09.01.2015 Views

Status of the Proton Engineering Frontier Project

Status of the Proton Engineering Frontier Project

Status of the Proton Engineering Frontier Project

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The 13 th International Conference on Accelerators and Beam Utilization<br />

Gyeongju, Korea, October 13-14, 2009<br />

<strong>Status</strong> <strong>of</strong> <strong>the</strong> PEFP *<br />

Kui Young Kim, Byung-Ho Choi, Yong-Sub Cho, Kye-Ryung Kim, Jun-Yeon Kim and Jae Won Park<br />

on behalf <strong>of</strong> <strong>the</strong> <strong>Proton</strong> <strong>Engineering</strong> <strong>Frontier</strong> <strong>Project</strong><br />

* Supported by <strong>the</strong> Ministry <strong>of</strong> Education, Science and Technology <strong>of</strong> Korea.


q Contents<br />

I. Overview<br />

II. Accelerator Development<br />

III. Construction Work<br />

IV. Beam Utilization & Applications<br />

V. Activities for <strong>the</strong> Future<br />

VI. Summary<br />

2


q Overview<br />

• <strong>Project</strong> : <strong>Proton</strong> <strong>Engineering</strong> <strong>Frontier</strong> <strong>Project</strong> (PEFP)<br />

21C <strong>Frontier</strong> R&D Program, MEST, Republic <strong>of</strong> Korea<br />

