09.01.2015 Views

T. Diagana INTEGER POWERS OF SOME UNBOUNDED LINEAR ...

T. Diagana INTEGER POWERS OF SOME UNBOUNDED LINEAR ...

T. Diagana INTEGER POWERS OF SOME UNBOUNDED LINEAR ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

214 T. <strong>Diagana</strong><br />

Similarly, from Eq. (18), one has:<br />

|x m | ‖ f m ‖ = |x m | |̟m| 1/2<br />

∣ ∑ ∣∣∣∣<br />

ω<br />

∣ n y n a nm<br />

n∈N<br />

=<br />

|̟m| 1/2 . |µ m − µ|<br />

⎡<br />

sup<br />

(|a nm | |ω n | 1/2)<br />

⎤<br />

≤ ⎢ n∈N<br />

⎥<br />

⎣ |µ m − µ| . |̟m| 1/2 ⎦ . ‖y‖<br />

=<br />

≤<br />

⎡<br />

( ) sup<br />

(|a<br />

1<br />

nm | |ω n | 1/2)<br />

⎤<br />

. ⎢ n∈N<br />

⎥<br />

|µ m − µ| ⎣ |̟m| 1/2 ⎦ . ‖y‖<br />

⎡<br />

sup<br />

(|a<br />

1<br />

inf m∈N |µ m − µ| . nm | |ω n | 1/2)<br />

⎤<br />

⎢ n∈N<br />

⎥<br />

⎣ |̟m| 1/2 ⎦ . ‖y‖.<br />

Therefore<br />

‖(A − µ) −1 γ<br />

‖ ≤<br />

inf |µ m − µ| ,<br />

m∈N<br />

⎡<br />

sup<br />

(|a nm | |ω n | 1/2)<br />

⎤<br />

where γ = sup ⎢ n∈N<br />

⎥<br />

⎣ |̟m| 1/2 ⎦ < ∞.<br />

DEFINITION 7. Let z ∈ J(µ). Define integer powers A z of the diagonal operator<br />

A by:<br />

(19)<br />

m∈N<br />

In summary, ρ(A) = {λ ∈ K : λ ̸= µ i , ∀i ∈ N}.<br />

Under previous assumptions, one defines integer powers of A by:<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

D(A z ) = {x = (x i ) ⊂ K : lim<br />

i<br />

|µ i | z |x i |‖ f i ‖ = 0},<br />

A z x = ∑ i∈N<br />

µ i z x i f i , for each x = (x i ) i∈N ∈ D(A z ).<br />

Similar results as in Section 5 hold for those type of diagonal operators.<br />

REMARK 3. We complete this paper by mentioning two challenging questions<br />

related to powers of linear operators on E ω .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!