07.01.2015 Views

Linear Response and Measures of Electron Delocalization ... - CRM2

Linear Response and Measures of Electron Delocalization ... - CRM2

Linear Response and Measures of Electron Delocalization ... - CRM2

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

3618 Current Organic Chemistry, 2011, Vol. 15, No. 20 János G. Ángyán<br />

[8] Ponec, R.; Cooper, D.L. Anatomy <strong>of</strong> bond formation. Bond length<br />

dependence <strong>of</strong> the extent <strong>of</strong> electron sharing in chemical bonds from the<br />

analysis <strong>of</strong> domain-averaged Fermi holes. Faraday Discuss. 2007. 135, 31-<br />

42.<br />

[9] Mayer, I. Bond order <strong>and</strong> valence indices: a personal account. J. Comp.<br />

Chem. 2007. 28, 204-221.<br />

[10] Scemama, A.; Caffarel, M.; Savin, A. Maximum probability domains from<br />

Quantum Monte Carlo calculations. J. Comp. Chem. 2007. 28, 442-454.<br />

[11] Marzari, N.; V<strong>and</strong>erbilt, D. Maximally localized generalized Wannier<br />

functions for composite energy b<strong>and</strong>s. Phys. Rev. B. 1997. 56, 12847-12865.<br />

[12] Resta, R.; Sorella, S. <strong>Electron</strong> localization in the insulating state. Phys. Rev.<br />

Lett. 1999. 82, 370-373.<br />

[13] Resta, R. Why are insulators insulating <strong>and</strong> metals conducting J. Phys.:<br />

Condens. Matter 2002. 14, R625-R656.<br />

[14] Resta, R. Kohn's theory <strong>of</strong> the insulating state: A quantum-chemistry<br />

viewpoint. J. Chem. Phys. 2006. 124, 104104.<br />

[15] Ángyán, J.G. On the exchange-hole model <strong>of</strong> London dispersion forces. J.<br />

Chem. Phys. 2007. 127, 024108.<br />

[16] Matta, C.F.; Hernández-Trujillo, J.; Bader, R.F.W. Proton spin-spin coupling<br />

<strong>and</strong> electron delocalization. J. Phys. Chem. A 2002. 106, 7369-7375.<br />

[17] Soncini, A.; Lazzeretti, P. Nuclear spin-spin coupling density functions <strong>and</strong><br />

the Fermi-hole. J. Chem. Phys. 2003. 119, 1343-1349.<br />

[18] Soncini, A.; Lazzeretti, P. Nuclear spin-spin coupling density in molecules.<br />

J. Chem. Phys. 2003. 118, 7165-7173.<br />

[19] Heine, T.; Corminboeuf, C.; Seifert, G. The magnetic shielding function <strong>of</strong><br />

molecules <strong>and</strong> -electron delocalization. Chem. Rev. 2005. 105, 3889-3910.<br />

[20] Hirschfelder, J.O.; Brown, W.B.; Epstein, S.T. Recent developments in<br />

perturbation theory. Adv.Quantum Chem. 1964. 1, 255-374.<br />

[21] Olney, T.N.; Cann, N.M.; Cooper, G.; Brion, C.E. Absolute scale<br />

determination for photoabsorption spectra <strong>and</strong> the calculation <strong>of</strong> molecular<br />

properties using dipole sum-rules. Chem. Phys. 1997. 223, 59-98.<br />

[22] Kumar, A.; Meath, W.J. Pseudo-spectral dipole oscillator strengths <strong>and</strong><br />

dipole-dipole <strong>and</strong> triple-dipole dispersion energy coefficients for HF, HCl,<br />

HBr, He, Ne, Ar, Kr <strong>and</strong> Xe. Mol. Phys. 1985. 54, 823-833.<br />

[23] Kumar, A.; Fairley, G.R.G.; Meath, W.J. Dipole properties, dispersion<br />

energy coefficients, <strong>and</strong> integrated oscillator strengths for SF 6. J. Chem.<br />