• Objectives :<br />

- To develop a High Power <strong>Proton</strong> Linac (100MeV, 20mA)<br />

- To develop Beam Utilization & Accelerator Application Technologies<br />

- To Industrialize Developed Technologies<br />

• Period : July 2002 – March 2012 (10 years)<br />

• Budget : 128.6 B KRW (Gov. 115.7 B, Private 12.9 B)<br />

(Gyeongju City : Site, Buildings & Supporting Facilities)<br />

3


Overview<br />

q <strong>Project</strong> Schedule as <strong>of</strong> October, 2009<br />

<strong>Project</strong><br />

1st Step (’02~’05) 2nd Step (’06~’08)<br />

3rd Step (’09~’12)<br />

Period<br />

'02.7~<br />

'03.7~<br />

'04.7~<br />

'05.7~<br />

'06.4~<br />

'07.4~<br />

'08.4~<br />

'09.4~<br />

'10.4~<br />

'11.4~<br />

'03.6<br />

'04.6<br />

'05.6<br />

'06.3<br />

'07.3<br />

'08.3<br />

'09.3<br />

'10.3<br />

'11.3<br />

'12.3<br />

20 MeV Fabrication<br />

45 MeV Fabrication<br />

100 MeV Fabrication/Installation<br />

Accelerator<br />

development<br />

20 MeV<br />

Installation/ test<br />

20MeV Op.<br />

License<br />

20MeV Operation<br />

Beam Service<br />

20 MeV Linac<br />

relocation / installation<br />

Site selection<br />

Land purchasing/Construction permit<br />

Construction<br />

Works<br />

Accelerator tunnel, gallery &<br />

conventional facility<br />

Conceptual/Basic design<br />

Detailed design<br />

On schedule<br />

Delayed<br />

Now<br />

Ground Breaking<br />

4


q Contents<br />

I. Overview<br />

II. Accelerator Development<br />

III. Construction Work<br />

IV. Beam Utilization & Applications<br />

V. Activities for <strong>the</strong> Future<br />

VI. Summary<br />

5


Accelerator Development<br />

q Schematics <strong>of</strong> PEFP Linac & Beamlines<br />

Future<br />

Extension<br />

100 MeV 20 MeV 3 MeV<br />

TR105<br />

TR101<br />

TR25<br />

TR21<br />

TR104<br />

TR103<br />

TR102<br />

TR24<br />

TR23<br />

TR22<br />

100 MeV Beamlines 20 MeV Beamlines<br />

Features <strong>of</strong> <strong>the</strong> PEFP linac<br />

• 50 keV Injector (Ion Source + LEBT)<br />

Output Energy (MeV)<br />

20<br />

100<br />

• 3 MeV RFQ (4-vane type)<br />

Peak Beam Current (mA)<br />

20<br />

20<br />

• 20 & 100 MeV DTL<br />

Max. Beam Duty (%)<br />

24<br />

8<br />

• RF Frequency : 350 MHz<br />

Avg. Beam Current (mA)<br />

4.8<br />

1.6<br />

• Beam Extractions at 20 or 100 MeV<br />

Pulse Length (ms)<br />

2<br />

1.33<br />

• 5 Beamlines for 20 MeV & 100 MeV<br />

Max. Repetition Rate (Hz)<br />

120<br />

60<br />

- Beam to v\be distributed to 3 BL via AC<br />

Max. Avg. Beam Power (kW)<br />

96<br />

160<br />

6


Accelerator Development<br />

q <strong>Status</strong> <strong>of</strong> Accelerator Development<br />

v Fully developed & integrated up to 20 MeV<br />

v Fabricated up to 57 MeV Tanks<br />

v 3 tanks (57~91 MeV) is under fabrication<br />

Completed 2009<br />

Step 1<br />

(’02.07 ~ ’05.06)<br />

Step 2<br />

(’05.07 ~ ’08.03)<br />

Control & Diagnostics<br />

Step 3<br />

(’08.04 ~ ’12.03)<br />

RF RF<br />

RF RF<br />

RF RF<br />

RF RF<br />

RF RF<br />

RF RF<br />

RF RF<br />

RF RF<br />

RF RF<br />

IS<br />

RFQ<br />

DTL21~DTL24<br />

MEBT<br />

20~33<br />

DTL101<br />

33~45<br />

DTL102<br />

45~57<br />

57~69<br />

69~80<br />

80~91<br />

91~102<br />

DTL103 DTL104 DTL105 DTL106 DTL107<br />

20 MeV Beam<br />

100 MeV Beam<br />

7


Accelerator Development<br />

q PEFP 20 MeV Linac<br />

· Extracted first beam (July 2005)<br />

· Obtained operation license (June 2007)<br />

- Avg. current: 0.1 mA, Rep. Rate: 0.1 Hz, 4 hrs/week<br />

· Started beam service (June 2007)<br />

· Revised operation condition (April 2008)<br />

- Avg. current: 1.0 mA, Rep. Rate: 1 Hz, 4 hrs/week<br />

· Achieved designed performance (May 2008)<br />

Klystron (RFQ)<br />

Waveguide<br />

Klystron (DTL)<br />

Target Station<br />

Beam Pr<strong>of</strong>ile<br />

Beam Current [mA]<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

v Peak Beam Current<br />

Designed: 20 mA<br />

First<br />

Beam<br />

RFQ<br />

20.2 mA<br />

(08.5.24)<br />

DTL<br />

2005 2006 2007 2008<br />

4cm<br />

180<br />

160<br />

140<br />

v Beam Energy: 20.33 MeV<br />

Dose Measurement<br />

(Ionization chamber)<br />

120<br />

Charge (nC)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Beam Range: 2.18 mm<br />

