<br />

B NG - Al AES (Canada) CDN<br />

The 2 participating Campbell-Stokes recorders were models as used in French or German<br />

networks equipped with "blue" or "black" cards, respectively.<br />

59


IPC VII Part 3: Contributions to Symposium<br />

Por deriving the reference values 2 Eppley Normal Incidence Pyrheliometers (NIP) of the<br />

Regional Radiation Center Hamburg were used.<br />

Tab. 2<br />

pyranom. modets shade device shade ring<br />

correction<br />

G<br />

PRM2 PRM2 ring: r—200;<br />

b=40 mm<br />

CM!1 CM11 ring: r=310;<br />

b =35 mm<br />

CM 11 CMH ring: r=296;<br />

b=50 mm<br />

CM 11 CM 11 disk: r=600?<br />

0=60 mm<br />

monthly<br />

factors<br />

"isotropie<br />

sky"<br />

threshold form owaer<br />

country<br />

G-D > 20 + D/10 GDR<br />

G-D > 120 sin? NL<br />

formüla 4 (3) G-D > 120 sin? FRG<br />

G-D > 120 sin? FRG<br />

(?: soiar eiev. angle)<br />

3. SITE AND DURATION<br />

The comparison was accomplished at the Meteorological Observatory Hamburg (53°39'N;<br />

10°07'E, h = 49 m) of the German Weather Service which is RRC in WMO-RA VI. The<br />

main period of the comparison was the 8 months interval from August 1988 to Mar ch 1989.<br />

4. DATA ACQUISITION AND REFERENCE<br />

The data acquisition system consisted of a Commodore 8032 Computer system, two scanning<br />

digital multimeters PREMA 5000, and a special digital input interface. Digital sensors were<br />

read out at 50 samples per second, 13 analogue Signals were scanned within 12 seconds<br />

every 20 seconds, Hourly results were printed änd stored on disc referring to TST, nameiy:<br />

- sunshine duration for each method,<br />

- sunshine duration for 41 fictitious thresholds from 80 to 240 Wm^, in steps of 4 Wm'\<br />

- the sums of energy of all analogue values.<br />

Reference sunshine duration (S^f) was determined according to WMO definition, using the<br />

average of 5 Signals from the two NIPs for each set of scanned data.<br />

5. SUNSHINE AND WEATHER CONDITIONS<br />

Düring 6 months the monthly sums of sunshine hours were lower than the climatological<br />

means. The relative monthly sunshine duration S,,, (S^f related to the astronomical possible<br />

monthly sum) fluctuated between 35% (August) and 15% (December). The total number of<br />

threshold transitions N amounted to more than 7000, with high contributions of September<br />

and February, Winterly temperatures were extremely mild (only one Short snow episode in<br />

November). The precipitation was 440 mm corresponding to 90% of the climatological<br />

mean.<br />

6. PRELIMINARY RESULTS<br />

6.1 General<br />

The main groups of evaiuated results are:<br />

a) the absolute and relative deviations of hourly and daily<br />

S-values from the corresponding reference values.<br />

60


IPC VII Part 3: Contributions to Symposium<br />

b) as a) but for data sets discriminated in groups A, B, and C<br />

according to the daily value of relative sunshine duration<br />

S^ < 0.3; 0.3 < S^


IPC VII Part 3: Contributions to Symposium<br />

days with iarge Clusters of clouds (150), days with scattered clouds (40), and days with "fine<br />

weather" (20), respectively. For most of the methods the dots for (B) and (C) are relatively<br />

close to each other while the (A)-dots can be found somewhat separated at the side of higher<br />

deviations, This may be explained by the high probability tb meet fields of bright altus and<br />

cirrus clouds in group (A). The Standard deviations (in hours) describe the scattering of the<br />

absolute daily deviations öf the unseleeted data set and are typically high for the CSdeviations,<br />

The MEIT-values (in Wm'^) are calculated from the monthly values weighted by<br />

the proper number of evaiuated hours, at least for some methods these values should be<br />

considered as very preliminary.<br />

10-<br />

APR -<br />

), AUG ] SEP t OCT ) NOV ) OEC ) JAN I FEB ) MAR )<br />

--A<br />

GD (FRG -O)<br />

CO (GOR)<br />

GD NL)<br />

^! GO (FRG)<br />

t AUG I SEP I OCT ) NOV I OEC. I JAN I FEB I MAR j<br />

10-, HFO (F-t)<br />

I AUG I SEP I OCT I NOV ! DEC I JAN I F$6__1_MAR ]<br />

10-, .<br />

A- ^^A?^.<br />

.—<br />

^<br />

\<br />

\<br />

-10-] .* ^ s<br />

-\ \<br />

-20-<br />

-10<br />

! AUG I SEP I OCt I NOV ] OEC I JAN t FEB I MAR )<br />

I. AUG I. SLP I 0C1 I NOV I OEC I JAN ! FEB I MAR<br />

APR<br />

HFO (F^2)<br />

SONt (NL)<br />

SON! tSF)<br />

SONI (FRG)<br />

A-<br />

o— <br />

A-<br />

o-<br />

SOLAR (NL) A-<br />

SOLAR (FRG) *>-<br />

/! SOLAR (CH) o-—<br />

- MS-91 (J) +<br />

DB-SS!) (CSSR)<br />

NG-Al (CDN)<br />

CS (F-l)<br />

CS (F-2)<br />

CS (FRG-1)<br />

CS (FRG-2)<br />

CS (FRG-3!<br />

+— +<br />

Fig. 1: Percent dtviations of the monthly sums for al! participating methods. (Repiacement of SOLAR (CH) in<br />

October and HFO (F-l) in December.) ,<br />

62<br />

A-<br />

-o<br />

+


W/m<br />

)20<br />

160-<br />

120-<br />

200^<br />

160-<br />

120-<br />

t AUG ) SEP ) OC! ) NOV ) DEC ) JAN t H B ) MAR ]<br />

+ ^-<br />

.-A<br />

— +<br />

AUG [ SEP I OCT ) NOV ) OEC ) JAN ! FEB I MAR )<br />

) AUG ) SEP ] OCT I NOV I DEC t JAN ] FEB ) MAR )<br />

^— — o<br />

A A..^^<br />

y<br />

Ah<br />

Y<br />

-A* ^ IT*<br />

^— — +<br />

'A-<br />

IPC VII Part 3: Contributions to Symposium<br />

4<br />

00 (FRG^O) A— A<br />

GD (GOR) ° ;—o<br />

CO tNL)<br />

CD FRG<br />

HFO (F-l)<br />

HFO F-2)<br />

- SON! (NL)<br />

SON} tSF)<br />

SON! (FRG)<br />

^ +<br />

- SOLAR (NL) Ar^r-.-rA<br />

SOLAR (FRG) "— "<br />

SOLAR (CH) n - — a<br />

MS-91 (J)<br />

08-SS9 (CSSR) '—- -*<br />

NG-Al (CON) Y —


IPC VlI Part 3: Contributions to Symposium<br />

40-<br />

30<br />

20-<br />

10-- "-A-<br />

-10<br />

20<br />

-30-*<br />

SO A<br />

WEIT<br />

— O ZU, ^ CE O o<br />

Li.CE<br />

t/1 LL CCCC<br />

zzz<br />

ooo<br />

oo<br />

1 1<br />

-toce oi<br />

ZOU. ü-<br />

OOO O<br />

YYY<br />

A A<br />

-0.8<br />

-0.6<br />

-0.4<br />

0.2<br />

-60<br />

-90<br />

120<br />

Y Y -150<br />

^ f^< (7!<br />

. ' ' o-oro:<br />


IPC VU Part 3: Contributions to Symposium<br />

SOLAR AND CRYOGENIC RADIOMETRIC SCALES :<br />

A PRELIMINARY COMPARISON<br />

J. Romero', N.P. Fox^ and C. Fröhlich*<br />

' Physikalisch-Meteorologisches Observatorium Davos, World<br />

Radiation Center, 7260 Davos-Dorf, Switzerland<br />

^ National Physical Laboratory, Division of Quantum Metrology, Teddington, UK<br />

