17.01.2015 Views

Multipole moments - CRM2

Multipole moments - CRM2

Multipole moments - CRM2

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Chapter 7<br />

<strong>Multipole</strong> expansion – Cartesian<br />

formalism<br />

The complete determination of the complete charge density and various response<br />

functions (and the associated deformation densities) is computationally heavy and<br />

conceptually not very rewarding. As any distribution function, the essential features<br />

of the charge distribution can be be characterized by its <strong>moments</strong>.<br />

The mathematical analogy between the Longuet-Higgins interaction operator and<br />

the electrostatic interaction energy allows us to generalize the results obtained for<br />

the latter to the interaction operator too.<br />

7.1 Potential of a charge distribution<br />

Potential V (R) of the charge distribution ϱ(r)<br />

∫<br />

V (R) = drT (R − r)ϱ(r) (7.1)<br />

55


can be expanded in Taylor series around r = 0 (|r| < |R|.<br />

Taylor expansion of the Coulomb kernel<br />

)<br />

)<br />

T (R − r) = 1 ( 1<br />

R − r α∇ α + 1 ( 1<br />

R 2! r αr β ∇ α ∇ β<br />

R<br />

− 1 ( ) 1<br />

3! r αr β r γ ∇ α ∇ β ∇ γ + . . .<br />

R<br />

(7.2)<br />

Define the (Cartesian) Coulomb interaction tensors<br />

T (R) = 1 R<br />

)<br />

T α (R) = ∇ α<br />

( 1<br />

R<br />

T αβ (R) = ∇ α ∇ β<br />

( 1<br />

R<br />

)<br />

)<br />

(7.3)<br />

T αβγ (R) = ∇ α ∇ β ∇ γ<br />

( 1<br />

R<br />

)<br />

T αβ...ν (R) = ∇ α ∇ β . . . ∇ ν<br />

( 1<br />

R<br />

and the electrostatic potential<br />

∫<br />

V (R) = T (R)<br />

∫<br />

drϱ(r) − T α (R) drr α ϱ(r)<br />

+ T αβ (R) 1 ∫<br />

drr α r β ϱ(r) − T αβγ (R) 1 ∫<br />

2!<br />

3!<br />

drr α r β r γ ϱ(r) + . . .<br />

(7.4)<br />

Define the multipole <strong>moments</strong> of the charge distribution<br />

∫<br />

q = drϱ(r)<br />

∫<br />

m α = drr α ϱ(r)<br />

∫<br />

Q αβ = drr α r β ϱ(r)<br />

(7.5)<br />

ξ αβ...ν = drr (n)<br />

αβ...ν ϱ(r)<br />

∫<br />

O αβγ = drr α r β r γ ϱ(r)<br />

∫<br />

Cartesian multipole expansion of the potential<br />

V (R) = qT (R) − m α T α (R) + 1 2! Q αβT αβ (R) − . . . + (−)n ξ αβ...ν T αβ...ν (R) (7.6)<br />

n!<br />

56


7.2 <strong>Multipole</strong> <strong>moments</strong><br />

There are several conventions in the literature. The above-defined multipole <strong>moments</strong><br />

