08.01.2015 Views

Jizhong (Joe) Zhou GeoChip - Danish Technological Institute

Jizhong (Joe) Zhou GeoChip - Danish Technological Institute

Jizhong (Joe) Zhou GeoChip - Danish Technological Institute

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>GeoChip</strong>: A High Throughput<br />

Genomics Technology for<br />

Characterizing Microbial Functional<br />

Community Structure<br />

<strong>Jizhong</strong> (<strong>Joe</strong>) <strong>Zhou</strong><br />

jzhou@ou.edu; 405-325-6073<br />

<strong>Institute</strong> for Environmental Genomics, Department of<br />

Botany and Microbiology, University of Oklahoma,<br />

Norman, OK 73019<br />

The 2nd International Symposium on Applied Microbiology and<br />

Molecular Biology in Oil Systems (ISMOS-2), Aarhus,<br />

Denmark, June 17-19, 2009<br />

INSTITUTE FOR ENVIRONMENTAL GENOMICS<br />

UNIVERSITY OF OKLAHOMA


Outline<br />

<strong>GeoChip</strong> development<br />

Challenging<br />

Designing<br />

Performance<br />

<strong>GeoChip</strong> applications<br />

Oil contaminated sites<br />

Ecological Network analysis<br />

Random matrix theory<br />

Microbial community responses to elevated CO2<br />

INSTITUTE FOR ENVIRONMENTAL GENOMICS<br />

UNIVERSITY OF OKLAHOMA


Gene Expression Patterns<br />

Whole Genome<br />

Microarrays<br />

Microbial<br />

functional<br />

Genomics<br />

Community &<br />

Ecosystem<br />

Genomics<br />

Genomic<br />

Technology<br />

Microbial<br />

Ecology &<br />

Extremophiles<br />

Oligonucleotide<br />

Arrays<br />

Functional<br />

Gene<br />

Arrays<br />

Community<br />

Genome Arrays<br />

Microbial Community<br />

Diversity & Mechanisms<br />

Producing Magnetic<br />

Nanoparticles<br />

Uranium Reduction<br />

INSTITUTE FOR ENVIRONMENTAL GENOMICS<br />

UNIVERSITY OF OKLAHOMA<br />

Protein array


High throughput approaches<br />

Open format detection<br />

Could not assure the same genes/proteins/organisms can be compared<br />

across different samples. The results could be expected and thus are<br />

open<br />

High throughput Sequencing<br />

454 sequencing, 250bp, 60-100mb/run<br />

Solexa, SOLiD: 35bp, 1-2 gb/run<br />

Proteomics<br />

Metabolomics<br />

Close format --- Microarrays, EcoPlates<br />

Ensure that the same genes/proteins/organisms can be compared<br />

across different samples. The results can be expected, and thus are<br />

close.<br />

PhyloChip: 16S genes<br />

<strong>GeoChip</strong>: functional genes<br />

INSTITUTE FOR ENVIRONMENTAL GENOMICS<br />

UNIVERSITY OF OKLAHOMA


Comparisons between open<br />

format and close format detection<br />

Open format<br />

Close format<br />

Low<br />

Sensitivity to random<br />

High<br />

sampling errors<br />

Effects by dominant<br />

Yes<br />

No<br />

organisms<br />

Finding new things Yes No<br />

Sensitivity to<br />

contaminated DNAs<br />

Comparison across<br />

samples<br />

Yes<br />

No<br />

Yes<br />

INSTITUTE FOR ENVIRONMENTAL GENOMICS<br />

UNIVERSITY OF OKLAHOMA


<strong>GeoChip</strong> or Functional Gene Arrays<br />

(FGAs)<br />

Microarrays: Glass slides or other<br />

solid surface containing thousands of<br />

genes arrayed by automated equipment.<br />

FGAs contain probes from the genes<br />

involved in various geochemical,<br />

ecological and environmental processes.<br />

C, N, S, P cylcings<br />

Organic contaminant degradation<br />

Metal resistance and reduction<br />

Typical format: 50mer oligonucleotide<br />

arrays<br />

Useful for studying microbial<br />

communities<br />

Functional gene diversity and activity<br />