This is an abstract of a paper presented at the Conference "New Developments and Applications in Optical<br />

Radiometry III" held in September 20-22 at Davos, which will appear in Metrologia.<br />

Established in 1975 for solar radiometry purposes, see Fröhlich (1978), the World Radiometrie Reference<br />

(WRR) is maintäined by a group of seven instruments - nameiy PACRAD III, PMO-2, PMO-5, CROM­<br />

OL, CROM-3L, TMI-67814, HFQ4915 constituting the World Standard Group (WSG) - working at<br />

ambient temperature and pressure. These instruments are optimized for irradiances up to 1500 Wm^ and<br />

the estimated absolute uncertainty of the WRR is 0.3%. Cryogenic electrical Substitution radiometers<br />

working at radiative power levels in the 1 mW ränge have ah absolute uncertainty of few parts in 10^,<br />

which allbws to realise the radiative SI "scale" very accurately, see eg. Quinn and Martin (1985). We<br />

have performed a comparison with the Primary Standard Radiometer (PSR) of NPL, a cryogenic<br />

radiometer, and the lully characterized PM06-9 radiometer working at room temperature and pressure<br />

which is traceable to the WRR. The former has an absolute accuracy of ±0.001% measunng alaser beam<br />

and the latter of ±0.17% for solar irradiance, both at the 3o* level.<br />

This preliminary comparison was performed using a chain of transfer with Silicon trap detectors as<br />

described by Fox and Martin (1990) which arc well suited for that purpose and another room temperature<br />

radiometer. Measurements of a power-stabilized laser source at different wavelengths and power levels<br />

by both type of radiometers show a reproducibility of better than 0.02%. The comparison gives<br />

PSR/PM06-9=1.00145 which is within the stated absolute uncertainty of the radiometers, butis very closc<br />

to the limit of the 3c uncertainty of PM06-9. The ratio of PSR to WRR is 0.99869, and as a correction<br />

for diltracüon of about 0,1 % is not included in the WRR, the Anal ratio is very closc to 1 (0.99969).<br />

Notwithstanding, for solar radiometry fröm ground, a cryogenic radiometer can not be used without a<br />

window, thus it can not measure with its high accuracy solar radiation. thus, för the immediate future,<br />

the conventiona! room temperature radiometers as those of the WSG have to be used for that purpose as<br />

well äs the WRR. In future, plans exist to use cryogenic radiometers för solar radiometry fröm Space.<br />

Brusa, R.W., and C. Fröhlich, 1986: Appl. Optics, 25, 4173-80<br />

Fox, N., and J. Martin, 1990: Appl. Optics, 29, 4686-95<br />

Fröhlich, C, 1978: Final Report, WMO No. 490, 108-112<br />

Romero, J., N-P- Fox and C. Fröhlich, 1991: to appear in Metrologia<br />

Quinn, T.J., and J. Martin, 1985: Phil. Trans. Roy. Soc. (London), A316, 85-189<br />

65


IPC VII Part 3: Contributions to Symposium<br />

EXPERIENCE WITH A RADIOMETER CAVITY IN SPACE<br />

J. R. Hickey and R. G, Frieden<br />

The Eppley Laboratory Inc.<br />

Newport, RI 02840, USA<br />

D. J. Brinker<br />

NASA Lewis Research Center<br />

Cleveland Ohio 44135, USA<br />

This is an updated summary of the paper delivered at the<br />

Optical Radiometry I I I Symposium, Hickey et. al. (1990).<br />

An H-F type cavity radiometer was included as the total i r ­<br />

radiance monitor of the Advanced Photovoitaic Experiment (APEX)<br />

aboard the Long Duration Exposure Facility (LDEF) satellite. This<br />

is the same type cavity which has returned data from Nimbus 7 for<br />

almost 12 years. The LDEF satellite was placed into orbit by the<br />

Space Shuttle Challenger on April 7, 1984 and Was retrieved by<br />

the Shuttle Columbia on January 12, 1990* The exposure of the experiments<br />

was för a period of almost 6 years although a mission<br />

of only one year had been intended. The APEX cavity radiometer<br />

was the total irradiance reference for a Iarge number of photovoitaic<br />

cells which were being tested. The APEX was pn the leading<br />

edge surface of the LDEF Which experienced the füll effects<br />

of the ram, including atomic oxygen flux and impacts by debris<br />

and micrometeorites. Examination has shown a minimum of visual<br />

ef fects caused by contamination. A change in the structure of the<br />

cavity paint is seen under microscopic examination at high I l l u ­<br />

mination. The Chemglaze Z3Ö2 paint appears to have deveioped<br />

ridges or "puckering" on the interior surface. The electrical<br />

properties, including heater resistance and thermopile resistance<br />

show nö change. For intercomparison in direct sunlight the APEX<br />

cavity Was mounted in a case of the type used for ground intercomparisons<br />

with an outer tube and a normal FOV tube replacing<br />

the flight tube. Initial irradiance intercomparisons at Newport<br />

showed agfeement with the local reference instrument, HF serial<br />

number 14915, at the ±0,1% level with uncertainty at this same<br />

level. Selected initial results at IPC VII show agreement at the<br />

-0.05% level with ±0.07% uncertainty. Final results with regard<br />

to the WRR for 14915 and the LDEF cavity await the IPC report.<br />

During the IPC the LDEF cavity reflectance was measured at PMOD.<br />

The reflectance appeared to be unchanged within the measurement<br />

uncertainty of about i80 ppm.<br />

The stability of seif calibrating cavity radiometers during<br />

long space misslohs is critical to our knowledge of true variations<br />

of the solar output at


1. INTRODUCTION<br />

IEA COMPARISON OP LONG-WAVE RADIOMETERS<br />

IN Hamburg. 1989/90.<br />

K. Dehne, U. Bergholter<br />

Deutscher Wetterdienst<br />

Meteorologisches Observatorium Hamburg<br />

D-2000 Hamburg 65<br />

F.R. Germany<br />

IPC VII Pari 3: Contributions to Symposium<br />

For measurement of the hemispherical long-wave irradiance (wavelengths<br />

3um) two methods are applied in meteoroiogy:<br />

- the determination of the difference between the total hemispherical<br />

irradiance (0,3um tö > 50um) measured by a pyrradiometer and the<br />

hemispherical solar irradiance (0,3um to 3(im) measured by a pyranometer.<br />

- the direct measurement by a pyrqeometer.<br />

The disadvantage of the former (and older) method is the use of two radiometers<br />

(and three calibration factors, see eq.(l), and some practical probiems<br />

With the Polyethylene dorne used mostly in pyrradiometry. The main probiem<br />

of the pyrgeometer is the non-ideal transmittance of the Silicon dorne which<br />

is covered by a cut^off interference filter to define the wäveiength border<br />

at about 3um (1).<br />

No precision Instrument is up to now available as ä reference.<br />

The differences between atmospheric heat radiation (A) determined at<br />

different meteorological institutes are usually within + 10 X. They can be<br />

explained by different types of field radiometers, different calibration<br />

procedures, different Ventilation Systems and last not least by different<br />

calculation procedures for the determination of A.<br />

The objectives of the long-wave measurement procedure comparison within<br />

IEA-Subtask 9F were<br />

- to find out the state-of-the-art of the international^ used procedures,<br />

expecially the level of measurement uncertainty in dependence on meteorological<br />

eonditions,<br />

- to find out the level of agreement between calibration factors derived<br />

in different Institutes,<br />

- to recommend procedural improvements for reducing the measurement Uncertainty<br />

with the special aim to establish a reference,<br />

- to recommend measurement procedures which are especially suited for solar<br />

collector test applications.<br />

2. PARTICIPATING RADIOMETERS<br />

Totally 6 IEA member countries have partieipated in the comparison with 6<br />

pyrgeometers and 2 pyrradiometers.<br />

Six of the pyrgeometers are Eppley radiometers of the type (PIR): one of<br />

them is modified by J.S. Foot (Meteorol. Research Flight, Farnborough) and<br />

has a special thermopile to reduce the influence of the internal temperature<br />

gradients on the measuring Signal (2). Only the PIR instruments of SMHI and<br />