Phys. 1985. 83, 70-77.<br />

[24] Kumar, A.; Kumar, M.; Meath, W.J. Dipole oscillator strengths, dipole<br />

properties <strong>and</strong> dispersion energies for SiF 4. Mol. Phys. 2003. 101, 1535-<br />

1543.<br />

[25] Pazur, R.J.; Kumar, A.; Thuraisingham, R.A.; Meath, W.J. Dipole oscillator<br />

strength properties <strong>and</strong> dispersion energy coefficients for H 2S. Can. J. Chem.<br />

1988. 66, 615-619.<br />

[26] Kumar, A.; Meath, W.J. Dipole oscillator strength distributions, properties<br />

<strong>and</strong> dispersion energies for the dimethyl, diethyl <strong>and</strong> methyl-propyl ethers.<br />

Mol. Phys. 2008. 106, 1531-1544.<br />

[27] Kumar, M.; Kumar, A.; Meath, W.J. Dipole oscillator strength properties <strong>and</strong><br />

dispersion energies for Cl 2. Mol. Phys. 2002. 100, 3271-3279.<br />

[28] Zeiss, G.D.; Meath, W.J.; MacDonald, J.C.F.; Dawson, D.J. Dipole oscillator<br />

strength distributions, sums, <strong>and</strong> some related properties for Li, N, O, H 2, N 2,<br />

O 2, NH 3, H 2O, NO, <strong>and</strong> N 2O. Can. J. Phys. 1977. 55, 2080-2100.<br />

[29] Kumar, A.; Meath, W.J. Reliable isotropic <strong>and</strong> anisotropic dipole properties,<br />

<strong>and</strong> dipolar dispersion energy coefficients, for CO evaluated using<br />

constrained dipole oscillator strength techniques. Chem. Phys. 1994. 189,<br />

467-477.<br />

[30] Kumar, A.; Meath, W.J. Dipole oscillator strength properties <strong>and</strong> dispersion<br />

energies for acetylene <strong>and</strong> benzene. Mol. Phys. 1992. 75, 311-324.<br />

[31] Jhanwar, B.; Meath, W.J.; MacDonald, J. Dipole oscillator strength<br />

distributions <strong>and</strong> related properties for ethylene, propene <strong>and</strong> 1-butene. Can.<br />

J. Phys. 1983. 61, 1027-1034.<br />

[32] Koga, T.; Matsuyama, H. Physical significance <strong>of</strong> second electron-pair<br />

moments in position <strong>and</strong> momentum spaces. J. Chem. Phys. 2001. 115,<br />

3984-3991.<br />

[33] Bendazzoli, G.L.; Evangelisti, S.; Monari, A.; Paulus, B.; Vetere, V. Full<br />

configuration-interaction study <strong>of</strong> the metal-insulator transition in model<br />

systems. J. Phys.: Conf. Ser. 2008. 117, 012005.<br />

[34] Vetere, V.; Monari, A.; Bendazzoli, G.L.; Evangelisti, S.; Paulus, B. Full<br />

configuration interaction study <strong>of</strong> the metal-insulator transition in model<br />

systems: Li n linear chains (n = 2,4,6,8). J. Chem. Phys. 2008. 128, 024701.<br />

[35] Werner, H.J.; Knowles, P.J.; Lindh, R.; Manby, F.R.; Schütz, M.; Celani, P.;<br />

Korona, T.; Mitrushenkov, A.; Rauhut, G.; Adler, T.B.; Amos, R.D.;<br />

Bernhardsson, A.; Berning, A.; Cooper, D.L.; Deegan, M.J.O.; Dobbyn, A.J.;<br />

Eckert, F.; Goll, E.; Hampel, C.; Hetzer, G.; Hrenar, T.; Knizia, G.; Köppl,<br />