(10% position <strong>of</strong> peak)<br />

Ion Source<br />

LEBT<br />

3 MeV RFQ<br />

20 MeV DTL<br />

0<br />

1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3<br />

Depth (mm)<br />

8


Accelerator Development<br />

q DTL (Drift Tube Linac)<br />

Beam Energy (MeV)<br />

Max. Beam Duty (%)<br />

Max. Repetition Rate (Hz)<br />

RF Frequency (MHz)<br />

DTL I DTL II<br />

3 → 20 20 → 100<br />

24 8<br />

120 60<br />

350<br />

Beam Dynamics (PARMILA)<br />

DTL I MEBT DTL II<br />

Emittance<br />

Output Beam (PARMILA)<br />

Bore<br />

radius<br />

rms/max beam radius<br />

Tank<br />

E [MeV]<br />

Cells<br />

Length [m]<br />

E0 [MV/m]<br />

RF [kW]<br />

21<br />

7.18<br />

51<br />

4.431<br />

225.0<br />

DTL I<br />

22 23<br />

11.50 15.80<br />

39 33<br />

4.649 4.755<br />

1.3<br />

225.0 224.0<br />

24<br />

20.00<br />

29<br />

4.776<br />

221.0<br />

101<br />

33.1<br />

34<br />

6.737<br />

1064.7<br />

102<br />

45.3<br />

28<br />

6.707<br />

1039.3<br />

103<br />

57.1<br />

25<br />

6.791<br />

1040.1<br />

DTL II<br />

104<br />

69.1<br />

23<br />

6.777<br />

2.58<br />

1026.8<br />

105<br />

80.4<br />

21<br />

6.777<br />

1008.1<br />

106<br />

91.7<br />

20<br />

6.869<br />

1004.7<br />

107<br />

102.6<br />

19<br />

6.880<br />

1003.6<br />

9


Accelerator Development<br />

q DTL Fabrication<br />

v Established a full fabrication process<br />

- from design to field tuning, and low power test<br />

Design <strong>of</strong> DTL<br />

Machining<br />

(Acc


Overview<br />

q MEBT (Medium Energy Beam Transport)<br />

v 20 MeV Beam Extraction<br />

⇒ Long Drift Space between <strong>the</strong> DTL-1 and DTL-2<br />

⇒ Beam matching issue<br />

Two buncher cavities <strong>of</strong> three cells with four QMs<br />

⇒ QM : transverse matching and RF : longitudinal matching<br />

MEBT tank after copper plating<br />

DT for MEBT tank<br />

11


Accelerator Development<br />

q RF System (see AT-10, AT-16, AT-34, AT-44)<br />

v Configuration <strong>of</strong> PEFP RF System<br />

- a Klystron (CW, 1.1MW) drives DTL-I (4 Tanks)<br />

- 7 Klystrons (pulse, 1.6 MW) drives DTL-II (7 Tanks)<br />

Modulator<br />

Klystron<br />

Circulator<br />

RF window<br />

MEBT RF<br />

MEBT<br />

20 MeV System<br />

DTL107 DTL106 DTL105 DTL104 DTL103 DTL102 DTL101<br />

RCCS<br />

100 MeV Beamline<br />

20 MeV Beamline<br />

Modulator (HVCM type, SNS)<br />

- Drives 2 TH2089K Klystrons<br />

- Output DC voltage : 105kVDC + 10%, -50%<br />

- Output current : 50ADC 10%<br />

- Peak / average power : 5.8MW / 520kW @ 9% duty<br />

- Repetition / pulse width : 60Hz / 1.5ms<br />

- Efficiency : min. 92%<br />

- Pulse waveform : Square wave<br />

- Flat top regulation / voltage droop: 1% / < 1%<br />

- Arc Energy : < 20J<br />

- Input voltage / frequency : 3300VAC / 60Hz<br />

12


Accelerator Development<br />

q Control System (see AT-17, AT-24)<br />

v Configuration <strong>of</strong> PEFP Control System<br />

Time & Central Controller<br />

Time Synchronization<br />

Data Management & Visualization<br />

RDB Server<br />

Web<br />

Monitoring<br />

20 MeV Central Control Room<br />

Central Controller<br />

Channel<br />

Archiver<br />

Operator<br />

Interface<br />

Machine Interlock<br />

Control Network<br />

CA<br />

Gateway<br />

Machine Network<br />

Interlock Network<br />

Timing Network<br />