NASA are equipped with a YSI-thermistor bead for monitoring the dorne<br />

temperature near its rim.<br />

The pyrradiometer of the Middleton-type, CN-1, is a radiation balancemeter<br />

67


IPC VII Part 3: Contributions to Symposium<br />

with the downward lookirtg receiver surface covered by a metallic cap. The<br />

temperature of the cap is measured and introduced in the evaluation formula<br />

for Tg. The thin Polyethylene dorne protecting the upward looking receiver<br />

surface has to be blown up by dry compressed air. The "Schulze"-pyrradiometer<br />

manufactured by Dr. B. Lange, Berlin, is represented by the upper sensor<br />

of the homonymous radiation balancemeter.The temperature of the radiometer<br />

body (Tp) is measured by a platinum thermometer. For both pyrradiometers<br />

the mentioned CMll-pyranometer delivers the global radiation Signal needed<br />

for the evaluation.<br />

All Ventilation Systems are flanged to the side of the pyrgeometers with<br />

the exception of the NARC-device, the Ventilator of which is placed at the<br />

bottom of the pyrgeometer. In case of the MOH-radiometers the air is blown<br />

first into the body casing and streams out to the dorne afterwards, as for<br />

the NARC-device. The PIRof NASA, the PIR-Foot and the CN-1 of AES are not<br />

ventilated.<br />

2.2 Site and duration<br />

The comparison was accomplished at the Meteorological Observatory Hamburg<br />

(53°39'N, 10°07'E, h = 49 m) of the German weather Service. The climate of<br />

Hamburg is maritime; that means moderate seasonal temperature variations,<br />

seldom calm eonditions and a strong variability of cloudiness.<br />

The radiometers were installed at the measuring field on the roof. The<br />

data acquisition system consisting of three microcomputer-controned<br />

10-channel scanning digital multimeters (PREMA type 5000 and 5001) was<br />

operated in a laboratory connected by cables of about 25 m length. The raw<br />

data (mV,K ) were measured at 1 reading per 3Ös and stored on disk at this<br />

resoiution of time.<br />

The comparison was started on 20 July, 1989, and finished on 17 April, 1990.<br />

The main period of the comparison was the interval of 8 months from August<br />

1989 to March 1990.<br />

3. PRELIMINARY RESULTS<br />

3.1 General<br />

The general formula to derive the atmospheric heat radiation A froni the<br />

radiometer Output V, the radiometer temperatures Tg and Tp (body and dorne),<br />

the radiometer responsivity R^ and Rg (long-wave and short-wave) and the<br />

global solar radiation G is A A<br />

A = V/R, +o-.Tg^ - c . G - k.o"(Tp -Tg^) (1) where<br />

c equals toi^/R. for pyrradiometers or, for pyrgeometers, to an correction<br />

factor (^0,1), and k is an estimated correction factor (


IPC VII Part 3: Contributions to Symposium<br />

more or less dependlng ort a.m. eonditions. It is also expeeted that the<br />

results of noh-ventiläted radiometers deviate sömetimes from the other results<br />

because of dew or rime depositions on the dorne.<br />

3.2 Preliminary results<br />

In the following we present some examples of absolute and relative A-values<br />

determined by the mean of the owner's calibration factors as well as<br />

fictitious results generated by Variation of evaluation parameters.<br />

3.2.1 Daily courses of A<br />

Fig.l shows the measured half-hourly sums in J- cm * of a nearly cloudless<br />

day (29 March, 1990). Related to the types of measurement eonditions mentioned<br />

in clause 3.1, type I can be identified at early midnight, type III in the<br />

early morning and late evening (incl. "cloud peaks") and type IV during<br />

daylight hours (with the largest spread of the curves). Pyrradiometer No.<br />

2 shows in the morning a "dew peak", pyrgeometer No. 7 "solar peaks" because<br />

of smail Scratches of the dorne filter near its foot.<br />

Fig.2 shows the course of half-hourly sums on a foggy day, (12 December<br />

1989), with the smail spread at type II eonditions.<br />

J/cm^ (hotfhourty sums)<br />

70<br />

65<br />

60<br />

55<br />

50<br />

45<br />

29. Morch 1990<br />

3,3<br />

jb4<br />

Rodiometar<br />

Np. ): Pyrrodiom. MOH<br />

3. 3 No. 2: Pyrrqdtom. AES<br />

J 3 No. J; Pyrgeom. SMH)<br />

4 No. 4: Pyrgeom. NASA<br />

5 Nö. 5: Pyrgeom. AES<br />

^ Np. 6: Pyrgeom. MOH<br />

7 No. 7: Pyrgeom. EKO<br />

-8 No. 8: Pyrgeom: "Foot"<br />

40 I ) 12 15 18 21 24<br />

UTC ^<br />

&n'vc(f MgayMrg/ng/!f va/H&K?/*6' /on^-wave radio/K^ifery.<br />

69


IPC VII Part 3: Contributions to Symposium<br />

j/cnrf (hatfhourty sums)<br />

70<br />

65<br />

60<br />

55<br />

50<br />

45<br />

40<br />

12. Dec. 1989<br />

7 7-.<br />

7-7 7..<br />

7 7 7-7 7 7<br />

.7-7<br />

Radiometer<br />

t- ! No. 1: Pyrrodiom. MOH<br />

g. r-2 Mo. 2: Pyrrodtom. AES "<br />

3 ^-3 3- Pyrgeom. SMH)<br />

4 No. 4: Pyrgeom. NASA<br />

5 No. 5: Pyrgeom. AES<br />

€ No. 6: Pyrgeom. MOH<br />

-7 No. 7: Pyrgeom. EkO<br />

^ No. 8: Pyrgeom. "Fbot" *<br />

7-77-??<br />

7- 7 7 7 -7 7<br />

12 15 !8 21 UTC 24<br />

F


IPC VII Part 3: Contributions to Symposium<br />

Fig.4 shows curves as in Fig.3, but derived for the sums of the four hours<br />

10 tö 14 UTC, ite. around UTC-npon. The spread of the curves is enlarged<br />

by a higher eontribution of type IV eonditions to the A ^ values.<br />

A (Ref.: Pyrgeom. SMHt)ß<br />

re<<br />

1.09<br />

1.06<br />

1.03<br />

1.00<br />

.97<br />

.94<br />

A<br />

91<br />

1.09<br />

1 ,06<br />

1.03<br />

1.00<br />

JUL<br />

t ) t t ! ) !<br />

AUG SEP OCT<br />

i- - - -) No. ): Pyrrodiom. MOH<br />

? -- -2 No. 2: Pyrrodiom. AES<br />

No. 3: Pyrgeom. SMHI (obs )<br />

j / c m '<br />

No. 4: Pyrgeom. NASA<br />

No. 5: Pyrgeom. AES<br />

No. 6: Pyrgeom. MOH<br />

3500<br />

^7<br />

No^ 7: Pyrgeom. EKO<br />

8 No^ 8: Pyrgeom. "Foot<br />

- ^. ' 7 . !<br />

' ' , \ /'<br />

) ) ) ! t ) ! ! i < t ) ! !<br />

NOV DEC JAN FEB MAR APR<br />

Fig. 4; Ay Fig J, ÖM^


IPC VII Part 3: Contributions to Symposium<br />

3.2.3 Dependence of the seasonal course of A^ on the Variation of factors<br />

in eq.(1).<br />

Fig.5a shows, for the PIR of NASA as an example, the influence of the<br />

löhg-wave responsivity on the seasonal course of the relative decadic means<br />

of hourly sums. The responsivity is variated from .-15 X to +15 X in steps<br />

of 5 X. In maximum a 5 X step corresponds to an 1 X Variation of the decadic<br />

means the effect is very smail in decades with dominant type I and II<br />

eonditions. Fig.5b shows the effect of a Variation of the factor k (see<br />

eq.(1)) to correct the imperfectness of the PIR dorne. The Variation of k<br />

from Ö to 6 produces a change of the decadic means of only about 3 X or less.<br />

