10.11.2012 Views

Vehicle Networks V2X communication protocols - STI Innsbruck

Vehicle Networks V2X communication protocols - STI Innsbruck

Vehicle Networks V2X communication protocols - STI Innsbruck

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Vehicle</strong> <strong>Networks</strong><br />

<strong>V2X</strong> <strong>communication</strong> <strong>protocols</strong><br />

Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl


Lecture <strong>Vehicle</strong> <strong>Networks</strong>, Thomas Strang and Matthias Röckl, WS 2008/2009<br />

Outline<br />

Wireless Access for Vehicular Environments (WAVE)<br />

IEEE 802.11p<br />

IEEE 1609.1-4<br />

SAE 2735<br />

Car-2-Car Communication Consortium & ETSI TC ITS


Lecture <strong>Vehicle</strong> <strong>Networks</strong>, Thomas Strang and Matthias Röckl, WS 2008/2009<br />

Wireless Access for Vehicular Environments<br />

Rationale<br />

What was the motivation behind a vehicle specific WLAN? What<br />

prevented the existing IEEE 802.11-family from being adopted as is?<br />

[Source: Daimler/C2C-CC]


Lecture <strong>Vehicle</strong> <strong>Networks</strong>, Thomas Strang and Matthias Röckl, WS 2008/2009<br />

Wireless Access for Vehicular Environments (WAVE)<br />

IEEE 802.11p + 1609.x + SAE 2735


Lecture <strong>Vehicle</strong> <strong>Networks</strong>, Thomas Strang and Matthias Röckl, WS 2008/2009<br />

Higher<br />

Layers<br />

Network<br />

Services<br />

Lower<br />

Layers<br />

Wireless Access for Vehicular Environments<br />

Overview<br />

SAE J2735<br />

IEEE 1609.1<br />

IEEE 1609.2<br />

IEEE 1609.3<br />

IEEE 1609.4<br />

IEEE 802.11p<br />

No. of<br />

layer<br />

ISO/OSI<br />

ref model<br />

1609.1 Resource Manager<br />

1609.2 Security Services<br />

1609.3 Networking Services<br />

1609.4 Multi-channel operations<br />

7 Application e.g. HTTP<br />

4 Transport TCP/UDP<br />

3 Network IPv6<br />

Data Plane Management Plane<br />

WAVE<br />

Application<br />

(Resource Manager)<br />

WSMP<br />

2b<br />

802.2 LLC<br />

2a<br />

Data Link<br />

WAVE MAC<br />

MAC<br />

Management<br />

1b<br />

1a<br />

Physical<br />

WAVE Physical Layer<br />

Convergence Protocol (PLCP)<br />

WAVE Physical Medium<br />

Dependent (PMD)<br />

PHY<br />

Management<br />

Management<br />

WAVE WAVE Station Station Management Entity Entity<br />

WSME WSME


Lecture <strong>Vehicle</strong> <strong>Networks</strong>, Thomas Strang and Matthias Röckl, WS 2008/2009<br />

IEEE 802.11p<br />

Requirements<br />

Changes in baseline 802.11 standards are required to:<br />

support longer ranges of operation (up to ~1000 meters),<br />

the high speed of the vehicles (up ~500 km/h relative velocities),<br />

the extreme multipath environment (many reflections with long<br />

delays (up to ~5 μs max excess)),<br />

the need for multiple overlapping<br />

ad-hoc networks to operate with<br />

extremely high quality of service,<br />

and<br />

the nature of the automotive<br />

applications (e.g. reliable<br />

broadcast) to be supported.<br />

Based on: IEEE 802.11p & Tan (2008):<br />

Measurement and Analysis of Wireless Channel<br />

Impairments in DSRC Vehicular Communications


Lecture <strong>Vehicle</strong> <strong>Networks</strong>, Thomas Strang and Matthias Röckl, WS 2008/2009<br />

