07.01.2015 Views

The HTR/VHTR Project in Framatome ANP - SMR

The HTR/VHTR Project in Framatome ANP - SMR

The HTR/VHTR Project in Framatome ANP - SMR

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>The</strong> <strong>HTR</strong>/V<strong>HTR</strong> <strong>Project</strong> <strong>in</strong> <strong>Framatome</strong> <strong>ANP</strong><br />

<strong>Framatome</strong> <strong>ANP</strong><br />

Dom<strong>in</strong>ique HITTNER<br />

<strong>HTR</strong>-V<strong>HTR</strong> <strong>Project</strong> R&D manager<br />

<strong>Framatome</strong> <strong>ANP</strong><br />

<strong>Framatome</strong> <strong>ANP</strong>


<strong>The</strong> reference concept of ANTARES<br />

programme: a flexible heat source for heat<br />

supply, electricity production or cogeneration<br />

<strong>Framatome</strong> <strong>ANP</strong><br />

<strong>Framatome</strong> <strong>ANP</strong>


Base options of the <strong>Framatome</strong> <strong>ANP</strong> design<br />

Reactor<br />

Vessel<br />

IHX<br />

vessel<br />

Crossduct<br />

Vessel<br />

ANTARES<br />

3<strong>Framatome</strong> <strong>ANP</strong><br />

3


Indirect comb<strong>in</strong>ed cycle<br />

•Same efficiency as direct cycle (~ 48%)<br />

•M<strong>in</strong>imises the development<br />

risks (vessel (t° + pressure)<br />

+ turbo-mach<strong>in</strong>e)<br />

•Simplifies the turbomach<strong>in</strong>e<br />

ma<strong>in</strong>tenance<br />

•Focuses the <strong>in</strong>novation effort<br />

on the IHX, which anyway has<br />

to be developed for heat<br />

applications<br />

•Flexibility for test<strong>in</strong>g different<br />

types of applications (e.g.<br />

supercritical CO 2 cycle,heat<br />

applications, <strong>in</strong>clud<strong>in</strong>g H 2<br />

production, etc) due to the<br />

decoupl<strong>in</strong>g with the reactor<br />

Plate IHX (back-up tubular)<br />

•Compactness and efficiency,<br />

but a real development challenge;<br />

F<strong>ANP</strong> is at the same time<br />

<strong>in</strong>vestigat<strong>in</strong>g 3 different designs<br />

ANTARES<br />

Indirect cycle<br />

4<strong>Framatome</strong> <strong>ANP</strong><br />

4


Arrangement for Electricity and Hydrogen<br />

Cogeneration<br />

He<br />

N 2 + He<br />

HT isolation valve<br />

925°C<br />

600MWt<br />

core<br />

1000°C<br />

IHX<br />

950°C<br />

He<br />

H2 process<br />

temperature<br />

875°C<br />

50<br />

MWt<br />

Circulator<br />

Nuclear Heat<br />

Source NHS<br />

Condenser<br />

Steam Cycle<br />

S.G.<br />

Turbocompressor<br />

ANTARES<br />

Steam turb<strong>in</strong>es<br />

Power Conversion System PCS<br />

5<strong>Framatome</strong> <strong>ANP</strong><br />

5


<strong>The</strong> reactor<br />

TRISO fuel<br />

Prismatic fuel<br />

elements<br />

Annular core<br />

to make the largest use of<br />

<strong>in</strong>herent safety features<br />

• fuel leaktightness,<br />

ANTARES<br />

• thermal <strong>in</strong>ertia,<br />

• strongly negative<br />

temperature coefficient<br />

• Passive heat removal<br />

6<strong>Framatome</strong> <strong>ANP</strong><br />

6


Performance objectives<br />

Power: as high as compatible with <strong>in</strong>herent safety<br />

features, likely <strong>in</strong> the range of 600 MWth,<br />

Reactor outlet temperature: as high as reasonably<br />

possible for a near term deployment, likely to be at least<br />

850 °C,<br />

Costs: as low as possible (construction, operation and<br />

ma<strong>in</strong>tenance, dismantl<strong>in</strong>g),<br />

Burn-up: optimised for mak<strong>in</strong>g the fuel cycle cost<br />

effective while keep<strong>in</strong>g compatibility with <strong>in</strong>herent safety<br />

features (most likely not exceed<strong>in</strong>g ~ 150 GWd/tHM),<br />

to meet the licens<strong>in</strong>g criteria <strong>in</strong> US, Europe and if<br />

possible worldwide, thanks to an effort of<br />

<strong>in</strong>ternationalisation of the safety assessment pr<strong>in</strong>ciples<br />

7<strong>Framatome</strong> <strong>ANP</strong><br />

7


<strong>Framatome</strong> <strong>ANP</strong> <strong>Project</strong> <strong>in</strong>tegrat<strong>in</strong>g work<br />