are symmetric tensors Q αβ = Q βα and their trace is nonzero<br />

. ∑<br />

= Q αα ≠ 0 (7.7)<br />

Q αα<br />

They can be called “unnormalized traced Cartesian” multipoles.<br />

Unabridged multipoles (Applequist)<br />

Traceless cartesian multipoles (Buckingham)<br />

Potential of a quadrupole<br />

α<br />

µ αβ...ν = 1 n! ξ αβ...ν (7.8)<br />

V (2) (R) = 1 2 Q αβT αβ (R) (7.9)<br />

Since the T (R) = 1 function satisfies the Laplace equation<br />

R<br />

( ) 1<br />

∇ 2 = 0<br />

R<br />

∑<br />

( ) 1<br />

∇ α ∇ α = ∑ T αα (R) = 0<br />

R<br />

α<br />

α<br />

we can add to the quadrupole potential an arbitrary quantity<br />

(7.10)<br />

λδ αβ T αβ (R) (7.11)<br />

without changing its value<br />

V (2) (R) = 1 2 (Q αβ + λδ αβ ) T αβ (R) (7.12)<br />

Let us choose λ as the trace of Q αβ<br />

λ = − 1 3 Q αα = − 1 ∑<br />

Q αα (7.13)<br />

3<br />

The new expression of the quadrupole potential<br />

V (2) (R) = 1 2 · 1 ∫<br />

dr ( )<br />

3r α r β − r 2 δ αβ ϱ(r)Tαβ (R) = 1 3<br />

3 Θ αβT αβ (R) (7.14)<br />

where have introduced the traceless cartesian quadrupole moment<br />

Θ αβ = 1 ∫<br />

dr ( )<br />

3r α r β − r 2 δ αβ ϱ(r) (7.15)<br />

2<br />

α<br />

57


7.2.1 Traceless (Buckingham) multipole <strong>moments</strong><br />

General definition<br />

Electrostatic potential<br />

M (n)<br />

αβ...ν = (−)n<br />

n!<br />

V (R) = ∑ n<br />

where the notation (2n − 1)!! means<br />

∫<br />

( )<br />

drϱ(r)r 2n+1 ∂ n 1<br />

∂r α ∂ . . . r ν r<br />

(7.16)<br />

(−) n<br />

(2n − 1)!! M (n)<br />

αβ...ν T (n)<br />

αβ...ν<br />

(R) (7.17)<br />

(2n − 1)!! = 1 · 3 · 5 · . . . (2n − 1) (7.18)<br />

The traceless multipoles do not contain the full information about the ϱ(r) charge<br />

distribution, since they are undetermined up to an arbitrary spherically symmetric<br />

component.<br />

On the contrary, one can reconstruct the full charge density from the traced multipoles.<br />

Consider the Fourier transform of ϱ(r)<br />

∫<br />

ϱ(k) = dre ikr ϱ(r) (7.19)<br />

and expand the exponential<br />

∫<br />

∫<br />

ϱ(k) = drϱ(r) +ik α dr r α ϱ(r) − 1 ∫<br />

2! k αk β dr r α r β ϱ(r) + . . . (7.20)<br />

} {{ } } {{ } } {{ }<br />

q<br />

m α<br />

Q αβ<br />

7.2.2 Explicit form of higher multipole <strong>moments</strong><br />

◦ Quadrupole moment Θ αβ<br />

Θ αβ = ∑ a<br />

q a [ 3 2 a αa β − 1 2 a2 δ αβ ] (7.21)<br />

Six distinct components, five independent components.<br />

◦ Octopole moment Ω αβγ<br />

Ω αβγ = ∑ a<br />

q a [ 5 3 a αa β a γ − a 2 (a α δ βγ + a β δ γα + a γ δ αβ )] (7.22)<br />

10 distinct components, seven independent components.<br />

◦ Hexadecapole moment Φ αβγγ<br />

◦ 2 n <strong>moments</strong>...<br />

58


7.2.3 Translation of multipole <strong>moments</strong><br />

◦ Dipole moment of a point charge distribution<br />

µ α = ∑ i<br />

q i r i α (7.23)<br />

In a new frame obtained after a translation by a vector a<br />

µ ′ α = ∑ q i (rα i − a α ) = ∑ ∑<br />

q i rα i − a α q i = µ α − a α q tot (7.24)<br />

i<br />

i<br />

i<br />

Dipole of a neutral system (q tot = 0) is invariant to translation of origin.<br />