A -<br />

1.09 -, 1 r ! — i 1 , 1 1—^ 1 1<br />

1.06<br />

1.03<br />

1.00<br />

.97<br />

.34<br />

JUL AUG SEP OCT NOV DEC JAN FEB MÄR APR<br />

Fig. 3b; As in 3a), DM: depency ön tAe correenon/acfor K as de/ined in eö.fi). TAe va^Mes are related M<br />

^Ae mean o/a// radiometry. TAe cMrvey are mar^ed by /Ae corresponding va/Mgy o/KCO, 2, 4, 6j.<br />

K=4MMjed/pr/AeroM^neeva/Mafion.<br />

4. FINAL REMARKS<br />

For continuous all-weather Operation of long-wave radiometers now in use<br />

Ventilation of the dorne is strongly recommended. Further investigations are<br />

necessary to Standard!ze a reliable calibration procedure. Pyranometer dorne<br />

shading has been proven to eliminate interference from direct solar. The<br />

final report of this comparison will be published in fall 1991.<br />

REFERENCES<br />

(1) Fröhlich. C. & Lohdon, J. (1986): Revised Instruction Manual on Radiation<br />

,Instruments and Measurements MRCP Publ. Ser.-No.7, MMO/TD-No.149, Geneva<br />

(2) Foot, J,. (1986): A New Pyrgeometer, J. of Atm. Oc. Techh., 3, 363 ff.<br />

72


IPC VII Part 3: Contributions to Symposium<br />

SUNPHOTOMETER CALIBRATION AND RESULTS<br />

Ch.Wehrli and CFröhlich<br />

Physikalisch-Meteorologisches Observatorium<br />

World Radiation Center<br />

CH-7260 Davos Dorf<br />

Switzerland<br />

This text is an extended abstract of a presentation given at "New Developments and<br />

Applicaüons in Optical Radiometry tn, Davos 1990". The füll text is to be published in<br />

Metrologia.<br />

THE SUNPHOTOMETER SPM05<br />

This sunphotometer has three independent Channels in a tubulär housing of 5cm<br />

diameter and a length of 30cm. The detectors consist of interference filters and EG&G ÜV215<br />

photodiodes, they have a field of view of 1.3 degrees. The filters have center wavelengths and<br />

bandwidths of 778/5nm, 5(X)/5nm and 368/12nm. The sensor head is stabilized at a<br />

temperature of about 40 degrees celcius.<br />

LAMP CALBBRÄTIONS<br />

The absolute sensitivity of SPM05 was determined by calibration with a 1kW FEL<br />

Standard lamp to an estimated absolute accuracy of 1.9% at 778nm, 2.3% at 500nm and 2.7%<br />

at 368nm. Figure 1 shows the relative change in sensitivity over ä period of 6 years. In 1987,<br />

after a sharp drop occurred in the blue Channel, the filters were cleaned and the calibration<br />

repeated. While the blue and green channei imcreased, the red Channel decreäsed slightly after<br />

cleaning. This decrease may be explained by a molecular contaminaüon on the filter acting<br />

äs an anti-reflection coating that was removed by cleaning.<br />

O<br />

C<br />


IPC VII Part 3: Contributions to Symposium<br />

based on Neckel and Labs (1984) data with an accuracy of betief than 1%. On absolute scale,<br />

the results äre well within the combined accuracies of the reference spectrum and Standard<br />

lamp.<br />

The solar constant measured by ACRIM, decreäsed by 0.05% in the same period. Thus, the<br />

relative changes might be explained by solar variations, stronger in the blue as UV variations<br />

are known to be higher, negligible in the solar maximum at 500nm. But wäveiength<br />

dependant ageing of the Standard lamp and seatter in calibration may also explain these<br />

results. An instrumental stability of much better than 1% has to be achieved in order to detect<br />

solar spectral variations in the visible. Improved Silicon detectors and methods for absolute<br />

calibration are investigated för sunphotometry aiming at a traceability of a few tenths of a<br />

percent.<br />

no.<br />

c<br />

ro'<br />

10 —<br />

1984 ' 1985 '1986' 1987 ' 1988 ' 1989 ' 1990<br />

Fig.2 eömparison of sotar spectral irMdiance determined by SPM05 with Necke) and Labs (19S4) data.<br />

+ 778nm X50Qnm 0 368nm<br />

REFERENCES<br />

H.Necket, DJLabs 1984: The soiar radiation between 3300 and 1250%) A. Kyy., 90, 205-258<br />