IEEE 802.11p<br />

Overview<br />

IEEE 802.11p is based on:<br />

IEEE 802.11a PHY: OFDM modulation<br />

IEEE 802.11 MAC: CSMA/CA<br />

IEEE 802.11e MAC enhancement: message prioritization


Lecture <strong>Vehicle</strong> <strong>Networks</strong>, Thomas Strang and Matthias Röckl, WS 2008/2009<br />

IEEE 802.11p<br />

Communication entities<br />

Communication between:<br />

roadside units and mobile radio units (<strong>Vehicle</strong>-2-Infrastructure),<br />

mobile units (<strong>Vehicle</strong>-2-<strong>Vehicle</strong>), or<br />

portable units and mobile units (<strong>Vehicle</strong>-2-Pedestrian)<br />

Infrastructure:<br />

Roadside Units (RSUs)<br />

Gantries (e.g. tolling gantries)<br />

Poles, traffic lights, etc.<br />

Mobile/Portable equipment:<br />

On-board Unit (OBU)<br />

Denso DSRC platform<br />

Based on IEEE 802.11p


Lecture <strong>Vehicle</strong> <strong>Networks</strong>, Thomas Strang and Matthias Röckl, WS 2008/2009<br />

IEEE 802.11p<br />

<strong>Vehicle</strong>-2-Pedestrian<br />

[Source:<br />

www.OKI.com]


Lecture <strong>Vehicle</strong> <strong>Networks</strong>, Thomas Strang and Matthias Röckl, WS 2008/2009<br />

IEEE 802.11p<br />

Pedestrian?<br />

IEEE 802.11p DSRC module<br />

GPS receiver<br />

Regular GSM phone


Lecture <strong>Vehicle</strong> <strong>Networks</strong>, Thomas Strang and Matthias Röckl, WS 2008/2009<br />

<strong>V2X</strong> frequency bands


Lecture <strong>Vehicle</strong> <strong>Networks</strong>, Thomas Strang and Matthias Röckl, WS 2008/2009<br />

IEEE 802.11p<br />

Frequency band<br />

U.S. FCC allocated 75 MHz band in 1999 for ITS<br />

5.825<br />

Power Limit<br />

Power Limit<br />

Power Limit<br />

5.830<br />

5.835<br />

5.845<br />

5.850<br />

Shared Public Safety/Private Dedicated Public Safety<br />

Control Medium Rng<br />

Service<br />

Short Rng<br />

Service<br />

High<br />

Availability<br />

Intersections<br />

5.855<br />

5.860<br />

33 dBm<br />

5.865<br />

5.870<br />

5.875<br />

44.8 dBm<br />

5.880<br />

5.885<br />

Uplink<br />

Downlink<br />

Public<br />

Safety<br />

Veh-Veh<br />

Public<br />

Safety/<br />

Private<br />

Public<br />

Safety/<br />

Private<br />

Public<br />

Control<br />

Safety/<br />

Channel<br />

Private<br />

Public<br />

Safety/<br />

Private<br />

Public Safety<br />

Intersections<br />

Ch 172 Ch 174 Ch 176 Ch 178 Ch 180 Ch 182 Ch 184<br />

5.890<br />

5.895<br />

5.900<br />

5.905<br />

40 dBm<br />

23 dBm<br />

Based on B. Cash (2008): North American 5.9 GHz DSRC Operational Concept / Band Plan<br />

5.910<br />

5.915<br />

5.920<br />

5.925


Lecture <strong>Vehicle</strong> <strong>Networks</strong>, Thomas Strang and Matthias Röckl, WS 2008/2009<br />

IEEE 802.11p<br />

Multi-channel<br />

Control Channel (CCH):<br />

Broadcast <strong>communication</strong><br />

Dedicated to short, high-priority, data and management frames:<br />

Safety-critical <strong>communication</strong> with low latencies<br />

Initialization of two-way <strong>communication</strong> on SCH<br />

Service Channel (SCH):<br />

Two-way <strong>communication</strong> between RSU and OBU or between<br />

OBUs<br />

For specific applications, e.g. tolling, internet access<br />

Different kinds of applications can be executed in parallel on<br />

different service channels<br />

Requires the setup of a WAVE Basic Service Set<br />

(WBSS – “Ad-hoc group”) prior to usage of the SCH


Lecture <strong>Vehicle</strong> <strong>Networks</strong>, Thomas Strang and Matthias Röckl, WS 2008/2009<br />

