12.07.2015 Views

The Klein-Gordon equation in anti-de Sitter spacetime - Seminario ...

The Klein-Gordon equation in anti-de Sitter spacetime - Seminario ...

The Klein-Gordon equation in anti-de Sitter spacetime - Seminario ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

272 K. Yagdjian and A. Galstianto a constant faster than any given polynomial rate, where the <strong>de</strong>cay is measured withrespect to natural future-directed advanced and retar<strong>de</strong>d time coord<strong>in</strong>ates.Catania and Georgiev [4] studied the Cauchy problem for the semil<strong>in</strong>ear wave<strong>equation</strong> □ g φ=|φ| p <strong>in</strong> the Schwarzschild metric (3+1)-dimensional <strong>spacetime</strong>, thatis the case of Λ = 0 <strong>in</strong> 0 < M bh < 1/3 √ Λ. <strong>The</strong>y established that the problem <strong>in</strong> theRegge–Wheeler coord<strong>in</strong>ates is locally well-posed <strong>in</strong> H σ for any σ ∈ [1, p+1). <strong>The</strong>nfor the special choice of the <strong>in</strong>itial data they proved the blow-up of the solution <strong>in</strong> twocases: (a) p∈(1,1+ √ 2) and small <strong>in</strong>itial data supported far away from the black hole;(b) p ∈(2,1+ √ 2) and large data supported near the black hole. In both cases, theyalso gave an estimate from above for the lifespan of the solution.In the present paper we focus on another limit case as M bh → 0 <strong>in</strong> the <strong>in</strong>terval0 < M bh < 1/3 √ Λ, namely, we set M bh = 0 to ignore completely <strong>in</strong>fluence of theblack hole. Thus, the l<strong>in</strong>e element <strong>in</strong> the <strong>de</strong> <strong>Sitter</strong> <strong>spacetime</strong> has the form) ) −1ds 2 =−(1− r2R 2 c 2 dt 2 +(1− r2R 2 dr 2 + r 2( dθ 2 + s<strong>in</strong> 2 θdφ 2) .<strong>The</strong> Lamaître–Robertson transformation [9]r ′ =r√1−r 2 /R 2 e−ct/R , t ′ = t+ R ( )2c ln 1− r2R 2 , θ ′ = θ, φ ′ = φ,leads to the follow<strong>in</strong>g form for the l<strong>in</strong>e element:ds 2 =−c 2 dt ′ 2 + e2ct ′ /R ( dr ′ 2 + r ′2 dθ ′ 2 + r ′2 s<strong>in</strong> 2 θ ′ dφ ′ 2 ) .By <strong>de</strong>f<strong>in</strong><strong>in</strong>g coord<strong>in</strong>ates x ′ , y ′ , z ′ connected with r ′ , θ ′ , φ ′ by the usual <strong>equation</strong>s connect<strong>in</strong>gCartesian coord<strong>in</strong>ates and polar coord<strong>in</strong>ates <strong>in</strong> a Eucli<strong>de</strong>an space, the l<strong>in</strong>e elementmay be written [9, Sec.134]ds 2 =−c 2 dt ′ 2 + e2ct ′ /R ( dx ′ 2 + dy′2 + dz′2 ) .<strong>The</strong> new coord<strong>in</strong>ates r ′ , θ ′ , φ ′ , t ′ can take all values from −∞ to ∞. Here R is the“radius” of the universe. In the Robertson–Walker <strong>spacetime</strong> [3, 7] one can choosecoord<strong>in</strong>ates so that the metric has the formds 2 =−dt 2 + S 2 (t)dσ 2 .In particular, the metric <strong>in</strong> the <strong>de</strong> <strong>Sitter</strong> and <strong>anti</strong>-<strong>de</strong> <strong>Sitter</strong> <strong>spacetime</strong> <strong>in</strong> the Lamaître–Robertson coord<strong>in</strong>ates [9] has this form with S(t)=e t and S(t)=e −t , respectively.In the paper [16], we study the Cauchy problem for the <strong>Kle<strong>in</strong></strong>–<strong>Gordon</strong> <strong>equation</strong><strong>in</strong> Robertson–Walker <strong>spacetime</strong> by apply<strong>in</strong>g the Lamaître-Robertson transformationand by employ<strong>in</strong>g the fundamental solutions constructed there for the <strong>Kle<strong>in</strong></strong>–<strong>Gordon</strong>operator <strong>in</strong> Robertson–Walker <strong>spacetime</strong>, that is forS := ∂ 2 t − e−2t △+M 2 . <strong>The</strong> fundamentalsolutionE =E(x,t;x 0 ,t 0 ), that is solution ofSE = δ(x−x 0 ,t− t 0 ), with


<strong>Kle<strong>in</strong></strong>-<strong>Gordon</strong> <strong>equation</strong> <strong>in</strong> <strong>anti</strong>-<strong>de</strong> <strong>Sitter</strong> <strong>spacetime</strong> 273a support <strong>in</strong> the forward light cone and the fundamental solution with a support <strong>in</strong>the backward light cone are constructed <strong>in</strong> [16]. <strong>The</strong> fundamental solution with thesupport <strong>in</strong> the forward light cone has been used <strong>in</strong> [16] to represent solutions of theCauchy problem and to prove L p − L q estimates for the solutions of the <strong>equation</strong> withand without a source term.<strong>The</strong> matter waves <strong>in</strong> the <strong>de</strong> <strong>Sitter</strong> <strong>spacetime</strong> are <strong>de</strong>scribed by the function φ,which satisfies <strong>equation</strong>s of motion. In the <strong>de</strong> <strong>Sitter</strong> and <strong>anti</strong>-<strong>de</strong> <strong>Sitter</strong> <strong>spacetime</strong> the<strong>equation</strong> for the scalar field with mass m is the covariant <strong>Kle<strong>in</strong></strong>–<strong>Gordon</strong> <strong>equation</strong>(□ g φ−m 2 1 ∂ √|g|gikφ= f or √ ∂φ )|g| ∂x i ∂x k − m 2 φ= f ,with the usual summation convention, where x = (x 0 ,x 1 ,...,x n ) and g ik is a metrictensor. Written explicitly <strong>in</strong> coord<strong>in</strong>ates <strong>in</strong> the <strong>de</strong> <strong>Sitter</strong> <strong>spacetime</strong> it has the form(1) φ tt + nφ t − e −2t ∆φ+m 2 φ= f .Here t is x 0 , while △ is the Laplace operator on the flat metric <strong>in</strong> R n . If we <strong>in</strong>troducethe new unknown function u=e n 2 t φ, then the <strong>equation</strong> (1) takes the form of the l<strong>in</strong>ear<strong>Kle<strong>in</strong></strong>–<strong>Gordon</strong> <strong>equation</strong> for u on <strong>de</strong> <strong>Sitter</strong> <strong>spacetime</strong>(2) u tt − e −2t △ u+M 2 u= f,where the “curved mass” M is <strong>de</strong>f<strong>in</strong>ed by the <strong>equation</strong> M 2 := m 2 −n 2 /4. In the case of0≤m≤n/2, <strong>equation</strong> (2) can be regar<strong>de</strong>d as <strong>Kle<strong>in</strong></strong>–<strong>Gordon</strong> <strong>equation</strong> with imag<strong>in</strong>arymass. Equations with imag<strong>in</strong>ary mass appear <strong>in</strong> several physical mo<strong>de</strong>ls such as the φ 4field mo<strong>de</strong>l, tachion (super-light) fields, Landau–G<strong>in</strong>zburg–Higgs <strong>equation</strong> and others.<strong>The</strong> <strong>equation</strong> (2) is strictly hyperbolic. That implies the well-posedness of theCauchy problem <strong>in</strong> the different functional spaces. Consequently, the solution operatoris well-<strong>de</strong>f<strong>in</strong>ed <strong>in</strong> those functional spaces. <strong>The</strong>n, the speed of propagation is variable,namely, it is equal to e −t . <strong>The</strong> second-or<strong>de</strong>r strictly hyperbolic <strong>equation</strong> (2) possessestwo fundamental solutions resolv<strong>in</strong>g the Cauchy problem without source term f . <strong>The</strong>ycan be written <strong>in</strong> terms of the Fourier <strong>in</strong>tegral operators, which give complete <strong>de</strong>scriptionof the wave front sets of the solutions. Moreover, the <strong>in</strong>tegrability of the characteristicroots, ∫ ∞0 |λ i(t,ξ)|dt < ∞, i=1,2, leads to the existence of the so-called “horizon”for that <strong>equation</strong>. More precisely, any signal emitted from the spatial po<strong>in</strong>t x 0 ∈ R nat time t 0 ∈R rema<strong>in</strong>s <strong>in</strong>si<strong>de</strong> the ball Bt n 0(x 0 ) :={x∈R n ||x−x 0 |