74<br />

3>


IPC VII Part 3: Contributions to Symposium<br />

SOME STATISTICAL ASPECTS RESULTS FROM THE FIRST REGIONAL AR-IV<br />

PYRHELIOMETRIC INTERCOMPARISON AT ENSENADA, MEXICO^.<br />

J. L. BRAVO, A. MUHLIA<br />

Institute de Geofisica,<br />

Universidad Naciönal Autönoma de Mexico.<br />

/ ' '<br />

INTRODUCTION.<br />

The first Regional Pyrheliometer Comparison was organized at<br />

Ensenada, Mexico, on 20 tö 25 april, 1989.<br />

A total of 13 instruments from five AR-IV member states and<br />

Switzerland (World Radiation Center Davos) participated in these<br />

comparisons.<br />

In two days with good eonditions for observing (22 and 23 april) 22<br />

series of 12 measurements were obtained, from which 80 individual<br />

measurements were valid according to the adopted criterium.<br />

The intercomparison has been evaiuated in terms of ratios of<br />

irradiances measured by each instrument against a reference<br />

irradiance. The regional pyrheliometric reference group (RRG) was<br />

implemented by the following instruments:<br />

PM05 WRC Davos<br />

HF-18747 RRC Ontario<br />

MK VI-67502 RRC Boulder<br />

A-18587 RRC Mexico, D.F.<br />

The pyrheliometers förming the RRG were referenced each against the<br />

three others.<br />

SOME STATISTICAL ASPECTS OF RBSULTING RATIOS.<br />

Considering the ratios as random variables we can construet<br />

histogräms of frequencies for each instrument (frequency<br />

distribution funetions), classified into a convenient number of<br />

class values.<br />

It is well known that for this kind of random variables the<br />

expeeted histogräms are those that correspond to normäl frequency<br />

distribution funetions.<br />

For this feason i t is of great interest to test the obtained<br />

histogräms for normality. In such a way i t is possible to detect<br />

measurement errors, instrumental defects or other kinds of probiems.<br />

MThis resume is an extract from the complete technicai report<br />

published in spanish (1)<br />

73


IPC VII Part 3: Contributions to Symposium<br />

To test normality on histogräms we use the skewness and kurtosis<br />

coefficients and the Anderson-Barling statistic (2). For these<br />

parameters 95% confidence intervais for normal distribution<br />

assumption are estimated.<br />

The advantage on using the Anderson-Darling statistic is ^hat,<br />

besides testing normality/ i t is possible to have information about<br />

the provenance of the sample from an unique normal distribution.<br />

Statistical results.<br />

The values for skewness, kurtosis and the Anderson-Darling<br />

coefficient are listed in table 2. Among these parameters are also<br />

the mean and Standard deviation of the ratios for each instrument.<br />

The values marked with asterisk (*) are those that are out of the<br />

95% confidence interval.<br />

Instrument Mean<br />

HF-18747 1 .00064<br />

MK-67502 1 .00074<br />

PM05 0 .99994<br />

Ä-18587 0 .99869<br />

MK-68020 1 .00116<br />

MK-67401 1 .00082<br />

MK-68018 1 .00212<br />

MK-67702<br />

HF-21182<br />

HF-14915<br />

NIP18938<br />

NIP23946<br />

SMHIÄ166<br />

1 .00255<br />

1 .00309<br />

1 .00110<br />

0 .94856<br />

0 .96188<br />

0 ,99730<br />

Stdev<br />

0.00149<br />

0.00105<br />

0.00194<br />

0.00137<br />

0.00081<br />

0.00100<br />

0.00070<br />

0.00086<br />

0.00099<br />

0.00127<br />

0.00492<br />

0.00818<br />

0.01195<br />

Skewness<br />

-1.526*<br />

0.742*<br />

0.240<br />

0.326<br />

0.011<br />

0.509<br />

0.136<br />

0.398<br />

-0.319<br />

-0.629*<br />

-0.521*<br />

0.383<br />

1.065*<br />

Kurtosis<br />

5.99*<br />

3. .24<br />

3. 15<br />

2 37<br />

2 04*<br />

3. .24<br />

4,11<br />

3.00<br />

3.37<br />

3.52<br />

2.14*<br />

2.48<br />

4.36*<br />

Anderson<br />

2.623*<br />

0.910*<br />

0.276<br />

0.557<br />

0.746<br />

489<br />

464<br />

399<br />

705<br />

0.699<br />

2.718*<br />

0.718<br />

1.379*<br />

In terms of this statistics we distinguish the following groups of<br />

instruments:<br />

i) Instruments without normality probiems:<br />

PM05<br />

A-18587<br />

MK VI-68020<br />

MK VI-67401<br />

MK VI-68018<br />

MK VI-67702<br />

HF 21182<br />

HF 14915<br />

NIP 23946E6<br />

WRC Davos<br />

RRC Mexico, DF<br />

MARIETTA Denver<br />

TMI California<br />

SERI Colorado<br />

JPL California<br />

FSEC Florida<br />

EPPLEY Newport<br />

MARNR Caracas<br />

i i ) Instrument with normality probiems:<br />

76<br />

(Marginally platykurtic)<br />

(With significant platykurtosis)<br />

(With significant negative skew)<br />

(With marked negative tendency)<br />

HF 18747 RRC AES Canada (Highly skew and leptokurtic<br />

and with significant high A-D<br />

stat. This permits Us to reject<br />

the hypothesis of unique normal<br />

distribution).