Limited phylogenetic diversity.<br />

INSTITUTE FOR ENVIRONMENTAL GENOMICS<br />

UNIVERSITY OF OKLAHOMA


Main advantages of <strong>GeoChip</strong><br />

compared to other approaches<br />

(e.g., 16S-based 454 sequencing)<br />

Detecting functions: Geochemical<br />

processes<br />

Higher resolution: Species-strain level<br />

resolution<br />

Quantitative: no PCR is involved<br />

INSTITUTE FOR ENVIRONMENTAL GENOMICS<br />

UNIVERSITY OF OKLAHOMA


Issues related to specificity, sensitivity and quantitation<br />

Specificity, sensitivity, quantitation<br />

Wu et al. 2001; AEM:67: 5780-5790<br />

Rhee et al. 2004, AEM 70:4303-4317<br />

Tiquia et al. 2004. BioTechniques 36, 664-<br />

675<br />

Wu et al. 2004; EST, 38: 6775-6782<br />

He et al, 2007; The ISME J, 1: 67-77<br />

He and <strong>Zhou</strong>, 2008, AEM, 74: 2957–2966<br />

Probe design criteria<br />

He et al. 2005. AEM. 71:3753-3760<br />

Liebich et al. AEM, 72:1688-1691<br />

Deng et al. 2009, BMC Genomics<br />

New probe designing software:<br />

CommOligo<br />

Li et al. 2005. Nucl. Acids Res. 33:6114-<br />

6123<br />

Whole community genome<br />

amplification (WCGA)<br />

Wu et al. 2006. AEM: 72:4931-4941.<br />

Whole community RNA amplification<br />

(WCRA)<br />

Gao et al, 2007, AEM: 73: 563-571.<br />

Review:<br />

Gentry et al. 2006, Microbial Ecology, 52:<br />

159-175.<br />

<br />

<br />

<strong>Zhou</strong> and Thompson, 2002, Curr Opion<br />

Biotech: 13:204-207<br />

<strong>Zhou</strong>, 2003; Curr Opion. Microbiol,<br />

6:288-294<br />

<br />

Applications<br />

He et al, 2007; The ISME J, 1: 67-77 ,<br />

Leigh et al, 2007, The ISME J, 1: 163-179<br />

Yergeau et al, 2007, The ISME J, 1: 134-<br />

148.<br />

<br />

Zhang et al. 2007. FEMS Microbiology<br />

Letters 266: 144-151.<br />

Wu et a., 2008, AEM, 74: 4516-4529<br />

<strong>Zhou</strong> et al. 2008. PNAS, 105:<br />

7768-7773<br />

Wang et al. 2009. PNAS, 106:<br />

4840-4845<br />

Liang et al, 2009. Chemosphere, 75: 193-<br />

199<br />

Liang et al. 2009, Chemosphere, 3: 231-<br />

<br />

<br />

<br />

242<br />

Masson et al. 2009. ISME J., in press<br />

Waldron et al. EST, 2009, in press<br />

Van Nostrand et al. EM, in revision<br />

INSTITUTE FOR ENVIRONMENTAL GENOMICS<br />

UNIVERSITY OF OKLAHOMA


Pioneering advances in microarraybased<br />

technologies to address challenges<br />

in microbial community genomics<br />

Challenges:<br />

Specificity: Environmental sequence divergences.<br />

Sensitivity: Low biomass.<br />

Quantification:<br />

Existence of contaminants: Humic materials, organic<br />

contaminants, metals and radionuclides.<br />

Solutions<br />

Developing different types of microarrays and novel chemistry to<br />

address different levels of specificity.<br />

Developing novel signal amplification strategy to increase<br />

sensitivity<br />

Optimizing microarray protocols for reliable quantification.<br />

INSTITUTE FOR ENVIRONMENTAL GENOMICS<br />

UNIVERSITY OF OKLAHOMA


% overall similarity<br />

hybridization free energy (kcal mol<br />

-1<br />

)<br />

-30<br />

-40<br />

-50<br />

-60<br />

10<br />

100<br />

96<br />

92<br />

88<br />

84<br />

80<br />

76<br />

72<br />

68<br />

64<br />

Empirical criteria for designing<br />

60<br />

10 15 20 25 30 35 40 45 50<br />

12<br />

idententical sequence stretch<br />

between probe and target (bp)<br />

identical sequence stretch between probe and target (bp)<br />

14<br />

16<br />

He et al. 2005. AEM.<br />

71:3753-3760<br />