IEEE 802.11p<br />

Operation modes<br />

Without WAVE Basic<br />

Service Set (WBSS)<br />

Safety-critical, low latency<br />

messages and control messages<br />

Mainly broadcast<br />

Only on CCH<br />

Operation modes<br />

With WAVE Basic<br />

Service Set (WBSS)<br />

Two-way transactions (e.g.<br />

tolling, internet access)<br />

Required to use a SCH<br />

Requires initiation on CCH<br />

In contrast to the Independent<br />

Basic Service Set (IBSS),<br />

WBSS does not require<br />

authentication and association<br />

procedures


Lecture <strong>Vehicle</strong> <strong>Networks</strong>, Thomas Strang and Matthias Röckl, WS 2008/2009<br />

IEEE 802.11p<br />

PHY<br />

OFDM-based modulation similar to<br />

IEEE 802.11a<br />

Halved channel bandwidth of IEEE<br />

802.11a: � 10 MHz channels<br />

� half data rate: 3-27 Mbps<br />

� doubled symbol duration: 8.0 μs<br />

10 MHz<br />

156.25 kHz


Lecture <strong>Vehicle</strong> <strong>Networks</strong>, Thomas Strang and Matthias Röckl, WS 2008/2009<br />

IEEE 802.11p<br />

PHY: Comparison to IEEE 802.11a<br />

Data rate 6, 9, 12, 18, 24,<br />

36, 48, 54 Mbps<br />

Modulation BPSK OFDM<br />

QPSK OFDM<br />

16-QAM OFDM<br />

64-QAM OFDM<br />

Error Correction Coding Convolutional<br />

Coding with K=7<br />

IEEE 802.11a IEEE 802.11p<br />

3, 4.5, 6, 9, 12,<br />

18, 24, 27 Mbps<br />

BPSK OFDM<br />

QPSK OFDM<br />

16-QAM OFDM<br />

64-QAM OFDM<br />

Convolutional<br />

Coding with K=7<br />

Coding Rate 1/2, 2/3, 3/4 1/2, 2/3, 3/4<br />

# of subcarriers 52 net 52 net<br />

OFDM Symbol Duration 4.0 μs 8.0 μs<br />

Guard Period 0.8 μs 1.6 μs<br />

Occupied bandwidth 20 MHz 10 MHz<br />

Frequency 5 GHz ISM band 5.850-5.925 GHz<br />

Longer guard period<br />

� Less Inter-symbol Interference<br />

� Better resistance against multipath error<br />

Re-order of sub-carriers<br />

� Better multipath mitigation<br />

Dedicated frequency band<br />

� Less Co-Channel Interference


Lecture <strong>Vehicle</strong> <strong>Networks</strong>, Thomas Strang and Matthias Röckl, WS 2008/2009<br />

IEEE 802.11p<br />

MAC<br />

Based on Distributed Control Function (DCF) with CSMA/CA<br />

MAC-level acknowledgements for unicast <strong>communication</strong>,<br />

but no acknowledgements for broadcast <strong>communication</strong><br />

� unreliable broadcast <strong>communication</strong><br />

RTS/CTS is only used on SCH<br />

Because of higher range, slot time and SIFS should be longer<br />

Addressing:<br />

RSUs have a fixed 48-bit MAC address<br />

OBUs generate a random MAC address<br />

upon start-up of the device<br />

If a MAC address collision occurs the<br />

OBU automatically changes its MAC<br />

address<br />

Prioritization based on IEEE 802.11e EDCA<br />

(Enhanced Distributed Channel Access),<br />

defined in IEEE 1609.4<br />

IEEE<br />

802.11a<br />

IEEE<br />

802.11p<br />

Slot time 9 μs 13 μs<br />

SIFS time 16 μs 32 μs<br />

CW min 15 15<br />

CW max 1023 1023<br />

SIFS – Short Inter-Frame Space


Lecture <strong>Vehicle</strong> <strong>Networks</strong>, Thomas Strang and Matthias Röckl, WS 2008/2009<br />