◦ Quadrupole moment<br />

Θ αβ = ∑ q ( )<br />

i 3rαr i β i − (r i ) 2 δ αβ (7.25)<br />

i<br />

After translation by a<br />

Θ ′ αβ = Θ αβ + 1 2 qtot (3a α a β − a 2 δ αβ )<br />

− 3 2 (µtot α a β + µ tot<br />

β a α ) − δ αβ µ tot<br />

α a α<br />

(7.26)<br />

7.3 Electric field, field gradient<br />

The electric field, field gradient<br />

F α (R) = −∇ α V (R) F αβ (R) = −∇ α ∇ β V (R) (7.27)<br />

and higher derivatives of the potential of a multipolar charge distribution can be<br />

expressed with the same interaction tensors<br />

F l 1<br />

α 1 ...ν 1<br />

= −∇ α . . . ∇ ν1 V (R) =<br />

∞∑ (−) l 2<br />

−<br />

(2l 2 − 1)!! T l 1+l 2<br />

α 1 ...ν 1 α 2 ...ν 2<br />

M l (7.28)<br />

2<br />

α 2 ...ν 2<br />

l 2<br />

7.4 Energy of a charge distribution in non-uniform<br />

field<br />

We choose the origin inside the charge distribution, ϱ(r) and expand the external<br />

potential in Taylor series around the origin<br />

V (r) = V (0) + r α V α (0) + 1 2! r αr β V αβ (0) + 1 3! r αr β r γ V αβγ (0) + . . . (7.29)<br />

59


Using the expression of the interaction energy<br />

∫<br />

∫<br />

∫<br />

U = drϱ(r)V (r) = drϱ(r)V (0) + drϱ(r)r α V α (0)<br />

+ 1 ∫<br />

drϱ(r)r α r β V αβ (0) + 1 ∫<br />

drϱ(r)r α r β r γ V αβγ (0) + . . .<br />

2!<br />

3!<br />

(7.30)<br />

where we recognize the definition of the unnormalized traced multipoles,<br />

U = MV + M α V α + 1 2! M αβV αβ + 1 3! M αβγV αβγ + . . . (7.31)<br />

By the virtue of the Laplace equation, V αα = 0, we can subtract the trace of M αβ ,<br />

i.e. 1 3 M αα from the quadrupolar energy<br />

1<br />

2 M αβV αβ = 1 2 V 1<br />

αβ(M αβ − δ αβ<br />

3 M αα) = 1 3 V αβΘ αβ (7.32)<br />

By similar manipulations at higher orders<br />

U = qV + µ α V α + 1 3 Θ αβV αβ + 1<br />

3 · 5 Ω αβγV αβγ<br />

1<br />

+<br />

3 · 5 · 7 Φ 1<br />

(7.33)<br />

αβγδV αβγδ +<br />

(2n − 1)!! ξ(n) α...νV α...ν<br />

The energy is the scalar product of the field with dipole, filed gradient with quadrupole<br />

and higher field gradients with the corresponding multipole tensors.<br />

Attention: the result may depend on the choice of origin!<br />

7.5 <strong>Multipole</strong> interaction energy<br />

Take two sets of multipoles. Taylor series of the Coulomb interaction<br />

1<br />

|τ − τ ′ | = 1<br />

|B + s − A − r| = 1<br />

|R − (r − s)| =<br />

= 1 ( ) 1<br />

R + (r α − s α )∇ α + 1 ( ) 1<br />

R 2! (r α − s α )(r β − s β )∇ α ∇ β + . . .<br />

R<br />

(7.34)<br />

which leads directly to an expression of the interaction energy of two multipole<br />

charge distributions in terms of their traced Cartesian <strong>moments</strong><br />