Liebich et al. AEM,<br />

72:1688-1691<br />

18<br />

20<br />

70<br />

75<br />

80<br />

85<br />

specific probes<br />

90<br />

overall similarity (%)<br />

• Hybridization condition: 50 C, 50%<br />

formamide<br />

• Evaluation of 516 probes with homology<br />

between less than 86% and 100% or a common<br />

identical sequence stretch of at least 16 bases.<br />

• SNR > 2 as positive<br />

Criteria for designing specific probes<br />

• Similarity: 90%<br />

• Stretches: 20 bases<br />

• Free energy: - 35 kcal/mol<br />

• Specific hybridization was also observed for some<br />

probes with less than 98% similarity to the target<br />

sequences, suggesting that strain level of resolution<br />

could be possibly achieved with some 50mer probes<br />

INSTITUTE FOR ENVIRONMENTAL GENOMICS<br />

under the hybridization conditions examined.<br />

UNIVERSITY OF OKLAHOMA


Specificity of 50 mer microarrays<br />

Specific hybridization was obtained with probes 85% similarity<br />

4 5<br />

• 5 nirS genes were mixed<br />

together<br />

1<br />

• Only corresponding genes<br />

were hybridized<br />

2<br />

3<br />

nir K<br />

• 6 types of genes were<br />

mixed together<br />

• Only corresponding genes<br />

were hybridized<br />

nif H<br />

amo<br />

nir S<br />

A<br />

pmo A<br />

dsr AB<br />

INSTITUTE FOR ENVIRONMENTAL GENOMICS<br />

UNIVERSITY OF OKLAHOMA


Sensitivity<br />

Genomic DNA<br />

Cells<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

500 ng gDNA 50 ng<br />

Detection limit<br />

• 50 ng pure DNA in the presence of<br />

non-target templates<br />

• 10 7 cells<br />

25 ng 1.610 9 1.310 7 3.010 6<br />

Rhee et al. 2004, AEM 70:4303-4317<br />

Tiquia et al. 2004. BioTechniques 36,<br />

664-675<br />

INSTITUTE FOR ENVIRONMENTAL GENOMICS<br />

UNIVERSITY OF OKLAHOMA


Quantification and validation<br />

Microarray hybridization<br />

Real-PCR<br />

Log Signal Ratio (Log R)<br />

Log Signal Ratio (Log R)<br />

0.0<br />

-0.5<br />

-1.0<br />

-1.5<br />

r 2 = 0.98<br />

0.5 1.6 10 9<br />

8.0 10 8<br />

2.0 10 8 4.0 10 9<br />

1.0 10 7<br />

5.0 10 7<br />

2.5 10 7<br />

3.0 10 6 1.3 10 7<br />

6.0 10 6<br />

Log Value<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

r=0.86<br />

Real Time PCR (Log Copy Number)<br />

Microarray Hybridization (Log SNR)<br />

1: gi4704462-TFD<br />

2: gi4704463-TFD-Microcosm<br />

3: gi4704464-TFD-Enrichment<br />

4: gi4704463-TFD<br />

5: gi4704464-TFD-Microcosm<br />

6: gi4704465-TFD-Enrichment<br />

7: gi2828015-TFD<br />

8: gi2828016-TFD-Microcosm<br />

9: gi2828017-TFD-Enrichment<br />

10: gi2828018-TFD<br />

11: gi2828019-TFD-Microcosm<br />

12: gi2828020<br />

6 7 8 9 10<br />

Log (Cell Number (Log[N])<br />

0 2 4 6 8 10 12 14<br />

Genes<br />

Quantification<br />

• Good linear relationship<br />

• Quantitative<br />

• Microarray result is<br />

consistent with realtime<br />

PCR<br />

INSTITUTE FOR ENVIRONMENTAL GENOMICS<br />

UNIVERSITY OF OKLAHOMA


Whole community genome<br />

amplification (WCGA) approach for<br />

increasing hybridization sensitivity<br />

10fg<br />

M A1 B1 A2 B2 A3 B3 A4 B4 A5 B5 A6 B6 A7 B7 A8 B8 M<br />

Yields (g)<br />

14 Modified buffer<br />

Commercial buffer<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

100 10<br />

Template Concentrations (fg)<br />

As low as 10fg (2 cells)<br />

can be detected<br />

2-5 fold increase with<br />

modified buffer<br />

INSTITUTE FOR ENVIRONMENTAL GENOMICS<br />

Wu et al. 2006. AEM: 72:4931-4941, top 20 most requested UNIVERSITY paper OF OKLAHOMA in AEM.