Operator Interface RF & Beam Monitor LLRF Control<br />

RF & Beam<br />

EPICS OPI Server<br />

13


Accelerator Development<br />

q Beamline Development (see AT-6, AT-11, AT-14)<br />

v Completed design by reflecting user’s requirement<br />

v Developed components (QM, ACM, DM & beam instruments)<br />

20 MeV Beamlines<br />

TR21<br />

TR25<br />

TR22<br />

TR23<br />

TR24<br />

Beam<br />

Line<br />

TR21<br />

TR22<br />

TR23<br />

Application<br />

Field<br />

Semiconductor<br />

Bio-Medical<br />

Application<br />

Materials, Energy &<br />

Environment<br />

Rep.<br />

Rate<br />

60Hz<br />

15Hz<br />

30Hz<br />

Avg.<br />

Current<br />

0.6mA<br />

60mA<br />

0.6mA<br />

Irradiation<br />

Condition<br />

Hor. Ext.<br />

Hor. Ext.<br />

Hor. Ext.<br />

TR24<br />

Basic Science<br />

15Hz<br />

60mA<br />

Hor. Ext.<br />

TR25<br />

Radio Isotopes<br />

60Hz<br />

1.2mA<br />

Hor. Vac.<br />

Beam<br />

Line<br />

TR101<br />

100 MeV Beamlines<br />

Application<br />

Field<br />

Radio Isotopes<br />

Rep.<br />

Rate<br />

60Hz<br />

Avg.<br />

Current<br />

0.6mA<br />

Irradiation<br />

Condition<br />

Hor. Ext.<br />

TR101<br />

TR105<br />

TR102<br />

TR104<br />

TR103<br />

TR102<br />

TR103<br />

TR104<br />

TR105<br />

Medical Research<br />

(<strong>Proton</strong> <strong>the</strong>rapy)<br />

Materials, Energy &<br />

Environment<br />

Basic Science<br />

Aero-Space tech.<br />

Neutron Source<br />

Irradiation Test<br />

7.5Hz<br />

15Hz<br />

7.5Hz<br />

60Hz<br />

10mA<br />

0.3mA<br />

10mA<br />

1.6mA<br />

Hor. Ext.<br />

Hor. Ext.<br />

Hor. Ext.<br />

Hor. Vac.<br />

14


Accelerator Development<br />

q Beamline Components (see AT-6, AT-11, AT-14)<br />

Item 20 MeV BL 100 MeV BL Total<br />

ACM 1 1 2<br />

90 BM 1 1 2<br />

90 VBM 1 1 2<br />

45 BM 3 4 7<br />

45 BM (MEBT) 1 0 1<br />

25 BM 2 2 4<br />

QM (200) 32 1 33<br />

QM(400) 1 36 37<br />

Octupole 2 2 4<br />

Raster magnet 1 4 5<br />

Steerer(H,V) 9 8 17<br />

BPM 19 19 38<br />

BCM 10 10 20<br />

Concave Beam Window<br />

Material: AlBeMet (38% Al, 62% Be)<br />

Dim: 0.5-mm thick and 300-mm dia.<br />

AC Dipole<br />

Quadrupole<br />

25 BM<br />

45 BM<br />

Beam Line 20 MeV 100 MeV<br />

Bending angle ±20°<br />

Pole gap (mm) 75<br />

Max. B filed (T) 0.4363 1<br />

Eff. length (mm) 507<br />

Max. Current (A) 217.71 501.8<br />

Op. freq (Hz) 15 7.5<br />

Field gradient<br />

5 T/m<br />

Pole tip field<br />

0.27 T<br />

Core aperture 110 mm<br />

Effective length 200 mm 400 mm<br />

Integrated field 1 T 2 T<br />

Core length 154 mm 354 mm<br />

Bending angle 25°<br />

Pole gap (mm) 90<br />

Magnet field (T) 0.8 0.35<br />

Excitation current(A) 813.45 355.7<br />

Length (mm) 808.8 809.9<br />

Arc length (mm) 1360<br />

Bending angle 45°<br />

Pole gap (mm) 90<br />

Magnet field (T) 0.8 0.35<br />

Excitation current(A) 813.45 355.7<br />

Length (mm) 1455.9 1457.8<br />

Arc length (mm) 1360<br />

15


q Contents<br />

I. Overview<br />

II. Accelerator Development<br />

III. Construction Work<br />

IV. Beam Utilization & Applications<br />

V. Activities for <strong>the</strong> Future<br />

VI. Summary<br />

16


Construction Work<br />

q <strong>Project</strong> Site<br />

v Gyeongju provided <strong>the</strong> project site (Area: 440,000 m 2 )<br />

(The capital <strong>of</strong> Shilla dynasty for 992 years, from BC 57 to AD 935.)<br />