Internal F<strong>ANP</strong> Activities<br />

•Reactor Eng<strong>in</strong>eer<strong>in</strong>g<br />

•Fuel Plant Eng<strong>in</strong>eer<strong>in</strong>g<br />

•Safety Approach<br />

• R&D<br />

• Calculation Tools & Methods<br />

• Fuel Design & manufactur<strong>in</strong>g<br />

• Materials Vessel, IHX...<br />

• Components IHX, Ducts, Valves<br />

• Helium Technology<br />

Past Experience <strong>in</strong> Germany<br />

• AVR, T<strong>HTR</strong><br />

• PNP, <strong>HTR</strong>-Modul <strong>Project</strong>s<br />

• KVK Test Facility<br />

(F<strong>ANP</strong>,<br />

Jülich...)<br />

CEA R&D support programme<br />

• Calculation Tools & Methods<br />

• Fuel Technology<br />

• Materials<br />

• Helium Technology<br />

• Test Facilities<br />

EC Contracts<br />

• FP5:<br />

reactor physics,<br />

Fuel technology<br />

materials,<br />

components<br />

safety approach<br />

• FP6: one large <strong>in</strong>tegrated<br />

project<br />

Technology Supply<br />

• <strong>HTR</strong>-10 Ch<strong>in</strong>a<br />

• PBMR South Africa<br />

EDF Collaboration<br />

• PCS Optimization<br />

• HTE Process<br />

• O&M<br />

DOE/M<strong>in</strong>atom GT-MHR<br />

Programme<br />

Support of Conceptual Design<br />

8<strong>Framatome</strong> <strong>ANP</strong><br />

8


Technical team managers<br />

V/<strong>HTR</strong> <strong>Project</strong> Organization<br />

General Manager<br />

Scientific Advisor<br />

Economics & F<strong>in</strong>ance<br />

Management & Quality<br />

Technical Coord<strong>in</strong>ation<br />

NGNP <strong>Project</strong><br />

Commercial <strong>Project</strong><br />

R&D Coord<strong>in</strong>ation<br />

Licens<strong>in</strong>g analysis and eng<strong>in</strong>eer<strong>in</strong>g<br />

Waste disposal and Fuel cycle back end<br />

Primary Systems<br />

Fuel<br />

I & C, Electrical Equipment<br />

Auxiliary Systems<br />

Process studies<br />

General requirements and general studies<br />

Layout and civil eng<strong>in</strong>eer<strong>in</strong>g<br />

<strong>The</strong> <strong>Framatome</strong> <strong>ANP</strong> <strong>HTR</strong>/V<strong>HTR</strong> ANTARES project is<br />

an <strong>in</strong>ternational project<br />

9<strong>Framatome</strong> <strong>ANP</strong><br />

9


<strong>The</strong> R&D support programme<br />

<strong>Framatome</strong> <strong>ANP</strong><br />

<strong>Framatome</strong> <strong>ANP</strong>


<strong>The</strong> R&D programme (1/2)<br />

Development and qualification of computer tools<br />

• Core physics (coupled neutronic and thermo-fluid<br />

dynamics tools)<br />

• Fuel performance<br />

• Transient analysis<br />

• Graphite oxidation<br />

• Seismic analysis of a block stack<br />

Fuel technology (fabrication and behaviour <strong>in</strong> operat<strong>in</strong>g<br />

and accident conditions)<br />

Material development<br />

• Vessel material<br />

• High temperature metallic<br />

materials<br />

• Graphite<br />

• Composites<br />

•Characterisation<br />

•Behaviour under irradiation<br />

•Oxidation<br />

11<strong>Framatome</strong> <strong>ANP</strong><br />

11


<strong>The</strong> R&D programme (2/2)<br />

Helium technologies<br />

• Purification<br />

• Interaction with He impurities<br />

• Tribology<br />

Component development<br />

• IHX<br />

• Circulator<br />

Need to develop test facilities<br />

• Irradiation facilities (<strong>in</strong> OSIRIS, HFR)<br />

• Oxidation facilities (CEA, FZJ)<br />

• Helium test benches<br />

• ...<br />

• Dedicated test facilities (impure He chemistry, He leak<br />

tightness of seals, <strong>in</strong>sulation performance, purification,<br />

tribometer....)<br />

• Large <strong>in</strong>tegral test facility: HELITE loop developed <strong>in</strong><br />

Cadarache, start<strong>in</strong>g <strong>in</strong> 2007<br />

12<strong>Framatome</strong> <strong>ANP</strong><br />

12


CEA Cadarache<br />

Vertically GSP device<br />

CEA Grenoble<br />

CVD furnace<br />

Fuel fabrication<br />

ZrCl 4 equipment for ZrC coat<strong>in</strong>g<br />

UO 2 kernels<br />

TRISO Buffer/IPyC/SiC/OPyC layers<br />

GAIA facility under construction <strong>in</strong> CEA Cadarache<br />

+ Compact<strong>in</strong>g facility from CERCA<br />

1 st UO 2 TRISO fuel re-fabricated <strong>in</strong> Europe <strong>in</strong> 2005<br />