Quantification after amplification<br />

with environmental sample<br />

Log Signal Intensity<br />

4.4<br />

4.0<br />

3.6<br />

3.2<br />

2.8<br />

Gene 7363464: r2=0.96<br />

Gene 10441633: r2=0.96<br />

Gene 3452465: r2=0.99<br />

Gene 11967269: r2=0.96<br />

Gene 9651045: r2=0.98<br />

2.4<br />

-2 -1 0 1 2 3<br />

Log DNA Template (ng)<br />

• All genes detected showed significant linear relationships<br />

within the template range from 0.01 ng to 250 ng (r²=0.96-<br />

0.98).<br />

• Only 5 genes are shown here.<br />

INSTITUTE FOR ENVIRONMENTAL GENOMICS<br />

UNIVERSITY OF OKLAHOMA


microgram<br />

Procaryotic mRNA amplification<br />

Template<br />

1 mg, 0.5mg, 0.1mg, 0.01mg<br />

5’<br />

5’<br />

RNA<br />

T7<br />

RNA<br />

T4 gene 32 protein<br />

Spermidine<br />

Linear acryl amide<br />

SSB, RecA<br />

In Vitro Transcription<br />

T7 RNA polymerase<br />

T7- random primer<br />

Reverse transcription<br />

2nd strand synthesis<br />

DNA polymerase, RNaseH<br />

DNA Ligase<br />

T<br />

7<br />

T4 DNA polymerase<br />

T<br />

7<br />

140.0<br />

120.0<br />

100.0<br />

80.0<br />

60.0<br />

40.0<br />

20.0<br />

0.0<br />

aRNA amplification<br />

119<br />

57<br />

18.0<br />

0.2<br />

1 2 3 4<br />

10ng<br />

50ng<br />

100ng<br />

primer only<br />

template<br />

2nd round amplification<br />

Gao et al, 2007,<br />

AEM: 73: 563-571.<br />

T7N6:<br />

T7N6S:<br />

T7T7N6S:<br />

5'AAACGACGGCCAGTGAATTGTAATACGACTCACTATAGGCGCNNNNN[N-Q]<br />

5'AATTGTAATACGACTCACTATAGGGNNNNN[N-Q]<br />

5'AATTGTAATACGACTCACTATAGGGTTAACATTATGCTGAGTGATATCCCNNNNN[N-Q]<br />

INSTITUTE FOR ENVIRONMENTAL GENOMICS<br />

UNIVERSITY OF OKLAHOMA


<strong>GeoChip</strong> 2.0: A high throughput tool for<br />

linking community structure to functions<br />

He, Z, TJ Gentry, CW Schadt, L Wu, J Liebich, SC Chong,<br />

Z Huang, W Wu, B Gu, P Jardine, C Criddle, and J.<br />

<strong>Zhou</strong>. 2007. <strong>GeoChip</strong>: a comprehensive microarray for<br />