IPC VII Part 3: Contributions to Symposium<br />

MK VI-67502 RRC Boulder (Highly skew and significant<br />

high A-D statistic)<br />

NIP18938E6 1MN Costa Rica (three statistics out of 95%<br />

confidence interval).<br />

SMHI A-166 IGORS Mexico, DF (same as the above).<br />

COMMENTS<br />

Some comments we can do on relevant cases, for example: in the case<br />

of the HF-18747 we See some points out of his general comportment,<br />

same is for MK VI-67502. In the case of the A-18587 i t is apparent<br />

some flathess form on this histogram is due to a not so good<br />

sensitivity. Another relevant cases are the NIP 18938E6 and A-166,<br />

we see in the histogram, of the first one of these, that there is<br />

a significant bimodality due probably to a discontinuity in his<br />

trend ratio, caused when the Operator clean the pirheliometer<br />

window. In the case of the A-166, the three statistics are out of<br />

the 95% confidence interval due to a general failure on his control<br />

box. Finally a special case is the NIP 23946E6 which has a<br />

significant negative tendency, may be düe to temperature dependency<br />

on his instrumental constant.<br />

ACKNOWLEOGEMENT.<br />

The authors are gratefülly acknowledged.to Christoph Wehrli from<br />

Physikalisch-Meteorologisches-Observatorium at Davos for his<br />

helpful support and his comments on portions of the manuscript that<br />

motivate us to publish this paper.<br />

REFERENCES.<br />

1. Mühlia, A., J.L. Bravo, M. Valdes, E. Jimenez de la Cuesta, J.<br />

Martinez y A. Mota. "Primera Intercomparacion Pirheliometrica<br />

Regional de la O.M.M., Region IV/ Mexico. Reporte Teenico.",<br />

Comunieaciones teenicas, Instituto de Geoflsica, Universidad<br />

Naciönal Autönoma de Mexico, Serie Datos Instrumentacion y<br />

Desarrollo, No. 34, 1990.<br />

2. D^Agostino, R.B. and Stephens, X.A. Editors: "Goodness of Fit<br />

Techniques"; MARCEL DEKKER, INC. New York and Basel, 1987.<br />

77


00<br />

16<br />

12<br />

0.995<br />

20<br />

f 15<br />

r<br />

e<br />

c<br />

*-< 10<br />

e<br />

n<br />

c<br />

a 5<br />

0.995<br />

HtSTOGRArB DE ERECUENGtQS<br />

^::<br />

0.9974 0.9998 1.0022<br />

RAZON PW5<br />

HtSTOGRAWA Dt FREQUENCtAS<br />

0.997 0.999 1.001<br />

RAZOW H-f 18747<br />

1.0046<br />

1.003 1.005<br />

20


EXPERIENCE WITH CM-15<br />

J. Olivieri and S. Mevel<br />

Meteorologie nationale<br />

Centre radiometrique<br />

F-84200 Carpentras<br />

France<br />

IPC VII Part 3: Contributions to Symposium<br />

The new Pyrradiometer CM-15 is made from a Pyranometer CM-11<br />

(Kipp & Zonen) the glass dornes of which are replaeed by a<br />

polythene one. The temperature of the cold junetions (or the case<br />

of the CM-15) is measured by a platinum resistance temperature<br />

detector. This radiometer was first calibrated using the same<br />

method as that used for pyranometer using the Sun and Sky as<br />

source with a removable disk for the pyrradiometer. The reference<br />

is a Standard pyrheliometer.<br />

The sensitivity K of the thermopile of the CM-15 is given by the<br />

well-known formula:<br />

K=(V1 - V2)/ I*sinh (1)<br />

where:<br />

.VI and V2 are the thermopile readings<br />

averaged over the exposed and shaded<br />

periods,<br />

. I is the direct normal irradiance,<br />

. h is the solar elevation.<br />

An electronic box is connected to the CM-15. Inside the<br />

thermopile output is measured and the detector flux is calculated<br />

from the resistance of the platinum sensor. The results of the<br />

Total irradiance measurements are calculated using the formula:<br />

E(4 ) = V/K + c


IPC VII Part 3: Contributions tp Symposium<br />

The results of the pyrgeometric measurements (IR irradiance from<br />

atmospheric origin) were calculated using the Albrecht and Cox<br />

formula:<br />

E(IR)=V^/K^+^.6".T^ - k.(T (T/ -Tj ) (3)<br />

where:<br />

. V^^ is the thermopile output (V),<br />

. Kp is the sensitivity of the thermopile,<br />

. od., is a coefficient the value of which is<br />

dose to 1,<br />

. k is a coefficient the value of which is<br />

close to 4,<br />

. Tt is the case temperature,<br />

. Tj is the dorne temperature,<br />

. o** is the Stefan-Boltzmann constant.<br />

Whether using or not using a tracking disk to shade the dorne from<br />

the Sun, the results of longwave measurements were very close<br />

although the temperatures T^. and Tj were different in these two<br />

cases.<br />

The following Tables and Graphs summarize the results of the<br />

comparison between the CM-15 and the "reference" that took place<br />

in July during hot days and nights with cloudless skies.<br />

The Tables and Graphs show that the ratios between the raw results<br />

of the CM-15 and the reference measurements are close to 1 at noon<br />

and that they reach 1.08 by night-time: see graph 1 Figure 1 :<br />

o< =0.98 ; K=4.94E-6 V/Wm*^.<br />

These "errors" are inadmissible; it seems that they are the<br />

consequence of:<br />

. a wrong value of coefficient e*< in formula (2),<br />

. the overheating of the dorne of the CM-15,<br />

. a wrong value of the sensitivity K of the thermopile,<br />

Some complementary attempts to correct these errors confirm these<br />

assumptions: see grapf 2 Figure 1 : c< and K are corrected:<br />

c< =0.93 ; K=4.82E-6 V/Wm"^(the former value of K is probably<br />

wrong).<br />

The comparison between the results of the CM-15 measurements and<br />

those of the "reference" will be going on with new measurements<br />

during cold days. We hope for good results with correct values<br />

of K and ^(see formula (2)) that we are going to strive.<br />

80


SUNRISE<br />

Local Apparent Time<br />

SUNSET<br />

FIGURE 1 : CM-15 / Reference Ratios<br />

Day : July 13, 1990<br />

Formula (2) was used for the CM-15 measurements :<br />

Graph i


IPC VII Part 3: Contributions to Symposium<br />

82<br />

TIME<br />

00:30<br />

01:30<br />

02:30<br />

03:30<br />

04:30<br />

05:30<br />

06:30<br />

07:30<br />

08:30<br />

09:30<br />

10:30<br />

11:30<br />

12:30<br />

13:30<br />

14:30<br />

15:30<br />

16:30<br />

17:30<br />

18:30<br />

19:30<br />

20:30<br />

21:30<br />

22:30<br />

23:30<br />

IRRADIANCE Wer 2<br />

o< =0.98<br />

CHI 5 REF.<br />

344.67<br />

342.61<br />

339.81<br />

338.39<br />

349.69<br />

452.36<br />

613.17<br />

790.69<br />

959.28<br />

1095.17<br />

1203.33<br />

1261:06<br />

1268.33<br />

1218.22<br />

1125.86<br />

986.06<br />

821.11<br />

646.75<br />

488.36<br />

387.22<br />

370.47<br />

364.61<br />

357.50<br />

353.22<br />

322.19<br />

320.11<br />

317.64<br />

316.56<br />

326.17<br />

432.83<br />

594.75<br />

776.08<br />

949.03<br />

1088.97<br />

1199.36<br />

1253.64<br />

1257.83<br />

1204.58<br />

1109.58<br />

969.00<br />

798.89<br />

618.44<br />

456.56<br />

355.89<br />

343.61<br />

339.17<br />

333.69<br />

330.72<br />

RATIO<br />

(1)<br />

CHI5/REF<br />

1.070<br />

1.070<br />

1.070<br />

1.069<br />

1.072<br />

1.045<br />

1.031<br />

1.019<br />

1.011<br />

1.006<br />

1.003<br />

1.006<br />

1.008<br />

1.011<br />

1.015<br />

1.018<br />

1.028<br />

1.046<br />

1.070<br />

1.088<br />

1.078<br />

1.075<br />

1.071<br />

1.068<br />

TABLE 1 : CM15 / Reference Ratios<br />

CM15 : (1) 0.98<br />

(2)


APPENDIX : OVERHEATING OF PYRGEOMETER DOME<br />

AND PYRGEOMETRIC MEASUREMENTS .<br />

IPC VH Part 3: Contributions to Symposium<br />

The overheathing of the Pyrgeometre dorne depends on the use or<br />

the non-use of the tracking disk that shades the dorne fröm the<br />

Sun. Figure 2 shows the overheating of the dome during hot days<br />

in July at Carpentras ( the meteorological temperatures reäched<br />

37 "C ).<br />

Using formula number (3) the results of the IR irradiance<br />

measurements made by the Pyrgeometer were very clöse in these two<br />

cases. Table 2 shows the results of 8 of 50 series of<br />

measurements.<br />

CD<br />

(0<br />

CO<br />

o<br />

!<br />

§<br />

*3*<br />

93*<br />

* 3*<br />

Local Apparent Time<br />

++<br />

+ +<br />

5K ^ $K 3K<br />

FIGURE 2 : Overheating of the Pyrgeometer dorne:<br />

* the tracking disk is used<br />

+ the tracking disk is not used.<br />

83


IPC VII Part 3: Contributions to Symposium<br />

84<br />

RUN<br />

N°<br />

31<br />

34<br />

36<br />

38<br />

41<br />

44<br />

48<br />

50"<br />

TRACKING<br />

DISK<br />

YES/NO<br />

Y<br />

N<br />

Y<br />

Y<br />

N<br />

Y<br />

Y<br />

N<br />

Y<br />

Y<br />

N<br />

Y<br />

Y<br />

N<br />

Y<br />

Y<br />

N<br />

Y<br />

Y<br />

N<br />

Y<br />

Y<br />

N<br />

Y<br />

LOCAL<br />

APPARENT<br />

TIME<br />

05:30<br />

05:34<br />

05:38<br />

06:12<br />

06:16<br />

06:20<br />

13:30<br />

13:34<br />

13:38<br />

14:00<br />

14:04<br />

14:08<br />

14:42<br />

14:46<br />

14:50<br />

15:26<br />

15:30<br />

15:34<br />

17:06<br />

17:10<br />

17:14<br />

17:56<br />

18:00<br />

18:04<br />

The sky is becoming cloudy .<br />

IR<br />

IRRADIANCE<br />

Wm-s<br />

330.81<br />

329.97<br />

331.22<br />

332.70<br />

331.53<br />

333.57<br />

385.46<br />

387.55<br />

386.89<br />

386.03<br />

387.26<br />

387.57<br />

390.26<br />

389,52<br />

391.79<br />

388.25<br />

385.48<br />

388.85<br />

381.17<br />

377.79<br />

381.08<br />

382.89<br />

380.40<br />

381.11<br />

MIDTIME IRRADIANCE<br />

disk:yes disk:no<br />

331.02<br />

333.14<br />

386.18<br />

386.80<br />

391.04<br />

388.55<br />

381.13<br />

382.00<br />

329.97<br />

331.53<br />

387.55<br />

387.26<br />

389.52<br />

385.48<br />

377.79<br />

380,40<br />

TABLE 2 : Pyrgeometric measurements with / without<br />

the tracking disk on July 22, 1990.<br />

RATIO<br />

(*)./(**)<br />

1.0032<br />

1.0048<br />

0.99&5<br />

0,9988<br />

1.0039<br />

1.0080<br />

1.0088<br />

1.0042


IPC VII Part 3: Contributions to Symposium<br />

IEA GLOBAL RADIATION REFERENCE RADIOMETER COMPARISON<br />

K. Dehne, Deutscher Wetterdienst, Meteorologisches Observatorium Hamburg,<br />

D-2000 Hamburg 65, F.R. Germany<br />

L. Liedquist, Statens Provningsanstalt, S-50115 Boras^ Sweden<br />

L. Dahlgren, Swedish Meteorological and Hydrological Institute<br />

S-60176 Norrköping, Sweden<br />

ABSTRACT<br />

It will be reported on a method to acquire global radiation reference data<br />

and on a comparison of corresponding reference radiometers.<br />

1. INTRODUCTION<br />

1.1 According to clause 9.4 of the WMO Guide (1) and to definitions in<br />

an ISO Standard (2) the solar radiation received from a solid angle of<br />

2T7*steradian on a horizontal plane is called global (solar) radiation. If<br />

the solar radiation has passed through the atmosphere the global radiation<br />

consists of the direct solar radiation (beam eomponent) and the diffuse<br />

solar radiation (scattered eomponent). Due to absorption in the atmospheric<br />