274 K. Yagdjian and A. Galstianwhere M is the curved mass, M ∈ C, and x ∈ R n , t ∈ R. Results of [16] (by meansof the time <strong>in</strong>version transformation t →−t) provi<strong>de</strong> us with the fundamental solutionE =E(x,t;x 0 ,t 0 ),E tt − e 2t ∆E + M 2 E = δ(x−x 0 ,t− t 0 ),with support <strong>in</strong> the “forward light cone” D + (x 0 ,t 0 ), x 0 ∈R n , t 0 ∈R, and for the fundamentalsolution with support <strong>in</strong> the “backward light cone” D − (x 0 ,t 0 ), x 0 ∈R n , t 0 ∈R,<strong>de</strong>f<strong>in</strong>ed as follows{}(3) D ± (x 0 ,t 0 ) := (x,t)∈R n+1 ;|x−x 0 |≤±(e t 0− e t ) .In fact, any <strong>in</strong>tersection of D − (x 0 ,t 0 ) with the hyperplane t = const < t 0 <strong>de</strong>term<strong>in</strong>es theso-called <strong>de</strong>pen<strong>de</strong>nce doma<strong>in</strong> for the po<strong>in</strong>t(x 0 ,t 0 ), while the <strong>in</strong>tersection of D + (x 0 ,t 0 )with the hyperplane t = const > t 0 is the so-called doma<strong>in</strong> of <strong>in</strong>fluence of the po<strong>in</strong>t(x 0 ,t 0 ). <strong>The</strong> <strong>equation</strong> (2) is non-<strong>in</strong>variant with respect to time <strong>in</strong>version. Moreover, the<strong>de</strong>pen<strong>de</strong>nce doma<strong>in</strong> is wi<strong>de</strong>r than any given ball if time const > t 0 is sufficiently large,while the doma<strong>in</strong> of <strong>in</strong>fluence is permanently, for all time const < t 0 , <strong>in</strong> the ball of theradius e t 0. In fact, the representation formulas obta<strong>in</strong>ed <strong>in</strong> [16] for the solution of theCauchy problem <strong>in</strong> the <strong>de</strong> <strong>Sitter</strong> <strong>spacetime</strong> cannot be applied to the solutions of theCauchy problem for the <strong>equation</strong> <strong>in</strong> the <strong>anti</strong>-<strong>de</strong> <strong>Sitter</strong> <strong>spacetime</strong>. <strong>The</strong> present paper isaimed to fill up that gap.Def<strong>in</strong>e for t 0 ∈R <strong>in</strong> the doma<strong>in</strong> D + (x 0 ,t 0 )∪D − (x 0 ,t 0 ) the function(4)E(x,t;x 0 ,t 0 ) = (4e t 0+t ) iM( (e t + e t 0) 2 −(x−x 0 ) 2) − 1 2 −iM× F( 12 + iM, 1 2 + 0− e t ) 2 −(x−x 0 ) 2 )iM;1;(et (e t 0 + e t ) 2 −(x−x 0 ) 2 ,where F ( a,b;c;ζ ) is the hypergeometric function (See, e.g., [2].). In (4) we use thenotation x 2 =|x| 2 for x∈R n . Let E(x,t;0,t 0 ) be function (4), and setE ± (x,t;0,t 0 ) :={E(x,t;0,t 0 ) <strong>in</strong> D ± (0,t 0 ),0 elsewhere.S<strong>in</strong>ce the function E = E(x,t;0,t 0 ) is smooth <strong>in</strong> D ± (0,t 0 ) and is locally <strong>in</strong>tegrable, itfollows thatE + (x,t;0, t 0 ) andE − (x,t;0, t 0 ) are distributions whose supports are <strong>in</strong>D + (0,t 0 ) and D − (0,t 0 ), respectively. In or<strong>de</strong>r to make the present paper self-conta<strong>in</strong>edwe make the transformation t →−t <strong>in</strong> <strong>The</strong>orem 0.1 [16] and <strong>in</strong>troduce the next result.THEOREM 1 ([16]). Suppose that M ∈C. <strong>The</strong> distributionsE + (x,t;0,t 0 ) andE − (x,t;0,t 0 ) are the fundamental solutions for the operatorS = ∂ 2 t − e2t ∂ 2 x + M2 relativeto the po<strong>in</strong>t(0,t 0 ), that isSE ± (x,t;0,t 0 )=δ(x,t− t 0 ), or∂ 2∂t 2E ±(x,t;0,t 0 )−e 2t ∂ 2∂x 2E ±(x,t;0,t 0 )+M 2 E ± (x,t;0,t 0 )=δ(x,t− t 0 ).