investigating biogeochemical, ecological and<br />

environmental processes. The ISME J. 1: 67-77.<br />

Highlighted by:<br />

• A press release by Nature Press Office<br />

•Reported by many Newspapers<br />

• National Ecology Observatory Networks (NEON),<br />

Roadmap<br />

• National Academy of Sciences, Metagenomics report<br />

INSTITUTE FOR ENVIRONMENTAL GENOMICS<br />

UNIVERSITY OF OKLAHOMA


Summary of <strong>GeoChip</strong> 3.0 probe and sequence<br />

information by functional gene category<br />

Functional process<br />

No. of gene<br />

categories<br />

No. sequences<br />

retrieved<br />

No. of probes<br />

designed<br />

No. CDS<br />

covered<br />

Antibiotic resistance 11 7571 1710 2904<br />

Carbon degradation 31 9839 2720 4737<br />

Carbon fixation 5 3378 898 1806<br />

Methane metabolism 3 4182 254 434<br />

Nitrogen cycling 13 27162 3561 6892<br />

Phosphorus utilization 3 1441 599 1212<br />

Sulfur cycling 3 4296 1328 1773<br />

Metal remediation 41 16825 4917 10458<br />

Contaminant degradation 190 31236 8815 16948<br />

Energy process 2 901 413 449<br />

Others (e.g., GyrB) 3 9359 1860 3897<br />

Total 305 116,190 27,075 51,510<br />

• > 300 functional gene categories<br />

INSTITUTE FOR ENVIRONMENTAL GENOMICS<br />

• Universal standards to allow data comparison across different experiments & times<br />