IEEE 1609.4<br />

Extension for multi-channel coordination<br />

IEEE 1609.4 is a functional extension to IEEE 802.11e MAC to enable<br />

multi-channel coordination<br />

Functions:<br />

Channel routing<br />

Data buffers (queues)<br />

Prioritization<br />

Channel coordination


Lecture <strong>Vehicle</strong> <strong>Networks</strong>, Thomas Strang and Matthias Röckl, WS 2008/2009<br />

IEEE 1609.4<br />

Channel Coordination<br />

Each Universal Time Coordinated (UTC) second is split<br />

into 10 Sync Intervals<br />

Every Sync Interval is composed of alternating:<br />

CCH Intervals: Every node monitors the CCH and<br />

SCH Intervals: Nodes can monitor one of the SCHs<br />

All WAVE devices have to monitor the CCH during the CCH Interval<br />

During the SCH Interval nodes may switch to a SCH (RX or TX)<br />

At the start of each UTC second the first Sync Interval begins<br />

Synchronization is performed via GPS


Lecture <strong>Vehicle</strong> <strong>Networks</strong>, Thomas Strang and Matthias Röckl, WS 2008/2009<br />

IEEE 1609.3<br />

Networking Services<br />

IP-based <strong>communication</strong>:<br />

IPv6-based with optional:<br />

Mobile IPv6 (MIPv6) and<br />

Network Mobility (NEMO)<br />

enhancements<br />

UDP or TCP on transport layer<br />

Transmission on SCH only<br />

Non-IP-based <strong>communication</strong>:<br />

Based on<br />

WAVE Short Message Protocol<br />

(WSMP)<br />

Transmission on CCH or SCH<br />

No.<br />

of<br />

layer<br />

Data Plane<br />

4<br />

3<br />

TCP/UDP<br />

IPv6<br />

WSMP<br />

2b 802.2 LLC<br />

2a WAVE MAC<br />

1b WAVE PLCP<br />

1a WAVE PMD<br />

SCH<br />

CCH/SCH


Lecture <strong>Vehicle</strong> <strong>Networks</strong>, Thomas Strang and Matthias Röckl, WS 2008/2009<br />

IEEE 1609.3<br />

WAVE Short Message Protocol (WSMP)<br />

Networking protocol specifically designed for <strong>V2X</strong> <strong>communication</strong>s<br />

WAVE Short Message (WSM)<br />

structure:<br />

WSMP can use CCH and SCH<br />

During the SCH Interval low priority messages can be transmitted on<br />

CCH for stations that do not switch to a SCH, high priority frames and<br />

WAVE Announcement frames shall be transmitted during the CCH<br />

Interval<br />

In order to access a SCH, the nodes have to be member of the WBSS<br />

WBSS roles:<br />

Provider: Initiates a WBSS by sending a WAVE Announcement<br />

User: Joins a WBSS based on the receipt of the WAVE<br />

Announcement


Lecture <strong>Vehicle</strong> <strong>Networks</strong>, Thomas Strang and Matthias Röckl, WS 2008/2009<br />

SAE J2735<br />

Message Dispatcher<br />

Implementation specific common<br />

Implementation specific<br />

Based on: Robinson et al. (2006): Efficient Coordination and<br />

Transmission of Data for Cooperative Vehicular Safety Applications


Lecture <strong>Vehicle</strong> <strong>Networks</strong>, Thomas Strang and Matthias Röckl, WS 2008/2009<br />