gases (first of all ozone and water vapour) its wäveiength ränge reaches<br />

nominally from 0,3 to 3 um.<br />

The direct measurement of global irradiance G requires the use of a<br />

pyranometer the speeifications of which meet the above mentioned<br />

characteristics. The indirect measurement is based on the fundamental<br />

relationship G = I cos ^+ D (eq. 1)<br />

where ^ : zenith angle of the sun<br />

I : direct solar irradiance<br />

D : diffuse solar irradiance<br />

and has to be realized by the pyrheliometric measurement of I (field-of-view<br />

anglet) and the simultaneous measurement of D using a pyranometer which<br />

is shaded from the solar beam by a disk (shaded field-of-view as Iarge<br />

as


IPC VII Part 3: Contributions to Symposium<br />

86<br />

with uncertainties of about 5 % and 3 X, respectively. För aimihg the IX<br />

level it was recommended to use a combined radiometer system as mentioned<br />

in 1.2.<br />

An internal comparison of two combined global radiation reference Systems<br />

was established during the summer of 1985 at the Centre Radiometrique of<br />

the French Meteorologie Nationale in Carpentras (5). The system of the MARC<br />

of the AES in Canada used an Eppley Normal Incidence Pyrheliometer (NIP)<br />

and a shaded CM11 pyranometer; the french system consisted of the same<br />

components. The comparison of 6 min mean values measured during cloudless<br />

eonditions showed deviations in G within about 20 M-tn * which corresponds<br />

to about 2 X for high G-values.<br />

2. PURPOSE AND RATIONALE OF IEA GLOBAL RADIATION REFERENCE RADIOMETERS (GRRR)<br />

2.1 The Solar Heating and Cooling Program (SHCP) of the IEA (International<br />

Energy Agency) is mainly concerned in the working group of Subtask 9F with<br />

tests and improvements of radiometrie measurement procedures needed for<br />

solar energy applications. At the end of a longer period of investigations<br />

of pyranometer characteristics the following goals suggests the establishment<br />

of global radiation reference radiometers (GRRRs):<br />

r- Validation of the improvement of global radiation data by correction<br />

formulae derived from the characterizations of pyranometers.<br />

- Recommendation of high quality radiometers to achieve ä minimum<br />

uncertainty of global radiation data.<br />

- Proof of the achievement of the 1 X, rms uncertainty level of<br />

global radiation data.<br />

2.2 The rationale of the GRRR may be described by the following<br />

speeifications:<br />

a) The GRRR is a compact instrument system which uses one solar tracker<br />

to follow the sun with both, the pyrheliometer and the shade disk of<br />

the pyranometer. It works like one radiometer with two different<br />

radiometric sensors. Its portability and transportabelity by smail<br />

cars is desired for applications in different sites.<br />

b) The GRRR has to be equipped with radiometers of the highest quality.<br />

That means according to (2) that in the case of the pyrheliometer an<br />

absolute cavity radiometer is required which is labelled as a ISO Primary<br />

Standard, or at least, as a ISO Secondary Standard. The pyranometer has<br />

to be taken from the class of ISO Secondary Standards.<br />

c) For practical reasons the GRRR has to be operated-automatically, but<br />

not necessarily during precipitation events,<br />

For the purpose of solar eollector tests the weather eonditions can<br />

generally be restricted to fine weather exeluding the hours with solar<br />

elevations less than 20°.<br />

3. ON THE UNCERTAINTY OF GRRR DATA<br />

The uncertainty pf GRRR data can only be estimated from the deviations of<br />

corresponding data measured with different GRRR's and from an uncertainty<br />

analysis of the GRRR instrumentation and method. To the latter some important<br />

considerations are compiled in the following.<br />

3.1 The bäsic relationship of eq.(1) requires for an exact synthesis öf<br />

G that<br />

- the time constants of the pyrheliometer änd the pyranometer are equal,


IPC VII Pari 3: Contributions to Symposium<br />

- the optics of the pyrheliometer tube and the shade-disk-pyranometer<br />

geometry are equivalent so that the ämout of circumsolar radiation<br />

received by the pyrheliometer is obstructed by the disk, .<br />

- the effective spectral ranges of the pyrheliometer and the pyranometer<br />

are equal.<br />

If no instantaneous values but only hourly means, for instance, are required,<br />

or if the sky is cloudless, differences in the time response are acceptable.<br />

The shaded angle of the pyranometer can easily be fitted (by choice öf the<br />

disk radius r. and the distance D between the Centers of the disk and the<br />

receiver surface) to the field-of-view angle c< of the pyrheliometer. For<br />

smail -values this shaded angle is also well approximated for receiving<br />

points at the border of the surface if the sun is in the zenith. With<br />

increasing zenith angles the shade on the receiver is more and more<br />

elliptically shaped where the increasing long axis lies in the solar<br />

meridian. The field-of-view angles in the two border points on this axis<br />

deviate from


IPC VII Part 3: Contributions to Symposium<br />

88<br />

formulae for temperature response and non-linearity. Considering these<br />

speeifications a percentage uncertainty level of 3 X (rms) is obtained.<br />

To approximate the spectral ränge of the pyrheliometer and to enlarge the<br />

UV- and IR-responsivity the pyranometer should be equipped with quärtz domes<br />

(OH -free quality). Due to the higher heat conduetivity of quartz also the<br />

offset effect of the pyranometer can be redueed^. For further reduction<br />

of the thermally generated offset the pyranometer domes should be ventilated<br />

(6). The remaining offset has to be approximately determined by covering<br />

the pyranometer domes by a zero cap. A carefully construeted zero cap should<br />

be able to shield the solar radiation with a minimum of disturbance of the<br />

air streams (natural and ventilated) and the IR fluxes. A prototype of such<br />

device is shown in Fig. 1.<br />

thin metä! sheet isoiätion-PVC<br />

^ i i - -VS.<br />

CM 11<br />

Fig.l: Improved prototype of a zero cap for pyranometer CM11 (schematic).<br />

Inner walls : black painted; outer walls : white painted; metal<br />

screen : shaded from direct solar radiation by disk.<br />

Assuming that the offset can be reduced to an irradiance equivalent of less<br />

than 3 M-m ^ (in the case of CM11 : Signals less than 15 uV) and that<br />

G = (I . cos 30° + D) is equal to 780 W.m ' + 100 M-nf') on a clear summer<br />

day the resulting uncertainty in G is 1.1 X (rms) if the uncertainty<br />

contributions of the beam and diffuse eomponent are added.<br />

4.ORGANIZATION OF THE IEA COMPARISON<br />

The comparison was hosted by the Swedish Meteorological and Hydrological<br />

Institute (SMHI) in Norrköping. The measurement Site was the roof platform<br />

of the radiation center of this institute. The owhers of the three participating<br />

GRRRs were the Swedish National Testing and Research Institute (SP)<br />

(in Cooperation with the host), the National Radiation Center of the<br />

Atmospheric Environment Service in Canada and the Meteorological Observatory<br />

Hamburg of the German Meather Service.<br />

The comparison was started in the middle of June 1990 with a long t?st phase<br />

for the Swedish and German GRRRs. The measurement phase runned through the<br />

August 1990 and began after the installation of the Canadian GRRR.<br />

-5. SHORT DESCRIPTI0NS 0F THE INSTRUMEMTS USED IN THE COMPARISON<br />

5.1 In all three GRRRs the pyrheliometers are of the Eppley H-F (Hiekey-<br />

Frieden) type; the hiStöry of the individual radiometers is of different<br />

length. The same applies for the pyranometers which all are instruments<br />

of the Kipp & Zonen CMTI-type selected first of all because of their low<br />

4) In combination with CMlI-^pyranometers: reduction of the thermal offset<br />

by a factor of 0.65.