UNIVERSITY OF OKLAHOMA


Carbon degradation<br />

Gene/category Unique probe Group probe Total probe Total covered CDS<br />

Carbon degradation<br />

acetylglucosaminidase 32 75 107 214<br />

amyA 61 170 231 467<br />

amyX 0 5 5 12<br />

apu 4 2 6 8<br />

ara 21 65 86 174<br />

ara_fungi 23 10 33 50<br />

cda 11 6 17 25<br />

cellobiase 36 41 77 145<br />

endochitinase 199 168 367 606<br />

endoglucanase 64 24 88 109<br />

exochitinase 15 16 31 63<br />

exoglucanase 54 9 63 83<br />

glucoamylase 23 35 58 111<br />

glx 17 4 21 33<br />

isopullulanase 0 1 1 2<br />

lip 25 4 29 39<br />

mannanase 20 9 29 45<br />

mnp 17 2 19 22<br />

nplT 4 16 20 39<br />

pectinase 27 2 29 33<br />

phenol_oxidase 126 81 207 272<br />

pulA 21 88 109 231<br />

xylA 18 72 90 188<br />

xylanase 60 67 127 221<br />

Subtotal 878 972 1850 3192<br />

INSTITUTE FOR ENVIRONMENTAL GENOMICS<br />

UNIVERSITY OF OKLAHOMA


Carbon fixation and methane metabolism<br />

Gene/category Unique probe Group probe Total probe Total covered CDS<br />

Carbon fixation<br />

aclB 20 13 33 53<br />

CODH 13 63 76 138<br />

FTHFS 68 126 194 323<br />

pcc 8 249 257 585<br />

rubisco 139 146 285 515<br />

Subtotal 248 597 845 1614<br />

Methane metabolism<br />

mcrA 104 106 210 392<br />

mmoX 22 22 44 90<br />

pmoA 85 39 124 270<br />

Subtotal 211 167 378 752<br />

INSTITUTE FOR ENVIRONMENTAL GENOMICS<br />

UNIVERSITY OF OKLAHOMA


Nitrogen cycling<br />

Gene/category Unique probe Group probe Total probe Total covered CDS<br />

Nitrogen cycling<br />

amoA 100 95 195 528<br />

gdh 26 19 45 94<br />

hao 2 4 6 18<br />

napA 11 22 33 83<br />

narG 289 160 449 656<br />

nasA 67 86 153 259<br />

nifH 885 333 1218 2467<br />

nirK 255 143 398 1005<br />

nirS 351 155 506 923<br />

norB 55 25 80 102<br />

nosZ 191 119 310 596<br />

ureC 57 218 275 603<br />

Subtotal 2289 1379 3668 7334<br />

INSTITUTE FOR ENVIRONMENTAL GENOMICS<br />

UNIVERSITY OF OKLAHOMA


Phosphorus utilization and sulphur cycling<br />

Gene/category Unique probe Group probe Total probe Total covered CDS<br />

Phosphorus<br />

ppk 47 67 114 237<br />

ppx 44 296 340 832<br />

Subtotal 91 363 454 1069<br />

Sulphur<br />

dsrA 595 155 750 954<br />

dsrB 371 131 502 685<br />

sox 47 52 99 161<br />

Subtotal 1013 338 1351 1800<br />

INSTITUTE FOR ENVIRONMENTAL GENOMICS<br />

UNIVERSITY OF OKLAHOMA


Metal reduction and resistance<br />

Gene/category Total probe Total covered CDS<br />

Metal reduction and resistance<br />

Arsenic resistance 396 803<br />

Cadmium resistance 1254 2808<br />

Chromium resistance 543 1292<br />

Mercury resistance/reduction 292 594<br />

Nickel resistance 42 88<br />

Zinc resistance 1044 2197<br />

Other metals and metalloids 1803 4135<br />

Other metal reduction 413 449<br />

Subtotal 5,787 12,366<br />

INSTITUTE FOR ENVIRONMENTAL GENOMICS<br />

UNIVERSITY OF OKLAHOMA


Organic contaminant degradation<br />

Gene/category Total probe Total covered CDS<br />

Contaminant degradation<br />

BTEX and related aromatics 423 3084<br />

Chloronated aromatics 250 473<br />

Nitroaromatics 122 489<br />

Heterocyclic aromatics 38 66<br />

Hydrocarbons (e.g., PAHs) 179 2089<br />

Chloronated solvents 180 360<br />

Pesticides 1258 3083<br />

Other chemicals and by-products 3936 7855<br />

Subtotal 6,386 17,499<br />

INSTITUTE FOR ENVIRONMENTAL GENOMICS<br />

UNIVERSITY OF OKLAHOMA


Energy-related metabolism processes<br />

Gene/category Total probe Total covered CDS<br />

Energy-related metabolism processes<br />

Cytochromes 365 365<br />

Hydrogenase 48 85<br />

Subtotal 413 450<br />

INSTITUTE FOR ENVIRONMENTAL GENOMICS<br />

UNIVERSITY OF OKLAHOMA


Examples of most recent applications<br />

Groundwaters<br />

Monitoring bioremediation processes: Ur, Cr<br />

Impacts of contaminants on microbial communities<br />

Soils<br />

Grass land soils: effects of plant diversity and climate changes on soil<br />

communities<br />

Forest soil: spatial scaling<br />

Agricultural soils: tillage, no tillage<br />

Oil-contaminated soils<br />

Aquatic environments<br />

Hydrothermal vents<br />

Marine sediments<br />

River sediments<br />

Bioreactors<br />

Wastewater treatments<br />

Biohydrogen<br />

Microbial fuel cell<br />

INSTITUTE FOR ENVIRONMENTAL GENOMICS<br />

Bioleaching<br />

UNIVERSITY OF OKLAHOMA


Overview of Microarray<br />

Analysis<br />

<br />

<br />

<br />

<br />

<br />

<br />

DNA extraction from environmental<br />

samples, multiple samples, times<br />

Whole Community Rolling Circle<br />

Amplification (1-100ng DNA)<br />

Label DNA with Cy5<br />

Hybridization to <strong>GeoChip</strong> at 42, 45 or 50C<br />

with 50% formamide<br />

Data processing with automatic pipeline<br />

Statistical analysis<br />

<br />

Data interpretation<br />

INSTITUTE FOR ENVIRONMENTAL GENOMICS<br />

UNIVERSITY OF OKLAHOMA


Microbial communities in oil fields<br />

Samples were clustered together in terms of the geographical<br />

locations based on GeChip data.<br />

INSTITUTE FOR ENVIRONMENTAL GENOMICS<br />

UNIVERSITY OF OKLAHOMA


DGGE Analysis<br />

Distance (Objective Function)<br />

1.8E-01 7.7E-01 1.4E+00 1.9E+00 2.5E+00<br />

Information Remaining (%)<br />

100 75 50 25 0<br />

DQ-U<br />

JH-U<br />

JH-C<br />

DQ-C<br />

YM-U<br />

YM-C<br />

CQ-U<br />

CQ-C<br />

SL-U<br />

SL-C<br />

Similarly, samples were clustered together in terms of the<br />

geographical locations based on DGGE data..<br />

INSTITUTE FOR ENVIRONMENTAL GENOMICS<br />

UNIVERSITY OF OKLAHOMA


Partial CCA Analysis<br />

(a) Outline (b) DGGE (c) <strong>GeoChip</strong><br />

<br />

<br />

<br />

More variations are explained based on <strong>GeoChip</strong> data than DDGE data<br />