1 st irradiation <strong>in</strong> OSIRIS <strong>in</strong> 2007<br />

ZrC coat<strong>in</strong>g first tests<br />

13<strong>Framatome</strong> <strong>ANP</strong><br />

13


A few facilities <strong>in</strong> CEA Cadarache<br />

COMETHE Facility<br />

Helium Tribometer<br />

14<strong>Framatome</strong> <strong>ANP</strong><br />

14


HELITE technological loop – 1 MW<br />

Pressurizer<br />

HT Test section<br />

IHX Qualification<br />

1<br />

MW<br />

Heater<br />

1000°C<br />

MT Test section<br />

450°C<br />

400°C<br />

IHX<br />

HT Test section<br />

950°C<br />

Helium<br />

P = 50 to75 bar<br />

Q=0,3 to 0,4 kg/s<br />

400°C<br />

Récupérator<br />

150°C<br />

100°C<br />

>400°C<br />

HT Cooler<br />

500°C<br />

Recuperator<br />

N2 + Helium<br />

P = 50 to 75 bar<br />

LT Cooler<br />

HP<br />

50°C<br />

LP<br />

Circulator<br />

Filter<br />

POLLUHE<br />

HEPUR<br />

LT Cooler<br />

150°C<br />

Circulator<br />

Filter<br />

50°C<br />

100°C<br />

PURIF<br />

HPC-CP<br />

Helium primary<br />

circuit<br />

HPC-CC<br />

Mix gas secondary circuit<br />

HP<br />

LP<br />

Cadarache, 2007<br />

15<strong>Framatome</strong> <strong>ANP</strong><br />

15


<strong>Framatome</strong> <strong>ANP</strong> has <strong>in</strong>itiated a 3 Year IHX<br />

Development Program<br />

Primary<br />

Outlet<br />

Secondary<br />

Inlet<br />

Test<br />

Module<br />

Secondary<br />

Outlet<br />

Primary<br />

Inlet<br />

Gas<br />

flowmeter<br />

Filters<br />

Valves<br />

Air<br />

reheater<br />

<strong>Framatome</strong>/HEATRIC<br />

IHX Test Module<br />

<strong>Framatome</strong> <strong>ANP</strong> Test Loop<br />

with <strong>Framatome</strong>/HEATRIC<br />

Element<br />

16<strong>Framatome</strong> <strong>ANP</strong><br />

16


Behaviour of high temperature materials <strong>in</strong> He<br />

environment: the <strong>Framatome</strong>-<strong>ANP</strong> loop<br />

He<br />

Mixer 1<br />

Graphite furnace<br />

Mixer 2<br />

He+H 2<br />

He+H 2<br />

He+CO<br />

He+CO<br />

He+CH 4<br />

He+CH 4<br />

He+CO 2<br />

He+CO 2<br />

He+(O 2 ou N 2 )<br />

He+(O 2 ou N 2 )<br />

Premixed bottles<br />

H 2 O#4°C<br />

Analysis system :<br />

Gas Chromato<br />

Cryo<br />

-105°C<br />

Cryostat Water getter<br />

Dew po<strong>in</strong>t mirror hygrometer<br />

Flow control.<br />

Oxygen sensor<br />

T<br />

A<br />

G<br />

<strong>The</strong>rmobalance<br />

(8OOH at 800°C )<br />

Flow mass controller<br />

17<strong>Framatome</strong> <strong>ANP</strong><br />

17


Vessel material: Mod. 9Cr1Mo development<br />

Behaviour under irradiation: PIE of HFR<br />

irradiation just f<strong>in</strong>ished no significant<br />

impact of irradiation on base material<br />

and thick weldment<br />

Weld<strong>in</strong>g development (F<strong>ANP</strong>)<br />

GTAW<br />

SAW<br />

Initial GTAW<br />

test<strong>in</strong>g: hot<br />

crack<strong>in</strong>g<br />

SMAW<br />

Varestra<strong>in</strong>t Tests (CEA)<br />

18<strong>Framatome</strong> <strong>ANP</strong><br />

18


An overview of the <strong>Framatome</strong> <strong>ANP</strong> + CEA + EdF<br />

<strong>HTR</strong>/V<strong>HTR</strong> programme<br />

Total 2004 <strong>HTR</strong>-V<strong>HTR</strong> budget (F<strong>ANP</strong> + CEA + EdF)<br />

~ 32 M€/y<br />

Total 2004 R&D effort (F<strong>ANP</strong> + CEA + EdF)<br />

~ 20 M€/y<br />

Total 2004 <strong>Framatome</strong> <strong>ANP</strong> budget<br />

~ 20 M€/y<br />

<strong>Framatome</strong> <strong>ANP</strong> is committed to develop <strong>HTR</strong>/V<strong>HTR</strong> till<br />

<strong>in</strong>dustrial deployment and is lead<strong>in</strong>g the programme<br />

performed with its partners<br />

But the F<strong>ANP</strong>/CEA/EdF partnership cannot do it alone !<br />

Importance of the R&D <strong>in</strong> the present phase<br />

Need of <strong>in</strong>ternational cooperation (Europe, GEN IV...)<br />

19<strong>Framatome</strong> <strong>ANP</strong><br />

19

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!