IPC VII Part 3: Contributions to Symposium<br />

cosine errors. All pyrheliometers were additionally equipped with an<br />

automatic shutter to computerize the calibration procedure. The Canadian<br />

pyrheliometer was not closed by a window, as the other two instruments.<br />

The pyranometers were ventilated by different blower devices. For measuring<br />

the zero offset of the pyranometers a zero cap prototype of the Met.<br />

Observatory Hamburg was used.<br />

The Canadian and Swedish GRRR were tracking the sun by the means of the<br />

commercial, fully automated. altazimuth COSMOS-tracker (see Fig. 2a). For<br />

the sun-following movement of the shade disk different mechanical Solutions<br />

are applied.<br />

The solar tracker of the German GRRR is an equatorial mount driven by a<br />

synchroneous motor and designed by the Met. Observatory Hamburg (see Fig.<br />

2b). The adjustment of the shade disk to follow the declination angle of<br />

the sun häs to be accomplished manuaily. This inconvenience and the larger<br />

work effort for the initial adjustment of the tracker should be balanced<br />

by the smail size and price of the mount. To stabilize the mount mechanically<br />

a counter weight is necessary to compensate for the weight of the cavity<br />

radiometer.<br />

poraHet<br />

eteva&m<br />

thift of<br />

thading dittt<br />

thade dtHt<br />

thaded pyranometer<br />

thutttr<br />

1 pyrhehometer<br />

Fig.2: Simplified sketchs of a) the Swedish GRRR, and b) the.German GRRR<br />

The Swedish data acquisition system has hosted also the German GRRR, Its<br />

main part is the Hewlett & Packard multimeter/scanner model! 3457. The used<br />

scahning time for 8 Channels is 2s; the data are taken every 6s. The Canadian<br />

data acquisition System has used the same type of multimeter/scanner.<br />

5.2 The GRRR data are supplemented by those of the routine measurement of<br />

the Station, for instance ambient air temperature and global radiation.<br />

Furthermore hourly synoptic observations of a nearby airport are available.<br />

A special set-up was the Operation of the fish-eye.video camera (model<br />

Panasonic + Nikkon) to obtain a documentation of the actual cloudiness.<br />

A complete picture of the sky with 256 x 256 elements was taken and stored<br />

every half hour. a reduced picture of 16 x 16 integrated elements was stored<br />

every 5 minutes.<br />

b<br />

IT<br />

89


IPC VII Part 3: Contributions to Symposium<br />

90<br />

6. RULES OF OPERATION<br />

The following rules have determined the operational eonditions for the<br />

comparison: '<br />

a) Selection of comparison hours:<br />

The core time of the comparison is restricted to hours of working days<br />

(generally during 6.00 and 14.00 UTC) with low cloud amount (m 4 octa)<br />

and no precipitation. Cloudless sky eonditions are preferred.<br />

b) Calibration of the H-F-pyrheliometers<br />

A calibration procedure has to be performed every hour between the<br />

minutes 0 and 9 (during the shading period) at about 700 W-m *<br />

and 950 W-m '.<br />

c) Zeroing of the pyranometers<br />

During the calibration of the pyrheliometers the pyranometers have<br />

to be covered for 5 to 10 minutes to determine the zero offset.<br />

d) Maintenance routine<br />

- Dismantling or covering of the H-F-pyrheliometer if rain is expeeted<br />

during the following hour. and at the end of a working day.<br />

- Observations of the weather eonditions at least every hour and control<br />

of the precise solar tracking every two hours.<br />

- Cleaning of Windows and domes of radiometers at least before starting<br />

the daily comparison.<br />

- Control of the data acquisition procedure every 2 hours.<br />

7. RESULTS 0F THE COMPARISON<br />

Final results of compared data are not yet available. The intention is to<br />

compare 10 min means.<br />

An important result is the operational experience gained in the test phase<br />

of the comparison. This concerns first of all'the handling of the German<br />

solar tracker, the calibration and zeroing procedures as well as the data<br />

taking routine.<br />

Due to the late delivery of quartz domes only traditional CMll pyranometers<br />

are used. Use of quartz domes and other improvements may be considered if<br />

another comparison in 1991 will be suggested by the final results.<br />

REFERENCES<br />

(1) WMO (1983): Guide to Meteorological Instruments and Methods of<br />

Observation (5 th edition)<br />

(2) ISO (1990): Solar Energy - Specification and Classification of<br />

instruments for measuring hemispherical solar and direct<br />

solar radiation. ISO-Standard 9060; ISO-Bureau, Geneva.<br />

(3) ISO (to be published): Solar Energy - Calibration of a field<br />

pyranometer using a reference pyrheliometer (ISO-DP 9846)<br />

(4) WMO (1986): Revised Instruction Manual on Radiation Instruments and<br />

Measurements, WRCP Publication Series No.7, WM0/TD-No.l49, Geneva.<br />

(5) Coudert, R.; Olivieri, J.; Wardle, D.I. (1988):<br />

Summary of the results of the 1985 NARC-SETIM Comparison of<br />

reference measurements of horizontal short-wave irradiance<br />

(Internal report)<br />

(6) ISO (1990): Solar Energy - Field pyranometers - recommended practice<br />

for use (Technical Report 9901), ISO-Bureau, Geneva.


IPC VII Part 3: Contributions to Symposium<br />

ESTIMATION OF SPECTRAL RADIATION DISTRIBUTION<br />

FRÖM GLOBAL RADIATION<br />

D. Crommelynck and A. Joukoff<br />

Royal Meteoroiogicai Institute of Belgium<br />

B - 1180 Bruxelles<br />

Belgium<br />

On the basis of a füll year spectra! irradiance observations performed in Uccie at the<br />

Royal Meteorological Institute, a simple algorithrh is deriyed for the evaluation of the spectral<br />

distribution of the Solar radiation on a horizontal surface as a function of the total Solar<br />

irradiance (global radiation).<br />

The method, valid for indüstrial applications (agriculture, aging pf materials, etc .) is<br />

based on a triangulär fepresentätion of the spectrum between 300 arid 900 nm.<br />

The functions h and hz(X) which depend on the wäveiength X(nm) and on the global<br />

radiation G(Vm^), give respectively the ascending and descending straight lines of the triangle<br />

whose summit is taken at 465 nm.<br />

These functions (spectral densities of radiation, expressed as h(m ^nm"') are<br />

A,(X)= 1.163 10*s(x-300)&<br />

^2(\) = (3.1515 10^-2.651 10'^X)C<br />

These two functions can be used, for all sky eonditions, as a good first approximation of<br />

the global spectral radiation distribution as illustrated below.<br />

SOLM) SfECTKAL nHUUMMCE DENSITY<br />

Comparison o( the triangutar mode! to<br />

continuous observations (—) ana discrete observations<br />

(*) with ctear sky. 1 : Gtoba) radiation - 2<br />

; Direct radiation - 3 : Diffuse radiation.<br />

UttlFORM ÖVEHCMT SKY<br />

Compansoh of the triangulär mode) to<br />

continuous observations (—) and dtscrete observations<br />

(*) with uniform overcast sky.<br />

The details of the method can be found in our paper Mmp/e a/gwMm /or ?%e ^//wafroM<br />

o/ fAe ^ec/ra/ raavaf/ow a*^^!&Mfww ow a Aor/zow/a/ .SMr/ace, Aayea* ^/oM/ raa*/a^0M<br />

wea^M^wcn^" published in Solar Energy Vol. nr 3, pp 131-137, 1990.<br />

91

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!