Environmental factors play bigger roles in impacting community structure<br />

than other factors, e.g. distances, and oil contamination.<br />

Oil contamination alone explained about 12% difference.<br />

INSTITUTE FOR ENVIRONMENTAL GENOMICS<br />

UNIVERSITY OF OKLAHOMA


Funding<br />

• Department of Energy<br />

– Genomics:GTL Program<br />

– Microbial Genome Program<br />

– ERSP Program<br />

– Ocean Margin Program<br />

– Carbon cycling programs<br />

• USDA<br />

NSF-USDA Microbial Observatories<br />

• OCAST: Oklahoma Center for the<br />

Advancement of Science and Technology<br />

• Oklahoma Bioenergy Center<br />

INSTITUTE FOR ENVIRONMENTAL GENOMICS<br />

UNIVERSITY OF OKLAHOMA


OU<br />

Zhili He<br />

Liyou Wu<br />

Meiying Xu<br />

Ye Deng<br />

Joy Van Nostrand<br />

Sanghoon Kang<br />

Qichao Tu<br />

Zhenmei Xu<br />

Texas A&M<br />

Terry Gentry<br />

ORNL<br />

Chris Schadt<br />

Acknowledgement<br />

Michigan State University<br />

James M. Tiedje<br />

Jim Cole<br />

Qiong Wang<br />

LBL<br />

Terry Hazen<br />

Stanford Univ<br />

Craig Criddle<br />

Weimin Wu<br />

Univ of Minnesota<br />

Peter Reich<br />

Sarah Hobbie<br />

INSTITUTE FOR ENVIRONMENTAL GENOMICS<br />

UNIVERSITY OF OKLAHOMA


Issues related to specificity, sensitivity and quantitation<br />

Specificity, sensitivity, quantitation<br />

Wu et al. 2001; AEM:67: 5780-5790<br />

Rhee et al. 2004, AEM 70:4303-4317<br />

Tiquia et al. 2004. BioTechniques 36, 664-<br />

675<br />

Wu et al. 2004; EST, 38: 6775-6782<br />

He et al, 2007; The ISME J, 1: 67-77<br />

He and <strong>Zhou</strong>, 2008, AEM, 74: 2957–2966<br />

Probe design criteria<br />

He et al. 2005. AEM. 71:3753-3760<br />

Liebich et al. AEM, 72:1688-1691<br />

Deng et al. 2009, BMC Genomics<br />

New probe designing software:<br />

CommOligo<br />

Li et al. 2005. Nucl. Acids Res. 33:6114-<br />

6123<br />

Whole community genome<br />

amplification (WCGA)<br />

Wu et al. 2006. AEM: 72:4931-4941.<br />

Whole community RNA amplification<br />

(WCRA)<br />

Gao et al, 2007, AEM: 73: 563-571.<br />

Review:<br />

Gentry et al. 2006, Microbial Ecology, 52:<br />

159-175.<br />

<br />

<br />

<strong>Zhou</strong> and Thompson, 2002, Curr Opion<br />

Biotech: 13:204-207<br />

<strong>Zhou</strong>, 2003; Curr Opion. Microbiol,<br />

6:288-294<br />

<br />

Applications<br />

He et al, 2007; The ISME J, 1: 67-77 ,<br />

Leigh et al, 2007, The ISME J, 1: 163-179<br />

Yergeau et al, 2007, The ISME J, 1: 134-<br />

148.<br />

<br />

Zhang et al. 2007. FEMS Microbiology<br />

Letters 266: 144-151.<br />

Wu et a., 2008, AEM, 74: 4516-4529<br />

<strong>Zhou</strong> et al. 2008. PNAS, 105:<br />

7768-7773<br />

Wang et al. 2009. PNAS, 106:<br />

4840-4845<br />

Liang et al, 2009. Chemosphere, 75: 193-<br />

199<br />

Liang et al. 2009, Chemosphere, 3: 231-<br />

<br />

<br />

<br />

242<br />

Masson et al. 2009. ISME J., in press<br />

Waldron et al. EST, 2009, in press<br />

Van Nostrand et al. EM, in revision<br />

INSTITUTE FOR ENVIRONMENTAL GENOMICS<br />

UNIVERSITY OF OKLAHOMA

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!