Seoul<br />

Gyeongbu Freeway<br />

(Gyeonju IC)<br />

KAERI<br />

Phase<br />

I<br />

Gyeongju<br />

Phase<br />

II<br />

Express Railway (KTX)<br />

(New Gyeongju Station)<br />

17


Construction Work<br />

q Site Layout<br />

Phase II<br />

(2012 ~)<br />

Phase I<br />

(2002~2012)<br />

Reserved for a Future Expansion<br />

400 m<br />

1,100 m<br />

450 m<br />

18


Construction Work<br />

q Accelerator tunnel & Experimental hall (see AT-30, AT-32)<br />

Accelerator Tunnel<br />

100 MeV Beam<br />

Extraction<br />

20 MeV Beam<br />

Extraction<br />

100MeV<br />

Beam Lines<br />

20MeV<br />

Beam Lines<br />

19


Construction Work<br />

q Site Plan for <strong>the</strong> PEFP (see AT-38)<br />

<strong>Proton</strong> Accelerator Research Center<br />

Express Railway<br />

(Under Construction)<br />

Phase II<br />

Phase I<br />

Gyeong-Bu<br />

Freeway<br />

5<br />

1<br />

4<br />

2<br />

6<br />

7<br />

12<br />

3<br />

8<br />

10<br />

9<br />

11<br />

1 Accelerator Tunnel<br />

2 Experimental Hall<br />

3 Ion Beam Facility<br />

4 Utility Building<br />

5 Substation<br />

6 Cooling Tower<br />

7 Water Storages<br />

8 Main Office Building<br />

9 Regional Cooperation Center<br />

10 Dormitory<br />

11 Information Center<br />

12 Sewage Plant<br />

20


Construction Work<br />

q Excavation in Progress<br />

v Completed trial-digging (Feb, 2009)<br />

⇒ 57% <strong>of</strong> Phase-I site to be excavated<br />

⇒ Leveling to be done in parallel<br />

Phase II<br />

(2012 ~)<br />

Site tour scheduled 16:00 pm, Oct. 14<br />

Phase I<br />

(2002~2012)<br />

: Surveyed : In progress : Completed<br />

21


Construction Work<br />

q Site Preparation in Progress<br />

v Started Site Preparation (May 27, 2009)<br />

⇒ Access road under construction<br />

22


Construction Work<br />

q Construction Schedule (08FY ~ 12FY)<br />

Date<br />

2008. 9<br />

2009. 5<br />

2010. 3<br />

2011. 3<br />

2011. 6<br />

2011. 12<br />

2012. 3<br />

2012. 3<br />

Major Activities<br />

Obtained <strong>the</strong> construction permit<br />

Started construction (ground breaking)<br />

To start foundation work (accelerator & beam utilization building)<br />

To complete accelerator, ion beam & utility facility building<br />

To supply 154 kV power & water<br />

To complete mechanical, electrical, I&C system<br />

To complete <strong>of</strong> buildings & yard facilities<br />

To complete <strong>the</strong> project<br />

23


q Contents<br />

I. Overview<br />

II. Accelerator Development<br />

III. Construction Work<br />

IV. Beam Utilization & Applications<br />

V. Activities for <strong>the</strong> Future<br />

VI. Summary<br />

24


Beam Utilization & Applications<br />

q User Program Development<br />

q User Program Development (2003~)<br />

Research Fields<br />

Nano Technology<br />

Information Technology<br />

Space Technology<br />

Bio-Technology<br />

Medical research<br />

Materials Science<br />

Energy & Environment<br />

Nuclear & Particle Physics<br />

Sub-categories<br />

Ion-cutting, Nano-particle fabrication, Carbon nano-tube, Nano-machining<br />

High power semiconductor, Semiconductor manufacturing R&D, etc.<br />

Radiation hard electronic device, Radiation effect on materials<br />

Mutations <strong>of</strong> plants & micro-organisms<br />

Low energy proton <strong>the</strong>rapy study, Biological radiation effects, RI production, etc.<br />

<strong>Proton</strong> irradiation effects with various materials, Gemstone coloration<br />

New μ-organism (bio fuel), New materials for fuel cell, nano catalyst, organic solar cell<br />

Detector R&D, Nuclear data, TLA (Thin Layer Activation)<br />

v 20 MeV Beam Facility @ KAERI v 45 MeV beam facility @ KIRAMS *<br />

Target<br />

Lead<br />

shielding<br />

Concrete<br />

Shielding<br />

QM<br />

(triplet)<br />

DTL<br />

25


Beam Utilization & Applications<br />

q <strong>Status</strong> <strong>of</strong> PEFP User Program<br />

v Built up a strong community <strong>of</strong> proton beam users<br />

v Diversified R&D fields by using proton beams<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