276 K. Yagdjian and A. GalstianIn particular, formula (5) shows that Huygens’s Pr<strong>in</strong>ciple is not valid for waves propagat<strong>in</strong>g<strong>in</strong> the <strong>anti</strong>-<strong>de</strong> <strong>Sitter</strong> <strong>spacetime</strong> (cf. [12]).Next we use <strong>The</strong>orem 1 to solve the Cauchy problem for the one-dimensional<strong>equation</strong>(7) u tt − e 2t u xx + M 2 u= f(x,t), t > 0, x∈R,with vanish<strong>in</strong>g <strong>in</strong>itial data:(8) u(x,0)=u t (x,0)=0.THEOREM 3. Assume that f ∈ C ∞ and that for every fixed t it has compactsupport, supp f(·,t)⊂R. <strong>The</strong>n the function u=u(x,t) <strong>de</strong>f<strong>in</strong>ed byu(x,t) =∫ t0∫ x+e t −e bdb dy f(y,b)(4e b+t ) iM( (e t + e b ) 2 −(x−y) 2) − 1 2 −iMx−(e t −e b ) (1× F2 + iM, 1 2 + − e t ) 2 −(x−y) 2 )iM;1;(eb (e b + e t ) 2 −(x−y) 2is a C ∞ solution to the Cauchy problem for <strong>equation</strong> (7) with vanish<strong>in</strong>g <strong>in</strong>itial data (8).<strong>The</strong> representation of the solution of the Cauchy problem for the one-dimensionalcase of <strong>equation</strong> without source term is given by the next theorem.THEOREM 4. <strong>The</strong> solution u=u(x,t) of the Cauchy problem(9) u tt − e 2t u xx + M 2 u=0, u(x,0)=ϕ 0 (x), u t (x,0)=ϕ 1 (x),with ϕ 0 ,ϕ 1 ∈ C0 ∞ (R) can be represented as follows[]u(x,t) = 1 2 e− 2t ϕ 0 (x+e t − 1)+ϕ 0 (x−e t + 1)++∫ e t −10∫ e t −10[ϕ0 (x−z)+ϕ 0 (x+z) ] K 0 (z,t)dz[ ]ϕ 1 (x−z)+ϕ 1 (x+z) K 1 (z,t)dz,where the kernels K 0 (z,t) and K 1 (z,t) are <strong>de</strong>f<strong>in</strong>ed respectively by[ ∂]K 0 (z,t) := −∂b E(z,t;0,b)b=0= −(4e t ) iM( (e t + 1) 2 − z 2) −iM 1[(e t − 1) 2 − z 2 ] √ (e t + 1) 2 − z 2(e×[ t − 1−iM(e 2t − 1−z 2 ) ) (F 12+ iM, 1 2 + − 1) 2 − z 2 )iM;1;(et (e t + 1) 2 − z 2+ ( 1−e 2t + z 2)( )12− iM F(− 1 2 + iM, 2 1 + − 1) 2 − z 2 ) ]iM;1;(et (e t + 1) 2 − z 2 ,0≤z


278 K. Yagdjian and A. Galstianv tt −△v=0, v(x,0;b)= f(x,b), v t (x,0;b)=0.<strong>The</strong> next theorem represents the solutions of the <strong>equation</strong> with the <strong>in</strong>itial dataprescribed at t = 0.THEOREM 6. <strong>The</strong> solution u=u(x,t) to the Cauchy problem(14) u tt − e 2t △ u+M 2 u=0, u(x,0)=ϕ 0 (x), u t (x,0)=ϕ 1 (x),with ϕ 0 , ϕ 1 ∈ C ∞ 0 (Rn ), n≥2, can be represented as follows:(15)∫ 1u(x,t) = e − 2 t v ϕ0 (x,φ(t))+ 2 v ϕ0 (x,φ(t)s)K 0 (φ(t)s,t)φ(t)ds0∫ 1+2 v ϕ1 (x,φ(t)s)K 1 (φ(t)s,t)φ(t)ds, x∈R n , t > 0,0φ(t) := e t − 1, and where the kernels K 0 and K 1 have been <strong>de</strong>f<strong>in</strong>ed <strong>in</strong> <strong>The</strong>orem 4. Herefor ϕ∈ C0 ∞(Rn ) and for x∈R n , n=2m+1, m∈N,())n−3∂ 1 ∂ 2 rv ϕ (x,φ(t)s) :=∂r( n−2 ∫r ∂r ω n−1 c (n) ϕ(x+ry)dS S0n−1 yr=φ(t)swhile for x∈R n , n=2m, m∈N,( ( ))n−2∂ 1 ∂ 2 2r n−1 ∫1v ϕ (x,φ(t)s) :=√∂r r ∂r ω n−1 c (n)ϕ(x+ry)dV B n 0 1 (0) y1−|y| 2r=sφ(t)<strong>The</strong> function v ϕ (x,φ(t)s) co<strong>in</strong>ci<strong>de</strong>s with the value v(x,φ(t)s) of the solution v(x,t) ofthe Cauchy problemv tt −△v=0, v(x,0)=ϕ(x), v t (x,0)=0.As a consequence of the above theorems, we obta<strong>in</strong> <strong>in</strong> a forthcom<strong>in</strong>g paper thefollow<strong>in</strong>g L p − L q <strong>de</strong>cay estimate for the particles with “large” mass m, m≥n/2, thatis, with nonnegative curved mass M ≥ 0..(16)‖(−△) −s u(x,t)‖ L q (R n )( )∫≤ Ce t 2s−n( 1 p − q 1 t)0‖ f(x,b)‖ L p (R n )(1+ t− b) 1−sgnM db+C(1+ t) 1−sgnM (e t − 1) 2s−n( 1 p − 1 q ){ ‖ϕ 0 (x)‖ L p (R n )+(1−e −t )‖ϕ 1 ‖ L p (R n )}provi<strong>de</strong>d that 1< p≤2, 1 p + 1 q = 1, 1 2 (n+1)( 1p − 1 q)≤ 2s≤n( 1p − 1 q)< 2s+1.We emphasize that the estimate (16) implies exponential <strong>de</strong>cay for large time. Itis essentially different from the <strong>de</strong>cay estimate obta<strong>in</strong>ed <strong>in</strong> [16] for the wave <strong>equation</strong>