C.; Liu, Y.; Lloyd, A.W.; Mata, R.A.; May, A.J.; McNicholas, S.J.; Meyer,<br />

W.; Mura, M.E.; Nicklass, A.; Palmieri, P.; Pflüger, K.; Pitzer, R.; Reiher,<br />

M.; Schumann, U.; Stoll, H.; Stone, A.J.; Tarroni, R.; Thorsteinsson, T.;<br />

Wang, M.; Wolf, A. MOLPRO, version 2008.2, a package <strong>of</strong> ab initio<br />

programs. see http://www.molpro.net., 2008.<br />

[36] Stone, A.J. Distributed polarizabilities. Mol. Phys. 1985. 56, 1065.<br />

[37] Ángyán, J.G.; Jansen, G.; Loos, M.; Hättig, C.; Hess, B.A. Distributed<br />

polarizabilities using the topological theory <strong>of</strong> atoms in molecules. Chem.<br />

Phys. Lett. 1994. 219, 267-273.<br />

[38] Hättig, C.; Jansen, G.; Hess, B.A.; Ángyán, J.G. Topologically partitioned<br />

dynamic polarizabilities using the theory <strong>of</strong> atoms in molecules. Can. J.<br />

Chem. 1996. 74, 976-987.<br />

[39] in het Panhuis, M.; Popelier, P.L.A.; Munn, R.W.; Ángyán, J.G. Distributed<br />

polarizability <strong>of</strong> the water dimer: field-induced charge transfer along the<br />

hydrogen bond. J. Chem. Phys. 2001. 114, 7951-7961.<br />

[40] Ponec, R.; Cooper, D.L. Anatomy <strong>of</strong> bond formation. Bond length<br />

dependence <strong>of</strong> the extent <strong>of</strong> electron sharing in chemical bonds. J. Mol.<br />

Struct. (Theochem) 2005. 727, 133-138.<br />

[41] Ponec, R.; Cooper, D.L. Anatomy <strong>of</strong> bond formation. Domain-averaged<br />

Fermi holes as a tool for the study <strong>of</strong> the nature <strong>of</strong> the chemical bonding in<br />

Li 2, Li 4, <strong>and</strong> F 2. J. Phys. Chem. A 2007. 111, 11294 -11301.<br />

[42] Ponec, R.; Roithová. Domain-averaged Fermi holes - a new means <strong>of</strong><br />

visualization <strong>of</strong> chemical bonds. Bonding in hypervalent molecules. Theor.<br />

Chem. Acc. 2001. 105, 383-392.<br />

[43] Ángyán, J.G. Correlation <strong>of</strong> bond orders <strong>and</strong> s<strong>of</strong>tnesses. J. Mol. Struct.<br />

(Theochem) 2000. 501-502, 379-388.<br />

[44] Ángyán, J.G.; Loos, M.; Mayer, I. Covalent bond orders <strong>and</strong> atomic valence<br />

indices in the topological theory <strong>of</strong> atoms in molecules. J. Phys. Chem. 1994.<br />

98, 5244-5248.<br />

[45] Silvi, B.; Savin, A. Classification <strong>of</strong> chemical bonds based on topological<br />

analysis <strong>of</strong> electron localization functions. Nature 1994. 371, 683-686.<br />

[46] Boys, S.F. Construction <strong>of</strong> some molecular orbitals to be approximately<br />

invariant for changes from one molecule to another. Rev. Mod. Phys. 1960.<br />

32, 296-299.<br />

[47] Boys, S.F. Localized orbitals <strong>and</strong> localized adjustment functions. In P.O.<br />

Löwdin, ed., Quantum theory <strong>of</strong> atoms, molecules <strong>and</strong> solid state, A tribute<br />

to John C. Slater, Academic Press: New York, chap. Localized Orbitals <strong>and</strong><br />