<strong>Proton</strong> beam users<br />

327<br />

215<br />

159<br />

109<br />

438<br />

538<br />

v User Distribution (Institutions)<br />

R&D Institute<br />

(23.3%) Industry<br />

(18.3%)<br />

University<br />

(58.4%)<br />

0<br />

2003 2004 2005 2006 2007 2008<br />

1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

Irradiated Samples<br />

(20 MeV Linac, MC-50 @ KIRAMS)<br />

549<br />

1270 1314<br />

1508 1492<br />

2004 2005 2006 2007 2008<br />

InformationMaterials<br />

RI<br />

Environment (5.3%) (4.7%) (4.0%)<br />

Energy (7.0%) (25) (22) (19)<br />

(33)<br />

Space<br />

(35)<br />

(7.4%)<br />

(37)<br />

Spin-<strong>of</strong>f<br />

(7.9%)<br />

v User Distribution (R&D Fields)<br />

(40)<br />

Nuclear<br />

Physics<br />

(8.5%)<br />

(61)<br />

Medical<br />

(13.0%)<br />

(73)<br />

O<strong>the</strong>rs<br />

(7.2%)<br />

(34)<br />

(92)<br />

Bio Tech.<br />

(15.5%)<br />

Nano<br />

(19.5%)<br />

26


Beam Utilization & Applications<br />

q Researches Supported by User Program (09FY)<br />

Research Subjects (Researher)<br />

Research hub for proton beam-induced microbial mutagenesis (Haeyoung Jeong, KRIBB) ⇒ IP-35<br />

Development <strong>of</strong> proton beam monitoring devices (HongJoo Kim, KNU) ⇒ BU-30, 33, 39<br />

Development <strong>of</strong> organic solar cell by proton irradiation (Kyungkon Kim, KIST)<br />

A Feasibility Study on <strong>the</strong> Raioisotope Production with 100 MeV <strong>Proton</strong> Beam (KookHyun Yu, Dongguk U) ⇒ IP-29, BU-37<br />

A study on facilities and instruments for <strong>the</strong> spallation neutron source (Man-Ho Kim, KIST) ⇒ IP-12<br />

Research on nanodevices and logic circuits composed <strong>of</strong> nanomaterials by proton irradiation (Takhee Lee, GIST)<br />

<strong>Proton</strong> irradiation effect on hydrogen bonds in materials and biological systems (Cheol Eui Lee, Korea U) ⇒ BU-24<br />

Determination <strong>of</strong> proton beam range in patient with a linear array <strong>of</strong> scintillation detectors (Chan Hyeong Kim, Hanyang U) ⇒ BU-46<br />

Fabrication <strong>of</strong> carbon nanorod from <strong>the</strong> irradiation <strong>of</strong> proton beam on CNT and characterization <strong>of</strong> its resistance variation (Gon-Ho Kim, SNU) ⇒ BU-10<br />

Therapeutic study <strong>of</strong> proton beam in vascular disease animal models (You Mie Lee, KNU)<br />

Study <strong>of</strong> molecular mechanism <strong>of</strong> cancer cell apoptosis induced by proton beam (Bong-Gun Ju, Sogang U)<br />

Syn<strong>the</strong>sis <strong>of</strong> metal nanoparticles under proton beam irradiation (Jae Hee Song, Sunchon Nat’l U)<br />

Investigation <strong>of</strong> in vivo PIXE effect within superficial tumor model <strong>of</strong> high-Z metalnanoplatform for PIXE-based proton <strong>the</strong>rapy (Jong-Ki Kim, CUD) ⇒ BU-18<br />

Mutant breeding <strong>of</strong> ornamental trees for creating variations with high value using <strong>Proton</strong> Beam (Jae Hong Yim, Phygen) ⇒ BU-25<br />

Doping <strong>of</strong> nanostructures for nano-device applications (Sang Wook Han, Jeonbuk Nat’l U) ⇒ BU-21<br />

Development <strong>of</strong> low-energy deuterium ion implantation method to replace hydrogen post-metal annealing (PMA) (Jae-Sung Lee, Uiduk U) ⇒ BU-28<br />

Development on <strong>the</strong> next-generation materials <strong>of</strong> high efficiency thin membraned solar cell using ions beams (Kyung Ho Lee, Gyeongju U) ⇒ BU-47<br />