<strong>Kle<strong>in</strong></strong>-<strong>Gordon</strong> <strong>equation</strong> <strong>in</strong> <strong>anti</strong>-<strong>de</strong> <strong>Sitter</strong> <strong>spacetime</strong> 279<strong>in</strong> the <strong>de</strong> <strong>Sitter</strong> <strong>spacetime</strong>. This difference is caused by the strik<strong>in</strong>g difference betweenthe global geometries of the forward and backward light cones of the <strong>equation</strong> (7).<strong>The</strong> paper is organized as follows. In Section 2 we apply the fundamental solutionsto solve the Cauchy problem with the source term and with vanish<strong>in</strong>g <strong>in</strong>itialdata given at t = 0. More precisely, we give a representation formula for the solutions.In that section we also give several basic properties of the function E(x,t;x 0 ,t 0 ). InSections 3–4, we use the formulas of Section 2 to <strong>de</strong>rive and to complete the list ofrepresentation formulas for the solutions of the Cauchy problem for the case of onedimensionalspatial variable. <strong>The</strong> higher-dimensional <strong>equation</strong> with the source term isconsi<strong>de</strong>red <strong>in</strong> Section 5, where we <strong>de</strong>rive a representation formula for the solutions ofthe Cauchy problem with the source term and with vanish<strong>in</strong>g <strong>in</strong>itial data given at t = 0.In the same section this formula is used to complete the proof of <strong>The</strong>orem 6. Applicationsof all these results to the nonl<strong>in</strong>ear <strong>equation</strong>s will be done <strong>in</strong> a forthcom<strong>in</strong>gpaper.2. Application to the Cauchy problem: source term and n=1Consi<strong>de</strong>r now the Cauchy problem for the <strong>equation</strong> (7) with vanish<strong>in</strong>g <strong>in</strong>itial data (8).<strong>The</strong> coefficients of the <strong>equation</strong> (7) are <strong>in</strong><strong>de</strong>pen<strong>de</strong>nt of x, therefore the <strong>equation</strong> istranslation <strong>in</strong>variant <strong>in</strong> x that impliesE + (x,t; y,b) =E + (x−y,t;0,b). Us<strong>in</strong>g the fundamentalsolution from <strong>The</strong>orem 1 one can write the convolution(17)u(x,t) ==∫ ∞ ∫ ∞−∞ −∞∫ t ∫ ∞0db−∞E + (x,t;y,b) f(y,b)dbdyE + (x−y,t;0,b) f(y,b)dy,which is well-<strong>de</strong>f<strong>in</strong>ed s<strong>in</strong>ce supp f ⊂{t ≥ 0}. <strong>The</strong>n accord<strong>in</strong>g to the <strong>de</strong>f<strong>in</strong>ition of thedistributionE + we obta<strong>in</strong> the statement of <strong>The</strong>orem 3. Thus, <strong>The</strong>orem 3 is proven.<strong>The</strong> follow<strong>in</strong>g corollary implies the existence of an operator transform<strong>in</strong>g thesolutions of the Cauchy problem for the str<strong>in</strong>g <strong>equation</strong> to the solutions of the Cauchyproblem for the <strong>in</strong>homogeneous <strong>equation</strong> with time-<strong>de</strong>pen<strong>de</strong>nt speed of propagation.COROLLARY 1. <strong>The</strong> solution u=u(x,t) of the Cauchy problem (7)-(8) can berepresented by (13), where the functions v(x,t;τ) := 1 2( f(x+ t,τ)+ f(x− t,τ)), τ ∈[0,∞), form a one-parameter family of solutions to the Cauchy problem for the str<strong>in</strong>g<strong>equation</strong>, that is, v tt − v xx = 0, v(x,0;τ)= f(x,τ), v t (x,0;τ)=0.Proof. From the convolution (17) we <strong>de</strong>riveu(x,t) =∫ t ∫ e t −e bdb dy f(x+y,b)(4e b+t ) iM( (e t + e b ) 2 − y 2) − 1 2 −iM0 e b −e(t1× F2 + iM, 1 2 + − e t ) 2 − y 2 )iM;1;(eb (e b + e t ) 2 − y 2


<strong>Kle<strong>in</strong></strong>-<strong>Gordon</strong> <strong>equation</strong> <strong>in</strong> <strong>anti</strong>-<strong>de</strong> <strong>Sitter</strong> <strong>spacetime</strong> 281(27)u(x,t) ==∫ e t −10∫ 10[ ]ϕ(x+z)+ϕ(x−z) K 1 (z,t)dz[]ϕ(x+φ(t)s)+ϕ(x−φ(t)s) K 1 (φ(t)s,t)φ(t)ds,where φ(t)=e t − 1. <strong>The</strong> proof of the theorem is divi<strong>de</strong>d <strong>in</strong>to several steps.PROPOSITION 2. <strong>The</strong> solution u=u(x,t) of the Cauchy problem (9) for whichϕ 0 (x)=0 and ϕ 1 (x)=ϕ(x) can be represented as followsu(x,t) =(28)∫ t0]db[14e −t/2 e b/2 (2+b)+16 1 be−3t/2 e b/2 (e b − e t )(1+4M 2 )[]× ϕ(x+e t − e b )+ϕ(x−e t + e b )∫ t ∫ x+e t −e b [ ( ∂ 2 ]+ db dyϕ(y)b e 2b E(x−y,t;0,b)−M0 x−(e t −e b )∂y) 2 E(x−y,t;0,b) .Proof. We look for the solution u=u(x,t) of the form u(x,t)=w(x,t)+ tϕ(x). <strong>The</strong>n(9) impliesw tt − e 2t w xx + M 2 w=te 2t ϕ (2) (x)−M 2 tϕ(x),w(x,0)=0, w t (x,0)=0.We set f(x,t)= te 2t ϕ (2) (x)−M 2 tϕ(x) and due to <strong>The</strong>orem 3 obta<strong>in</strong>wherew(x,t)= ˜w(x,t)−M 2 ∫ t0∫ x+e t −e bbdb dyϕ(y)E(x−y,t;0,b),x−(e t −e b )˜w(x,t) :=∫ t0∫ x+e tbe 2b −e bdb dyϕ (2) (y)E(x−y,t;0,b).x−(e t −e b )<strong>The</strong>n we <strong>in</strong>tegrate by parts:˜w(x,t) =∫ t0[be 2b db ϕ (1) (x+e t − e b )E(e b − e t ,t;0,b)]−ϕ (1) (x−e t + e b )E(e t − e b ,t;0,b)∫ t ∫ x+e t− be 2b −e bdb dyϕ (1) (y) ∂0x−(e t −e b ) ∂y E(x−y,t;0,b).But ϕ (1) (x+e t − e b )=−e −b ∂ ∂b ϕ(x+et − e b ), ϕ (1) (x−e t + e b )=e −b ∂ ∂b ϕ(x−et + e b ).<strong>The</strong>n, E(e b − e t ,t;0,b)=E(−e b + e t ,t;0,b) due to (19), and we obta<strong>in</strong>


<strong>Kle<strong>in</strong></strong>-<strong>Gordon</strong> <strong>equation</strong> <strong>in</strong> <strong>anti</strong>-<strong>de</strong> <strong>Sitter</strong> <strong>spacetime</strong> 283COROLLARY 2. <strong>The</strong> solution u=u(x,t) of the Cauchy problem (9) with ϕ 0 (x)= 0 and ϕ 1 (x)=ϕ(x) can be represented byu(x,t) =∫ tas well as by (27), where(29)K 1 (z,t) =0[14e −t/2 e b/2 (2+b)+ 1 16 be−3t/2 e b/2 (e b − e t )(1+4M 2 )][]× ϕ(x+e t − e b )+ϕ(x−e t + e b ) db∫ t ∫ e t −e b [ ]+ db dz ϕ(x−z)+ϕ(x+z)0 0[ ( ∂ 2 ]× b e∂z) 2b E(z,t;0,b)−M 2 E(z,t;0,b) ,[ ]14 e−t/2 (2+ln(e t − z))− 116 (1+4M2 )e −3t/2 zln(e t 1− z) √ e t − z[∫ ln(e t ( ]−z) ∂ 2+ b e 2b E(z,t;0,b)−M0∂z) 2 E(z,t;0,b) db.Proof of the Corollary. By means of the statement (28) of Proposition 2, the changey=x−z, and (19) we obta<strong>in</strong>∫ tu(x,t) =0]db[14 e−t/2 e b/2 (2+b)+ 1 16 be−3t/2 e b/2 (e b − e t )(1+4M 2 )[]∫ t−0∫ t+ db0∫ −(e t −e b )db0∫ 0−(e t −e b )× ϕ(x+e t − e b )+ϕ(x−e t + e b )[ ( ∂ 2 ]dzϕ(x−z) be∂z) 2b E(z,t;0,b)−M 2 bE(z,t;0,b)[ ( ∂ 2 ]dzϕ(x+z) be∂z) 2b E(z,t;0,b)−M 2 bE(z,t;0,b) .To prove (27) with K 1 (z,t) <strong>de</strong>f<strong>in</strong>ed by (29) we apply (19) and writeu(x,t) =∫ t0]db[14e −t/2 e b/2 (2+b)+16 1 be−3t/2 e b/2 (e b − e t )(1+4M 2 )[]× ϕ(x+e t − e b )+ϕ(x−e t + e b )∫ t ∫ e t −e b [ ]+ db dz ϕ(x−z)+ϕ(x+z)0 0[ ( ∂ 2 ]× be∂z) 2b E(z,t;0,b)−M 2 bE(z,t;0,b) .Next we make change z=e t − e b , dz=−e b db, db=−(e t − z) −1 dz, and b=ln(e t − z)<strong>in</strong> the first <strong>in</strong>tegral:


284 K. Yagdjian and A. Galstian=∫ t0∫ e t −10]db[14e −t/2 e b/2 (2+b)+16 1 (1+4M2 )be −3t/2 e b/2 (e b − e t )[]× ϕ(x+e t − e b )+ϕ(x−e t + e b )[ϕ(x+z)+ϕ(x−z)][14 e−t/2 (2+ln(e t − z))]−16 1 (1+4M2 )e −3t/2 zln(e t 1− z) √e t − z dz.<strong>The</strong>nu(x,t) =∫ e t −10[ϕ(x+z)+ϕ(x−z)][14 e−t/2 (2+ln(e t − z))]−16 1 (1+4M2 )e −3t/2 zln(e t 1− z) √e t − z dz∫ t ∫ e t −e b [ ]+ db dz ϕ(x+z)+ϕ(x−z)0 0[ ( ∂ 2 ]× be∂z) 2b E(z,t;0,b)−M 2 bE(z,t;0,b) .In the last <strong>in</strong>tegral we change the or<strong>de</strong>r of <strong>in</strong>tegration,u(x,t) =∫ e t −10[ϕ(x+z)+ϕ(x−z)][14 e−t/2 (2+ln(e t − z))]− 1 16 (1+4M2 )e −3t/2 zln(e t 1− z) √e t − z dz∫ e t −1 [ ]∫ ln(e t −z)+ dz ϕ(x+z)+ϕ(x−z) dbb00[ ( ∂ 2 ]× e∂z) 2b E(z,t;0,b)−M 2 E(z,t;0,b) ,and obta<strong>in</strong> (27), where K 1 (z,t) is <strong>de</strong>f<strong>in</strong>ed by (29). <strong>The</strong> corollary is proven.<strong>The</strong> next lemma completes the proof of <strong>The</strong>orem 4 <strong>in</strong> the case of ϕ 0 = 0.LEMMA 1. <strong>The</strong> kernel K 1 (z,t) <strong>de</strong>f<strong>in</strong>ed by (29) co<strong>in</strong>ci<strong>de</strong>s with one given <strong>in</strong> <strong>The</strong>orem4.Proof. Due to Lemma 1.2 [16], (19), and by <strong>in</strong>tegration by parts, we have[]∫ ln(e t −z)0be 2b ( ∂∂z) 2E(z,t;0,b)−M 2 E(z,t;0,b)[ ∂]= ln(e t − z)∂b E(z,t;0,b) − b=ln(e t −z) E(z,t;0,ln(et − z))+E(z,t;0,0).db


<strong>Kle<strong>in</strong></strong>-<strong>Gordon</strong> <strong>equation</strong> <strong>in</strong> <strong>anti</strong>-<strong>de</strong> <strong>Sitter</strong> <strong>spacetime</strong> 285On the other hand, (20) and (25) of Proposition 1 imply[∫ ln(e t −z)0be 2b ( ∂∂z) 2E(z,t;0,b)−M 2 E(z,t;0,b)= ln(e t − z) e−2t√ e t( −4e t + z(1+4M 2 ) )16 √ e t − z]db− 1 2 e− t 2 (e t − z) − 1 2 + E(z,t;0,0).Thus, for the kernel K 1 (z,t) <strong>de</strong>f<strong>in</strong>ed by (29) we have[ ]K 1 (z,t) = 14e −t/2 (2+ln(e t − z))−16 1 (1+4M2 )e −3t/2 zln(e t 1− z) √e t − z[∫ ln(e t ( ]−z) ∂ 2+ b e 2b E(z,t;0,b)−M0∂z) 2 E(z,t;0,b) db[= 14e −t/2 (2+ln(e t − z))−16 1 (1+4M2 )e −3t/2 zln(e t 1− z)]√e t − z+ln(e t − z) e−2t√ e t( −4e t + z(1+4M 2 ) )16 √ − 1e t 2− ze− 2(e t t − z) − 2 1 + E(z,t;0,0)= E(z,t;0,0).<strong>The</strong> last l<strong>in</strong>e co<strong>in</strong>ci<strong>de</strong>s with K 1 (z,t) of <strong>The</strong>orem 4. <strong>The</strong> lemma is proven.4. <strong>The</strong> Cauchy problem: first data and n=1In this section, we prove <strong>The</strong>orem 4 <strong>in</strong> the case of ϕ 1 (x)=0. Thus, we have to prove therepresentation given by <strong>The</strong>orem 4 for the solution u=u(x,t) of the Cauchy problem(9) with ϕ 1 (x)=0, that is equivalent to[]u(x,t) = 1 2 e− 2t ϕ 0 (x+e t − 1)+ϕ 0 (x−e t + 1)+∫ 10[ϕ0 (x−φ(t)s)+ϕ 0 (x+φ(t)s) ] K 0 (φ(t)s,t)φ(t)ds,where φ(t)=e t − 1. <strong>The</strong> proof of this case consists of several steps.PROPOSITION 3. <strong>The</strong> solution u = u(x,t) of the Cauchy problem (9) can berepresented as follows[]u(x,t) = 1 2 e− 2t ϕ 0 (x+e t − 1)+ϕ 0 (x−e t + 1)∫ t]+ db[14e 2 b e− 2 t +116(1+4M 2 )e −2t e 2 b te 2(e b − e t )0[]× ϕ 0 (x+e t − e b )+ϕ 0 (x−e t + e b )∫ t ∫ x+e t −e b [ ( ∂ 2 ]+ db dyϕ 0 (y) e 2b E(x−y,t;0,b)−M0 x−(e t −e b )∂y) 2 E(x−y,t;0,b) .