Localized Adjustment Functions. 1966. pp. 253-262.<br />

[48] Cioslowski, J. Isopycnic orbital transformations <strong>and</strong> localization <strong>of</strong> natural<br />

orbitals. Int. J. Quantum Chem. Symp. 24 1990. 38, 15-28.<br />

[49] Tschinke, V.; Ziegler, T. On the shape <strong>of</strong> spherically averaged Fermi-hole<br />

correlation functions in density functional theory. 1. Atomic systems. Can. J.<br />

Chem. 1989. 67, 460-472.<br />

[50] Luken, W.L.; Beratan, D.N. Localized orbitals <strong>and</strong> the Fermi hole. Theor.<br />

Chim. Acta 1982. 61, 265-281.<br />

[51] Luken, W.L. Properties <strong>of</strong> the Fermi hole <strong>and</strong> electronic localization. In Z.<br />

Maksic, ed., The concept <strong>of</strong> the chemical bond, Springer Verlag: Berlin, vol.<br />

2. 1990. pp. 287-320.<br />

[52] Buijse, M.A.; Baerends, E.J. An approximate exchange-correlation hole<br />

density as a functional <strong>of</strong> the natural orbitals. Mol. Phys. 2002. 100, 401-421.<br />

[53] Matito, E.; Salvador, P. in General Discussion. Faraday Discuss. 2007. 135,<br />

125-149.<br />

[54] Bader, R.F.W.; Gillespie, R.; MacDougall, P.J. A physical basis for the<br />

VSEPR model for molecular geometry. J. Am. Chem. Soc. 1988. 110, 7329-<br />

7336.<br />

[55] van Leeuwen, R. Key concepts in time-dependent density functional theory.<br />

Int. J. Mod. Phys. B. 2001. 15, 1969-2023.<br />

[56] Becke, A.D.; Edgecombe, K.E. A simple measure <strong>of</strong> electron localization in<br />

atomic <strong>and</strong> molecular systems. J. Chem. Phys. 1990. 92, 5397-5403.<br />

[57] Dobson, J.F. Interpretation <strong>of</strong> the Fermi hole curvature. J. Chem. Phys. 1991.<br />

94, 4328-4333.<br />

[58] Savin, A.; Becke, A.D.; Flad, J.; Nesper, R.; Preuss, H.; von Schnering, H.G.<br />

A new look at electron localization. Angew. Chem. Int. Ed. 1991. 30, 409-<br />

412.<br />

[59] Schmider, H.L.; Becke, A.D. Two functions <strong>of</strong> the density matrix <strong>and</strong> their<br />

relation to the chemical bond. J. Chem. Phys. 2002. 116, 3184-3193.<br />

[60] Kohout, M. A measure <strong>of</strong> electron localizability. Int. J. Quantum Chem.<br />

2004. 97, 651-658.<br />

[61] Geier, J. Radial exchange density <strong>and</strong> electron delocalization in molecules. J.<br />

Phys. Chem. A 2008. 112, 5187-5197.<br />

[62] Gori-Giorgi, P.; Ángyán, J.G.; Savin, A. Charge density reconstitution from<br />

approximate exchange-correlation holes. Can. J. Chem. 2009. 87, 1444-<br />

1450.<br />

[63] Johnson, E.R.; Becke, A.D. A post-Hartree-Fock model <strong>of</strong> intermolecular<br />

interactions. J. Chem. Phys. 2005. 123, 024101.<br />

[64] Ángyán, J.G. <strong>Electron</strong> localization <strong>and</strong> the second moment <strong>of</strong> the exchange<br />

hole. Int. J. Quantum Chem. 2009. 109, 2340-2347.<br />

[65] Ayers, P.W. A perspective on the link between the exchange(-correlation)<br />

hole <strong>and</strong> dispersion forces. J. Math. Chem. 2008. 46, 86-96.<br />

[66] Humphrey, W.; Dalke, A.; Schulten, K. VMD - Visual Molecular Dynamics.<br />

J. Mol. Graph. 1996. 14, 33-38.<br />

Received: 03 March, 2010 Revised: 08 May, 2010 Accepted: 08 May, 2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!