Development <strong>of</strong> over-production strain <strong>of</strong> saccharification enzyme and biomass pretreatment by proton beam irradiation (Seung Wook Kim, Korea U)<br />

Development <strong>of</strong> Disease animal models using proton beam (Ki-Hoan Nam, KRIBB) ⇒ BU-17<br />

Changes <strong>of</strong> initiation, promotion and metastatic enzyme system in human breast cancer with <strong>the</strong> proton irradiation (Kyung Soo Nam, Dongguk U) ⇒ BU-14<br />

Field<br />

Bio<br />

Instr.<br />

Energt<br />

RI<br />

Instr.<br />

Nano<br />

Materials<br />

Medical<br />

Nano<br />

Medical<br />

Medical<br />

Nano<br />

Environ.<br />

Bio<br />

Nano<br />

Info.<br />

Energy<br />

Energy<br />

Medical<br />

Medical<br />

27


Beam Utilization & Applications<br />

q R&D Activities (I)<br />

• Fabrication <strong>of</strong> metallic nano-particles<br />

• Gold, Platinum, Silver<br />

• Fabrication <strong>of</strong> Hybrid Nano-Logic Device<br />

- n-type nanowire + p-type nanotube<br />

v Silver nano particle (SEM Images)<br />

v Silver nano crystal (Flower) formation<br />

28


Beam Utilization & Applications<br />

q R&D Activities (II)<br />

• Developed mutants <strong>of</strong> plants & vegetables<br />

• Developed biodegradable plastic materials<br />

• Medical applications<br />

• Radio isotope production<br />

• Developed New Chinese cabbage<br />

Sangchun<br />

(Spring)<br />

Haryong<br />

(Summer)<br />

• Investigated mechanism<br />

- blood vessel formation,<br />

- vascular cell death <strong>of</strong> zebra fish<br />

• Mutated E-coli to produce PHB, PHBV<br />

Natural E-coli<br />

Mutated E-coli<br />

PHB<br />

granules<br />

99% PHB content<br />

80% autolysis<br />

Polyethylene<br />

Plastic Knife<br />

PHB Plastic Knife<br />

29


q Contents<br />

I. Overview<br />

II. Accelerator Development<br />

III. Construction Work<br />

IV. Beam Utilization & Applications<br />

V. Activities for <strong>the</strong> Future<br />

VI. Summary<br />

30


Activities for <strong>the</strong> Future<br />

q Expansion Options <strong>of</strong> <strong>the</strong> PEFP<br />

v Two Options Proposed by Science & TEchnology Policy Institute (Feb, 2009)<br />

: in a research report on “Long-term Planning for <strong>Proton</strong> <strong>Engineering</strong> <strong>Frontier</strong> <strong>Project</strong>”<br />