286 K. Yagdjian and A. GalstianProof. We set u(x,t)=w(x,t)+ϕ 0 (x), thenw tt − e 2t w xx + M 2 w=e 2t ϕ (2)0 (x)−M2 ϕ 0 (x), w(x,0)=0, w t (x,0)=0.Next we plug f(x,t)= e 2t ϕ (2)0 (x)−M2 ϕ 0 (x) <strong>in</strong>to the formula given by <strong>The</strong>orem 3 andobta<strong>in</strong>w(x,t) = ˜w(x,t)−∫ t ∫ x+e t −e b(30)db dyM 2 ϕ 0 (y)E(x−y,t;0,b),0 x−(e t −e b )where we have <strong>de</strong>noted˜w(x,t) :=∫ t0∫ x+e te 2b −e bdb dyϕ (2)x−(e t −e b 0 (y)E(x−y,t;0,b).)Next we <strong>in</strong>tegrate by parts and apply (19):∫ t (˜w(x,t) = e 2b db ϕ (1)0 (x+et − e b )E(−e t + e b ,t;0,b)0)−ϕ (1)0 (x−et + e b )E(e t − e b ,t;0,b)∫ t ∫ x+e t− e 2b −e bdb dyϕ (1)0 x−(e t −e b 0 (y) ∂ ) ∂y E(x−y,t;0,b).On the other hand,ϕ (1)0 (x+et − e b )=−e −b ∂∂b ϕ 0(x+e t − e b ), ϕ (1)0 (x−et + e b )=e −b ∂ ∂b ϕ 0(x−e t + e b )implies that˜w(x,t) =∫ t(e b db − ∂0 ∂b ϕ 0(x+e t − e b )E(−e t + e b ,t;0,b)− ∂)∂b ϕ 0(x−e t + e b )E(e t − e b ,t;0,b)∫ t ∫ x+e t− e 2b −e bdb dyϕ (1)0 x−(e t −e b 0 (y) ∂ ) ∂y E(x−y,t;0,b).One more <strong>in</strong>tegration by parts leads to()˜w(x,t)+ϕ 0 (x) = 1 2 e− 2t ϕ 0 (x+e t − 1)+ϕ 0 (x−e t + 1)∫ t(+ db ϕ 0 (x+e t − e b ) ∂0∂b(e b E(−e t + e b ,t;0,b))( ) )e b E(e t − e b ,t;0,b)+ϕ 0 (x−e t + e b ) ∂∂b∫ t ∫ x+e t− e 2b −e bdb dyϕ (1)0 x−(e t −e b 0 (y) ∂ ) ∂y E(x−y,t;0,b),


<strong>Kle<strong>in</strong></strong>-<strong>Gordon</strong> <strong>equation</strong> <strong>in</strong> <strong>anti</strong>-<strong>de</strong> <strong>Sitter</strong> <strong>spacetime</strong> 287where E(0,t;0,t)=e −t /2, and E(e t − 1,t;0,0)= E(1−e t ,t;0,0)=e − 2/2 t have beenused. Next we apply (21) of Proposition 1 and an <strong>in</strong>tegration by parts to obta<strong>in</strong>()˜w(x,t)+ϕ 0 (x) = 1 2 e− 2t ϕ 0 (x+e t − 1)+ϕ 0 (x−e t + 1)∫ t ()+ db 1 4 e 2 b e − 2t ϕ 0 (x+e t − e b )+ϕ 0 (x−e t + e b )−+0∫ t0∫ t0e 2b db[ϕ 0 (y) ∂ ] y=x+e t∂y E(x−y,t;0,b) −e b∫ x+e te 2b −e b ( ∂db dyϕ 0 (y)x−(e t −e b ) ∂yFrom (23) and (24) of Proposition 1, we have[]˜w(x,t)+ϕ 0 (x) = 1 2 e− 2t ϕ 0 (x+e t − 1)+ϕ 0 (x−e t + 1)∫ t+ db 1 4 e b 2 e− 2t0∫ t− e 2b db 1 16 (1+4M2 )e −2(b+t) e b/2 e t/2 (e t − e b )0y=x−(e t −e b )) 2E(x−y,t;0,b).[ϕ 0 (x+e t − e b )+ϕ 0 (x−e t + e b )[]ϕ 0 (x+e t − e b )+ϕ 0 (x−(e t − e b ))∫ t ∫ x+e t+ e 2b −e b ( ∂) 2E(x−y,t;0,b),db dy ϕ 0 (y)0 x−(e t −e b ) ∂y<strong>The</strong>n the last <strong>equation</strong> together with (30) proves the <strong>de</strong>sired representation. <strong>The</strong> propositionis proven.Completion of the proof of <strong>The</strong>orem 4. We make the change z=e t − e b , dz=−e b db,and b=ln(e t −z) <strong>in</strong> the second term of the representation given by the previous proposition:[14e 2 b e − 2 t +16 1 (1+4M2 )e −2t e b 2 e 2(e t b − e )]t=∫ t0∫ e t −10[]× ϕ 0 (x+e t − e b )+ϕ 0 (x−e t + e b ) db[ ]14e − 2 t −116(1+4M 2 )e −2t e 2 t 1[ ]z √ ϕ e t 0 (x−z)+ϕ 0 (x+z) dz.− zNext we apply (19) to the last term of that representation, and then we change the or<strong>de</strong>rof <strong>in</strong>tegration:∫ t∫ x+e t −e bdb0 x−(e t −e b )∫ e t −1 [=0dz[ ( ∂ 2 ]dyϕ 0 (y) e∂y) 2b E(x−y,t;0,b)−M 2 E(x−y,t;0,b)ϕ 0 (x+z)+ϕ 0 (x−z)]∫ ln(e t −z)0db[ ( ∂ 2 ]× e∂z) 2b E(z,t;0,b)−M 2 E(z,t;0,b) .]


288 K. Yagdjian and A. GalstianOn the other hand, s<strong>in</strong>ce the function E(z,t;0,b) solves the <strong>Kle<strong>in</strong></strong>–<strong>Gordon</strong> <strong>equation</strong>,the last <strong>in</strong>tegral is equal to∫ e t −10∫ e t −1=0[dz ϕ 0 (x+z)+ϕ 0 (x−z)[dz ϕ 0 (x+z)+ϕ 0 (x−z)Application of (25) and (26) gives]∫ ln(e t −z)0( ∂) 2E(z,t;0,b)dbdb∂b∂b E(z,t;0,ln(et − z))− ∂ ]∂b E(z,t;0,0) .][ ∂[ ]14e − 2 t −116(1+4M 2 )e −2t e 2 t 1 z √e t − z + ∂∂b E(z,t;0,ln(et − z))− ∂ ∂b E(z,t;0,0)]=[14 e− 2 t − 1 16 (1+4M2 )e −2t e 2 t 1z √e t − z + 1 + z(1+4M 2 ))16 e−3t/2(−4et √e t − z− ( 4e t) iM((1+e t ) 2 − z 2) −iM 12[(e t − 1) 2 − z 2 ] √ (1+e t ) 2 − z 2{× (2iM−1) ( e 2t − 1−z 2) F(− 1 2 + iM, 1 2 + ) 2 − z 2 )iM,1,(−1+et(1+e t ) 2 − z 2−2 ( 1−e t + iM ( e 2t − 1−z 2)) (F 12+ iM, 1 2 + ) 2 − z 2 ) }iM,1,(−1+et(1+e t ) 2 .− z 2<strong>The</strong> terms on the l<strong>in</strong>e after the last equality all cancel out, leav<strong>in</strong>g the last three l<strong>in</strong>esthat add up to K 0 (z,t). This completes the proof of <strong>The</strong>orem 4.5. <strong>The</strong> n-dimensional case, n≥2Proof of <strong>The</strong>orem 5. Let us consi<strong>de</strong>r the case of x∈R n , where first n=2m+1, m∈N.First, for the given function u=u(x,t), we <strong>de</strong>f<strong>in</strong>e the spherical means of u about thepo<strong>in</strong>t x:I u (x,r,t) =∫1ω n−1S n−1 u(x+ry,t)dS y,where ω n−1 <strong>de</strong>notes the area of the unit sphere S n−1 ⊂R n . <strong>The</strong>n we <strong>de</strong>f<strong>in</strong>e an operatorΩ r by( 1 ∂) m−1rΩ r (u)(x,t) :=2m−1 I u (x,r,t).r ∂rOne can show that there are constants c (n)j , j = 0,...,m−1, where n=2m+1, withc (n)0= 1·3·5···(n−2), such that( 1r∂∂r) m−1r 2m−1 ϕ(r)=rm−1∑j=0c (n)j r j ∂ j∂r j ϕ(r).