U(R) = q A q B T (R) + (m A αq B − q A m α )T α (R)<br />

+ 1 2! (QA αβq B + q A Q B αβ − m A αm B β − m B α m A β )T αβ (R) + . . .<br />

Using the traceless (Buckingham) <strong>moments</strong><br />

(7.35)<br />

U(R) = ∑ l 1 l 2<br />

(−) l 1<br />

(2l 1 − 1)!!(2l 2 − 1)!! M (l 1)[A]<br />

α 1 ...ν 1<br />

T (l 1+l 2 )<br />

α 1 ...ν 1 α 2 ...ν 2<br />

(R)M (l 2)[B]<br />

α 2 ...ν 2<br />

(7.36)<br />

60


7.6 Calculation of cartesian interaction tensors<br />

They are defined as<br />

T = 1 R = R−1 =<br />

1<br />

√ R<br />

2<br />

x + R 2 y + R 2 z<br />

(7.37)<br />

Using the following derivation “rules”<br />

∇ α R β = δ αβ ∇ α R n = nR α R (n−2) ∇ α R −n = −nR α R −(n+2) (7.38)<br />

◦ Charge-dipole<br />

T α (R) = ∇ α T (R) = −R α R −3 (7.39)<br />

◦ Dipole-dipole/charge-quadrupole<br />

T αβ (R) = ∇ α ∇ β T (R)<br />

= −∇ α R β R −3 = −δ αβ R −3 + 3R α R β R −5<br />

= (3R α R β − R 2 δ αβ )R −5 (7.40)<br />

◦ Dipole-quadrupole/charge-octopole<br />

T αβγ (R) = ∇ α ∇ β ∇ γ T (R) = δ α (3R β R γ − R 2 δ βγ )R −5<br />

= 3δ αβ R γ R −5 + 3δ αγ R β R −5 + 3δ βγ R α R −5 + 3 · 5 · R α R β R γ R −7<br />

= 3 ( 5R α R β R γ − R 2 (R α δ βγ + R β δ γα + R γ δ αβ ) ) R −7 (7.41)<br />

Interaction tensors<br />

◦ invariant to interchange of indices<br />

◦ traceless, since ∇ 2 (1/R) = 0<br />

◦ 2n+1 independent components<br />

Cartesian tensor formulation<br />

◦ simple in low orders<br />

◦ easily extended algorithms<br />

◦ global frame<br />

◦ heavy formalism<br />

◦ too much components (reducible<br />

and redundant)<br />

61


7.7 Example: Structure of the HX dimers<br />

Competition of three multipolar interaction. Angular dependence for linear molecules<br />

(symmetric tops) is the following<br />

◦ dipole-dipole<br />

◦ dipole-quadrupole<br />

U µµ = − µA µ B<br />

R 3 (2 cos θ A cos θ B − sin θ A sin θ B cos ϕ) (7.42)<br />

U µΘ = 3µA Θ B<br />

4R 4 [cos θ A (3 cos 2 θ B − 1) − sin θ A sin 2θ B cos ϕ] (7.43)<br />

◦ quadrupole-quadrupole<br />

U ΘΘ = ΘA Θ B<br />

R 5 3<br />

4 [1 − 5 cos2 θ A − 5 cos 2 θ B − 15 cos 2 θ A cos 2 θ B<br />

+ 2(4 cos θ A cos θ B − sin θ A sin θ B cos ϕ) 2 ]<br />

(7.44)<br />

The structure is characterized by θ A ≈ 0 and ϕ = 0, µ A = µ B = µ and Θ A = Θ B =<br />

Θ. The sum of the 4 interaction terms (two for U µΘ )<br />

U = − µ2<br />

R 3 · 2 cos θ<br />

+ µΘ<br />

R 4 · 3<br />

2 [(3 cos2 θ − 1) − 2 cos θ]<br />

+ Θ2<br />

R 5 · 3(3 cos2 θ − 1)<br />

(7.45)<br />

Introduce the parameter λ = Θ µR<br />

U = µ2<br />

R 3 {<br />

−2 cos θ + λ<br />

3<br />

2 [(3 cos2 θ − 1) − 2 cos θ] + λ 2 3(3 cos 2 θ − 1) }<br />

= µ2<br />

2R 3 {<br />

3λ(1 + 2λ)(3 cos 2 θ − 1) − 2(2 + 3λ) cos θ } (7.46)<br />

62


Electrostatic interaction energy<br />

is plotted for the<br />

◦ HF dimer<br />

µ = 0.72ea 0 ,<br />

Θ = 1.875ea 2 0<br />

R = 5.1a 0 ;<br />

minimum at 68 degrees<br />

(exp. 60)<br />

◦ HCl dimer<br />

µ = 0.433ea 0 ,<br />

Θ = 2.8ea 2 0<br />

R = 6.8a 0 ;<br />

minimum at 79 degrees<br />

63

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!