SAE J2735<br />

Basic message set definition<br />

SAE J2735: Dedicated Short Range Communication (DSRC) Message<br />

Set Dictionary<br />

ASN.1 representation of message structures<br />

Hierarchical definition of messages and substructures<br />

Basic message set is not so basic any more, i.e. comprehensive:<br />

16 different message frames, which use<br />

54 different data frames, which are parametrized through<br />

162 different data elements


Lecture <strong>Vehicle</strong> <strong>Networks</strong>, Thomas Strang and Matthias Röckl, WS 2008/2009<br />

Car-2-Car Communication Consortium<br />

(C2C-CC)<br />

&<br />

ETSI TC ITS


Lecture <strong>Vehicle</strong> <strong>Networks</strong>, Thomas Strang and Matthias Röckl, WS 2008/2009<br />

Car-to-Car Communication Consortium<br />

Partners<br />

Partners<br />

Associate<br />

Members<br />

Dev.<br />

Members


Lecture <strong>Vehicle</strong> <strong>Networks</strong>, Thomas Strang and Matthias Röckl, WS 2008/2009<br />

Car-2-Car Communication Consortium<br />

Protocol stack


Lecture <strong>Vehicle</strong> <strong>Networks</strong>, Thomas Strang and Matthias Röckl, WS 2008/2009<br />

Objectives<br />

Car-to-Car Communication Consortium<br />

Objectives of the First Demonstration (October 2008)<br />

Demonstrate the<br />

functionality of CAR 2 CAR Communication Consortium system<br />

with 5 selected use cases<br />

Warning of road works<br />

Emergency vehicle<br />

Broken down vehicle<br />

Motorcycle use case / intersection scenario<br />

Situation Monitor<br />

interoperability between different <strong>communication</strong> platforms<br />

9 vehicle manufacturers<br />

(Opel, BMW, Daimler, Volvo, Renault, Fiat,<br />

Volkswagen, Audi, Honda, …)<br />

4 <strong>communication</strong> supplies<br />

(NEC, Hitachi / Renesas, Delphi, Denso)<br />

1 after market supplier<br />

(Alpine)<br />

impact of vehicle-to-x <strong>communication</strong><br />

[Slide by M. Kranz]


Lecture <strong>Vehicle</strong> <strong>Networks</strong>, Thomas Strang and Matthias Röckl, WS 2008/2009<br />

Demonstration self-restricted<br />

to just two message types: CAM and DEN<br />

Demonstration of technology although not<br />

fully specified yet. Thus, as compromise,<br />

mask layer 3..6 (i.e. APP on top of LLC)<br />

Cooperative Awareness Message (CAM)<br />

Type of <strong>Vehicle</strong>, Position, Speed, Heading<br />

Broadcasted by all vehicles with 1 Hz<br />

Decentralized Environment Notification Message (DEN)<br />

Type of Event, Region of Event<br />

Broadcasted by RSU or <strong>Vehicle</strong><br />

No. of<br />

layer<br />

7<br />

6<br />

5<br />

4<br />

3<br />

Data Plane<br />

Demo-APP<br />

2b 802.2 LLC<br />

2a WAVE MAC<br />

1b WAVE PLCP<br />

1a WAVE PMD


Lecture <strong>Vehicle</strong> <strong>Networks</strong>, Thomas Strang and Matthias Röckl, WS 2008/2009<br />

Use Case 1<br />

Use Cases – Warning of Road Works<br />

Construction sites and temporary maintenance working areas are<br />

accident black spots:<br />

Changed traffic flow<br />

More traffic signs<br />

Lane width changes, lane merging, “stress”, and other factors<br />

The CAR 2 CAR system informs the driver on the details of the<br />

situation well before entering the potentially dangerous area<br />

Geographic extent and affected area<br />

Duration of road works<br />

Reason of road works<br />

…<br />

[Slide by M. Kranz]


Lecture <strong>Vehicle</strong> <strong>Networks</strong>, Thomas Strang and Matthias Röckl, WS 2008/2009<br />