<strong>Kle<strong>in</strong></strong>-<strong>Gordon</strong> <strong>equation</strong> <strong>in</strong> <strong>anti</strong>-<strong>de</strong> <strong>Sitter</strong> <strong>spacetime</strong> 289One can recover the functions accord<strong>in</strong>g to(31)(32)u(x,t) = limr→0I u (x,r,t)= lim1r→0c (n)0 r Ω r(u)(x,t),1u(x,0) = limr→0c (n)0 r Ω r(u)(x,0), u t (x,0)= lim1r→0c (n)0 r Ω r(∂ t u)(x,0).It is well known that ∆ x Ω r h = ∂2 Ω∂r 2 r h for every function h ∈ C 2 (R n ). <strong>The</strong>refore wearrive at the follow<strong>in</strong>g mixed problem for the function v(x,r,t) := Ω r (u)(x,r,t):⎧v tt (x,r,t)−e 2t v rr (x,r,t)+M 2 v(x,r,t)=F(x,r,t), t ≥ 0, r≥ 0, x∈R n ,⎪⎨v(x,0,t)=0, for all t ≥ 0, x∈R n ,v(x,r,0)=0, v t (x,r,0)=0, for all r≥0, x∈R⎪⎩n ,F(x,r,t) := Ω r ( f)(x,t), F(x,0,t)=0, for all x∈R n .It must be noted here that the spherical mean I u <strong>de</strong>f<strong>in</strong>ed for r > 0 has an extension asan even function for r < 0 and hence Ω r (u) has a natural extension as an odd function.That allows replac<strong>in</strong>g the mixed problem with the Cauchy problem. Namely,let functions ṽ and ˜F be the cont<strong>in</strong>uations of the functions v and the forc<strong>in</strong>g term F,respectively, byṽ(x,r,t)={ v(x,r,t) if r≥ 0−v(x,−r,t) if r≤ 0,˜F(x,r,t)={ F(x,r,t) if r≥ 0−F(x,−r,t) if r≤ 0.<strong>The</strong>n ṽ solves the Cauchy problem{ṽtt (x,r,t)−e 2t ṽ rr (x,r,t)+M 2 ṽ(x,r,t)= ˜F(x,r,t), t ≥ 0, r∈R, x∈R n ,ṽ(x,r,0)=0, ṽ t (x,r,0)=0 for all r∈R, x∈R n .Hence, accord<strong>in</strong>g to <strong>The</strong>orem 3, one has the representation∫ t ∫ r+e t −e bṽ(x,r,t)= db ˜F(x,r 1 ,b)E(r,t;r 1 ,b)dr 1 .0 r−(e t −e b )(ṽ(x,r,t)/(c (n)S<strong>in</strong>ce u(x,t) = lim r→0 0 r)) , we consi<strong>de</strong>r the case of r < t <strong>in</strong> the aboverepresentation to obta<strong>in</strong>:u(x,t)= 1c (n)0∫ t0∫ e t −e b ˜F(x,r+r 1 ,b)+ ˜F(x,r−r 1 ,b)db dr 1 E(0,t;r 1 ,b) lim.0r→0 r}/r with<strong>The</strong>n by <strong>de</strong>f<strong>in</strong>ition of ˜F, we replace lim r→0{˜F(x,r− r 1 ,b)+ ˜F(x,r+ r 1 ,b)( )2 ∂∂r F(x,r,b) <strong>in</strong> the last formula. <strong>The</strong> <strong>de</strong>f<strong>in</strong>itions of F(x,r,t) and of the operatorr=r 1Ω r yield:u(x,t) = 2 ∫ t ∫ e t −e b ( ∂( 1 ∂) m−1rdb2m−1 I f (x,r,t))E(0,t;r 1 ,b)dr 1 ,0 0 ∂r r ∂rr=r 1c (n)0


290 K. Yagdjian and A. Galstianwhere x∈R n , n=2m+1, m∈N. Thus, the solution to the Cauchy problem is givenby (11). We employ the method of <strong>de</strong>scent to complete the proof for the case of evenn, n=2m, m∈N. <strong>The</strong>orem 5 is proven.Proof of <strong>The</strong>orem 6. First we consi<strong>de</strong>r the case of ϕ 0 (x)=0. More precisely, we haveto prove that the solution u(x,t) of the Cauchy problem (14) with ϕ 0 (x) = 0 can berepresented by (15) with ϕ 0 (x)=0. <strong>The</strong> next lemma will be used <strong>in</strong> both cases.LEMMA 2. Consi<strong>de</strong>r the mixed problem⎧⎪⎨ v tt − e 2t v rr + M 2 v=0, for all t ≥ 0, r≥ 0,v(r,0)=τ 0 (r), v t (r,0)=τ 1 (r) for all r≥ 0,⎪⎩v(0,t)=0, for all t ≥ 0,and <strong>de</strong>note by ˜τ 0 (r) and ˜τ 1 (r) the cont<strong>in</strong>uations of the functions τ 0 (r) and τ 1 (r) fornegative r as odd functions: ˜τ 0 (−r) = −τ 0 (r) and ˜τ 1 (−r) = −τ 1 (r) for all r ≥ 0,respectively. <strong>The</strong>n the unique solution v(r,t) to the mixed problem is given by therestriction of (27) to r≥0:[]v(r,t) = 1 2 e− 2t ˜τ 0 (r+e t − 1)+˜τ 0 (r−e t + 1)++∫ 10∫ 10[˜τ0 (r−φ(t)s)+˜τ 0 (r+φ(t)s) ] K 0 (φ(t)s,t)φ(t)ds( ( )][˜τ 1 r+φ(t)s)+˜τ 1 r−φ(t)s K 1 (φ(t)s,t)φ(t)ds,where K 0 (z,t) and K 1 (z,t) are <strong>de</strong>f<strong>in</strong>ed <strong>in</strong> <strong>The</strong>orem 4 and φ(t)=e t − 1.Proof. This lemma is a direct consequence of <strong>The</strong>orem 4.Now let us consi<strong>de</strong>r the case of x ∈R n , where n=2m+1. First for the givenfunction u=u(x,t) we <strong>de</strong>f<strong>in</strong>e the spherical means of u about po<strong>in</strong>t x. One can recoverthe functions by means of (31), (32), and1ϕ i (x)= lim I ϕi (x,r)= limr→0 r→0c (n)0 r Ω r(ϕ i )(x), i=0,1.<strong>The</strong>n we arrive at the follow<strong>in</strong>g mixed problem⎧⎨ v tt (x,r,t)−e 2t v rr (x,r,t)+M 2 v(x,r,t)=0, for all t ≥ 0, r≥ 0, x∈R n ,v(x,0,t)=0 for all t ≥ 0, x∈R n ,⎩v(x,r,0)=0, v t (x,r,0)=Φ 1 (x,r) for all r≥0, x∈R n ,with the unknown function v(x,r,t) := Ω r (u)(x,r,t), where(33)(34)( 1 ∂) m−1r∫2m−1 1Φ i (x,r) := Ω r (ϕ i )(x)=r ∂r ω ϕ i(x+ry)dS y ,n−1 S n−1Φ i (x,0)=0, i=0,1, for all x∈R n .