v Option 1<br />

▪ 1 GeV Linac + Acc. Ring<br />

⇒ 2 MW Spallation Neutron Source<br />

⇒ 250, 400, 1000 MeV <strong>Proton</strong> Beam<br />

v Option 2<br />

▪ 200 MeV Linac + 2 GeV RCS<br />

⇒ 0.5 MW Spallation Neutron Source<br />

⇒ 250 MeV <strong>Proton</strong> Beam<br />

▪ 400 MeV Linac + 8 GeV PS<br />

⇒ 8 GeV <strong>Proton</strong> Beam<br />

31


Activities for <strong>the</strong> Future<br />

q Rapid Cycling Synchrotron (see IP-24)<br />

Injection<br />

RF<br />

Momentum<br />

Collimation<br />

• 4-Fold Symmetry (20 Cells)<br />

• FODO Lattice<br />

• 4 Dispersion Free Sections<br />

• 4 Arc Straight Sections<br />

• Q X , Q Y = 4.39, 4.29<br />

• Harmonics: 2<br />

• Circumference : 204.45 m<br />

Collimator Fast<br />

Extraction<br />

RF<br />

Slow<br />

Extraction<br />

• Injection Energy: 100 (200) MeV<br />

• Extraction Energy: 1 (2) GeV<br />

• Injection : Charge Exchange<br />

• Fast Extraction : Spallation neutron source<br />

• Slow Extraction (~450 MeV): Medical application<br />

v Upgrade Path<br />

Initial<br />

Injection<br />

[GeV]<br />

0.1<br />

Extraction<br />

[GeV]<br />

1.0<br />

Repetition<br />

[Hz]<br />

15<br />

RF<br />

[KV]<br />

80<br />

Beam<br />

Power<br />

[KW]<br />

60<br />

Upgrade #1<br />

0.1<br />

1.0<br />

30<br />

140<br />

120<br />

Upgrade #2<br />

0.1<br />

2.0<br />

30<br />

260<br />

250<br />

Upgrade #3<br />

0.2<br />

2.0<br />

30<br />

250<br />

500<br />

[ Injection system ] [ Extraction system ]<br />

32


Activities for <strong>the</strong> Future<br />

q Superconducting RF Linac (see IP-17 & AT-13)<br />

•β=0.42, RF: 700 MHz<br />

• SC Cavity, RF coupler, Tuner, Vacuum Vessel, etc.<br />

• Fabricated & tested a warm module (Copper Cavity)<br />

• Cold module is being fabricated and tested<br />

5-cell cavity with<br />

fundamental coupler<br />

Thermal insulator<br />

Designed SRF module<br />

5-Cell cavity<br />

Field tuning stand<br />

Electric field test<br />

Field flatness < 1.43 %<br />

33


Activities for <strong>the</strong> Future<br />

q High Power RF Source – MW Klystron (see AT-3)<br />

• Developed 700 MHz, 1 MW (CW) Prototype Klystron<br />

• Established Full Processing Procedures<br />

(from design to test, & infrastructures such as test stand, baking furnace, etc.)<br />

• To be commercialized<br />

Design & Fabrication<br />

Test Stand<br />

Infras<br />

(@ KAPRA)<br />

Performance Test Result<br />

Input<br />

Coupler<br />

Tuning mechanism<br />

34


Activities for <strong>the</strong> Future<br />

q Spallation Neutron Target<br />

MEGAPI (MEGAwatt Pilot Experiment)<br />

Collaborating Institutes: PSI, CEA, CNRS, FZK, ENEA, SCK-CEN, JAEA, LANL, KAERI-PEFP<br />

- ’01.12 Joined MEGAPI collaboration<br />

- ’06.2 : Irradiated Pb-Bi target by SINQ at PSI<br />

- ’06.12 : Disintegrated <strong>the</strong> target system &<br />

analyzed <strong>the</strong> experiment<br />

- ’08. 8-11 : To perform <strong>the</strong> final cold test<br />

- ’09. 9 : Dismantled target & moved to Hotlab<br />

- ’10: To distribute PIE Sample<br />

- ’11.12.: To complete <strong>the</strong> MEGAPIE-I<br />

35


q Contents<br />

I. Overview<br />

II. Accelerator Development<br />

III. Construction Work<br />

IV. Beam Utilization & Applications<br />

V. Activities for <strong>the</strong> Future<br />

VI. Summary<br />

36


q Summary<br />

‣ 100 MeV, 20 mA <strong>Proton</strong> Linac & Beamlines<br />

• 20 MeV Linac :<br />

- Completed & In beam service<br />

- Achieved designed beam energy & current<br />

• Higher energy part:<br />

- 20~57 MeV DTL : fabricated and tested<br />

- 57~91 MeV DTL : under fabrication & to be completed by March 2010<br />

- 91-100 MeV DTL : to be fabricated in 2010<br />

• To relocate <strong>the</strong> 20 MeV linac to <strong>the</strong> site from April 2011<br />

• To complete <strong>the</strong> 100 MeV linac & beamlines by March 2012<br />

‣ Construction Work<br />

• Under leveling <strong>the</strong> site along with excavation<br />

• To start foundation work in March 2010, accelerator & experimental hall to be completed by March 2011<br />

‣ Beam Utilization & Applications<br />

• Cultivated and fostered user programs in <strong>the</strong> wide range <strong>of</strong> research fields<br />

• Produced promising outcomes including some industrialized<br />

‣ Activities for <strong>the</strong> Future (a Spallation Neutron Source)<br />

• R&D in SCL, RCS, RF Power Source, Spallation Neutron Target<br />

37


Thank you very much<br />

&<br />

Welcome to <strong>the</strong> PEFP’s Home

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!