Use Case 2<br />

Use Cases – Emergency <strong>Vehicle</strong> (EV)<br />

When it comes to situations affecting the safety of lives every minute<br />

and every second is crucial. Road users are obliged to make way for<br />

Emergency vehicles (EVs) like ambulances or police cars. Potential<br />

problems are:<br />

Source of siren<br />

Crossing emergency vehicles at “green” lights<br />

Destination of emergency vehicle<br />

The CAR 2 CAR system informs the driver<br />

about the location of the source of the siren<br />

where the emergency vehicle is heading<br />

on what lane the emergency vehicle will be overtaking<br />

only if the emergency vehicle is expected to cross his route<br />

[Slide by M. Kranz]


Lecture <strong>Vehicle</strong> <strong>Networks</strong>, Thomas Strang and Matthias Röckl, WS 2008/2009<br />

Use Case 3<br />

Use Cases – Broken Down <strong>Vehicle</strong> /<br />

Post Crash Warning<br />

Accidents and break downs are dangerous for any involved or<br />

assisting person as well as for approaching vehicles. Problems are:<br />

Line of sight obstruction, e.g. behind a curve or hill top or due to<br />

weather conditions<br />

Timely warning of affected traffic participants<br />

If a vehicle detects a incident based on emergency flasher status,<br />

crash sensors, or onboard diagnosis, it can use the CAR 2 CAR<br />

system to<br />

inform about the type and location of the incident<br />

raise awareness and alertness to the traffic situation<br />

act as “modern warning vest”<br />

[Slide by M. Kranz]


Lecture <strong>Vehicle</strong> <strong>Networks</strong>, Thomas Strang and Matthias Röckl, WS 2008/2009<br />

Use Case 4<br />

Use Cases – Motorcycle Warning /<br />

Intersection Assistance<br />

European In-depth motorcycle accident analyses highlights that<br />

human error, and more specifically not seeing the motorcycle coming<br />

or misinterpreting distance and speed is the primary cause of<br />

accidents involving motorcycles. Reasons are:<br />

Motorcycles have a smaller silhouette and are easier to “overlook”<br />

Motorcycles do not have a crumble zone<br />

The CAR 2 CAR system informs the drivers of the involved vehicles<br />

about the presence of other traffic participants<br />

by sending a respective warning message if a crash is predicted<br />

[Slide by M. Kranz]


Lecture <strong>Vehicle</strong> <strong>Networks</strong>, Thomas Strang and Matthias Röckl, WS 2008/2009<br />

Car-2-Car Communication Consortium<br />

Focus and on-going discussions<br />

Focus on vehicle-to-vehicle <strong>communication</strong> (well, focus get’s blurred<br />

more and more …)<br />

Multi-hop<br />

Geo-based addressing and routing<br />

Dual-receiver concept:<br />

Parallel reception on 2 channels<br />

Optional: dual-transmitter<br />

Simulation scenarios and scalability<br />

…<br />

If you are looking<br />

for an interesting<br />

thesis topic in this<br />

area, contact me!


Lecture <strong>Vehicle</strong> <strong>Networks</strong>, Thomas Strang and Matthias Röckl, WS 2008/2009<br />

Car-2-Car Communication Consortium / ETSI TC ITS<br />

Relationship<br />

European industrial development of <strong>V2X</strong> <strong>communication</strong> by C2C-CC<br />

Created the European derivative of IEEE 802.11p<br />

Standardization by the European Tele<strong>communication</strong>s Standards<br />

Institute (ETSI) Technical Committee ITS<br />

ETSI is the relevant European standardization body for<br />

tele<strong>communication</strong> <strong>protocols</strong><br />

Transferring the standardization process from C2C-CC to ETSI TC ITS<br />

C2C-CC WGs act as preparatory platforms & discussion fora for ETSI<br />

TC ITS WGs.<br />

One critical issue with the transfer of standardization to ETSI are the<br />

ETSI voting rules, which may add a strong bias to the whole process

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!