<strong>Kle<strong>in</strong></strong>-<strong>Gordon</strong> <strong>equation</strong> <strong>in</strong> <strong>anti</strong>-<strong>de</strong> <strong>Sitter</strong> <strong>spacetime</strong> 291<strong>The</strong>n, due to Lemma 2 and to u(x,t)=lim r→0(v(x,r,t)/(c(n)0 r)) , we obta<strong>in</strong>:u(x,t)= 1c (n)0limr→01r∫ 1<strong>The</strong> last limit is equal to∫ 1( ∂21(x,r))∂r Φ= 20∫ 10( ∂∂r( 1r∂∂r0[˜Φ 1(x,r+φ(t)s)+˜Φ 1(x,r−φ(t)s) ] K 1 (φ(t)s,t)φ(t)ds.K 1 (φ(t)s,t)φ(t)dsr=φ(t)s) n−32 r n−2ω n−1∫Thus, <strong>The</strong>orem 6 <strong>in</strong> the case of ϕ 0 (x)=0 is proven.ϕ 1(x+ry)dS y K 1 (φ(t)s,t)φ(t)ds.S)r=φ(t)sn−1Now we turn to the case of ϕ 1 (x)=0. Thus, we arrive at the follow<strong>in</strong>g mixedproblem⎧⎪⎨⎪⎩v tt (x,r,t)−e 2t v rr (x,r,t)+M 2 v(x,r,t)=0, for all t ≥ 0, r≥ 0, x∈R n ,v(x,r,0)=Φ 0 (x,r), v t (x,r,0)=0 for all r≥0, x∈R n ,v(x,0,t)=0 for all t ≥ 0, x∈R n ,with the unknown function v(x,r,t) := Ω r (u)(x,r,t) <strong>de</strong>f<strong>in</strong>ed by (33), (34). <strong>The</strong>n, accord<strong>in</strong>gto Lemma 2 and to u(x,t)= lim v(x,r,t)/(c (n)r→00r), we obta<strong>in</strong>:( )1u(x,t) = e − 2 t ∂∂r Φ 0(x,r)<strong>The</strong>orem 6 is proven.c (n)0+ 2c (n)0∫ 10( ∂∂r Φ 0(x,r))= e − t 2 v ϕ0 (x,φ(t))+ 2∫ 10r=φ(t)K 0 (φ(t)s,t)φ(t)dsr=φ(t)sv ϕ0 (x,φ(t)s)K 0 (φ(t)s,t)φ(t)ds.References[1] ANDERSSON L., <strong>The</strong> global existence problem <strong>in</strong> general relativity, <strong>in</strong> <strong>The</strong> E<strong>in</strong>ste<strong>in</strong> <strong>equation</strong>s and thelarge scale behavior of gravitational fields, Birkhäuser, Basel 2004, 71–120.[2] BATEMAN H. AND ERDELYI A., Higher transcen<strong>de</strong>ntal functions, v.1,2, McGraw-Hill, New York1953.[3] BIRRELL N. D. AND DAVIES P.C.W., Quantum fields <strong>in</strong> curved space, Cambridge University Press,1984.[4] CATANIA D. AND GEORGIEV V., Blow-up for the semil<strong>in</strong>ear wave <strong>equation</strong> <strong>in</strong> the Schwarzschildmetric, Differential Integral Equations 19 (2006), 799–830.[5] DAFERMOS M. AND RODNIANSKI I., <strong>The</strong> wave <strong>equation</strong> on Schwarzschild–<strong>de</strong> <strong>Sitter</strong> <strong>spacetime</strong>s,arXiv:0709.2766.


292 K. Yagdjian and A. Galstian[6] FRIEDRICH H. AND RENDALL A., <strong>The</strong> Cauchy problem for the E<strong>in</strong>ste<strong>in</strong> <strong>equation</strong>s. E<strong>in</strong>ste<strong>in</strong>’s field<strong>equation</strong>s and their physical implications, Lecture Notes <strong>in</strong> Phys. 540, Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong>, 2000,127–223.[7] HAWKING S.W. AND ELLIS G.F.R., <strong>The</strong> large scale structure of space-time. Cambridge Monographson Mathematical Physics, No. 1. Cambridge University Press 1973.[8] KEEL M. AND TAO T., Small data blow-up for semil<strong>in</strong>ear <strong>Kle<strong>in</strong></strong>–<strong>Gordon</strong> <strong>equation</strong>s, Amer. J. Math.121 (1999), 629–669.[9] MØLLER C., <strong>The</strong> theory of relativity, Clarendon Press, Oxford 1952.[10] NÄF J., JETZER J. AND SERENO M., On gravitational waves <strong>in</strong> <strong>spacetime</strong>s with a nonvanish<strong>in</strong>gcosmological constant, Physical Review D 79, 024014 (2009).[11] SHATAH J. AND STRUWE M., Geometric wave <strong>equation</strong>s, Courant Lecture Notes <strong>in</strong> Mathematics, 2.New York University, American Mathematical Society, Provi<strong>de</strong>nce 1998.[12] SONEGO S. AND FARAONI V., Huygens’ pr<strong>in</strong>ciple and characteristic propagation property for waves<strong>in</strong> curved space-times, J. Math. Phys. 33 2 (1992), 625–632.[13] YAGDJIAN K., A note on the fundamental solution for the Tricomi-type <strong>equation</strong> <strong>in</strong> the hyperbolicdoma<strong>in</strong>, J. Differential Equations 206 (2004), 227–252.[14] YAGDJIAN K., Global existence <strong>in</strong> the Cauchy problem for nonl<strong>in</strong>ear wave <strong>equation</strong>s with variablespeed of propagation, <strong>in</strong> New trends <strong>in</strong> the theory of hyperbolic <strong>equation</strong>s, Oper. <strong>The</strong>ory Adv. Appl.159, Birkhäuser, Basel 2005, 301–385.[15] YAGDJIAN K. AND GALSTIAN A., Fundamental solutions of the wave <strong>equation</strong> <strong>in</strong> Robertson-Walkerspaces. J. Math. Anal. Appl. 346 2 (2008), 501–520.[16] YAGDJIAN K. AND GALSTIAN A., Fundamental Solutions for the <strong>Kle<strong>in</strong></strong>–<strong>Gordon</strong> Equation <strong>in</strong> <strong>de</strong> <strong>Sitter</strong>e-mail:ÝÒÙØÔºÙ,Ð×ØÝÒÙØÔºÙSpacetime, Commun. Math. Phys. 285 1 (2009), 293–344.AMS Subject Classification: 35C15, 35L15, 35Q75, 85A40Karen YAGDJIAN, Anahit GALSTIAN,Department of Mathematics, University of Texas-Pan American,1201 W. University Drive, Ed<strong>in</strong>burg, Texas,78541-2999, USALavoro pervenuto <strong>in</strong> redazione il 23.06.2009

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!