11.01.2015 Views

Bert Scheeren and Peter Bergamaschi - Europa

Bert Scheeren and Peter Bergamaschi - Europa

Bert Scheeren and Peter Bergamaschi - Europa

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

First three years of CO 2 , CH 4 , N 2 O, <strong>and</strong> SF 6<br />

observations, <strong>and</strong> 222 Radon-based emission estimates<br />

from the JRC-Ispra (Italy) monitoring station.<br />

1<br />

What have we learned so far<br />

<strong>Bert</strong> <strong>Scheeren</strong> <strong>and</strong> <strong>Peter</strong> <strong>Bergamaschi</strong><br />

European Commission Joint Research Centre<br />

Institute for Environment <strong>and</strong> Sustainability<br />

Ispra, Italy<br />

Acknowledgements:<br />

Dough Worthy, Martina Schmidt, Ingeborg Levin, S<strong>and</strong>er van der Laan, Ingrid van der<br />

Laan-Luikx for their support <strong>and</strong> advice.


2<br />

Outline<br />

• Site description<br />

• Time series<br />

• 222 Radon based flux estimates<br />

• Case studies<br />

• TM5 model simulations of CH 4<br />

• Link to monitoring networks<br />

• Summary


Why is the JRC involved in monitoring GHGs <br />

3<br />

To be an active member of the European GHG monitoring community;<br />

* contributing to the sparse GHG monitoring network in Southern Europe,<br />

* having access to important databases for our inverse modeling activities.<br />

To support regional scale emission estimates;<br />

* providing direct input for inverse modeling,<br />

* to allow model independent emission estimates based on 222 Radon.<br />

Jungfraujoch<br />

3580 m<br />

Plateau Rosa<br />

3480 m<br />

JRC-Ispra<br />

220 m<br />

Po Valley<br />

Monte Cimone<br />

2165 m


The Ispra GHG monitoring site since 2007 (223 m asl)<br />

4<br />

15 m sampling mast<br />

Agilent 6890N GC-FID/μ-ECD for CO 2 , CH 4 , N 2 O, SF 6<br />

PICARRO G1301 for CO 2 <strong>and</strong> CH 4<br />

ANSTO 222 Radon monitor<br />

Horiba AMPA-370 for CO


The Ispra GHG station set-up <strong>and</strong> performance<br />

5<br />

Agilent 6890N GC-system equipped with FID/ECD for CO 2 , CH 4 , N 2 O <strong>and</strong> SF 6<br />

• Measurement sequence GC-system: WH – WL – AM1 – AM2 – AM3 – AM4 – WH – WL<br />

<strong>and</strong> every 6 hrs 2 ambient samples are replaced by a Target sample.<br />

• Typical instrument precisions are in good agreement with WMO precision requirements based<br />

on the targets for one month of sampling:<br />

GC:


6<br />

Ispra GHG station data coverage<br />

Ispra data coverage<br />

2007 2008 2009 2010 2011<br />

Instrument Species 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4<br />

Agilent 6890N GC-FID CO2<br />

Agilent 6890N GC-FID CH4<br />

Agilent 6890N GC-ECD N2O<br />

Agilent 6890N GC-ECD SF6<br />

ANSTO 222Radon monitor 222Rn<br />

PICARRO G1301<br />

PICARRO G1302<br />

HORIBA AMPA 370A<br />

CO2<br />

CH4<br />

CO


Regional GHG monitoring stations around the Po Valley<br />

7<br />

Jungfraujoch<br />

3580 m<br />

Plateau Rosa<br />

3480 m<br />

JRC-Ispra<br />

220 m<br />

Po Valley<br />

Monte Cimone<br />

2165 m


Po Valley pollution hot-spot: strong anthropogenic methane emissions from<br />

agriculture by the EDGAR emission database<br />

8<br />

Anthropogenic methane emissions on a 0.1 x 0.1 degree grid from the EDGAR v4 database<br />

for the year 2005 (http://edgar.jrc.ec.europa.eu/) show the Po Valley (dark blue) as a strong<br />

regional source area, mainly related to emissios from the agricultural sector.


Catchment area for methane emissions calculated by the TM5 model 9<br />

Footprint for methane for the Ispra station expressed as the sensitivity of<br />

the measurements to methane emissions in ppbv CH 4 / kg CH 4 / s<br />

calculated by the TM5 (4DVAR) model for the year 2008 (<strong>Bergamaschi</strong> et<br />

al., 2010).


Meteorological conditions <strong>and</strong> air mass origin at Ispra<br />

10<br />

We distinguish three major meteorological<br />

conditions:<br />

Northerlies:<br />

• Clean, e.g. Föhn events, to moderately polluted<br />

air masses.<br />

• 12 h footprint up to several hundred km at Föhn.<br />

• Dominating during the fall <strong>and</strong> winter season.<br />

Stagnant conditions:<br />

• Very low wind speeds (


Highest GHG concentrations are found during southerly “Po Valley”<br />

winds <strong>and</strong> at low wind speed conditions<br />

11<br />

600<br />

550<br />

CO2<br />

CH4<br />

Ispra CO2 <strong>and</strong> CH4 as function of wind direction for 2008<br />

Wind direction<br />

2700<br />

2500<br />

2300<br />

600<br />

550<br />

Ispra CO2 <strong>and</strong> CH4 as function of wind speed for 2008<br />

Wind speed<br />

CO2<br />

CH4<br />

2700<br />

2500<br />

2300<br />

500<br />

450<br />

500<br />

2100<br />

CH 4 CH 4<br />

1900<br />

450<br />

2100<br />

1900<br />

400<br />

350<br />

1700<br />

CO 2<br />

400<br />

1500<br />

CO 2<br />

1300<br />

0 45 90 135 180 225 270 315 360<br />

350<br />

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0<br />

North South North Low High<br />

1700<br />

1500<br />

1300<br />

360<br />

355<br />

350<br />

345<br />

340<br />

335<br />

330<br />

325<br />

320<br />

315<br />

310<br />

N2O<br />

SF6<br />

Ispra N2O <strong>and</strong> SF6 as function of wind direction for 2008<br />

Wind direction<br />

N 2 O<br />

5<br />

0 45 90 135 180 225 270 315 360<br />

North South North<br />

19<br />

17<br />

15<br />

13<br />

11<br />

9<br />

7<br />

360<br />

355<br />

350<br />

345<br />

340<br />

335<br />

330<br />

325<br />

320<br />

315<br />

310<br />

Ispra N2O <strong>and</strong> SF6 as function of wind speed for 2008<br />

N2O<br />

5<br />

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0<br />

Low<br />

N 2 O<br />

Wind speed<br />

High<br />

SF6<br />

19<br />

17<br />

15<br />

13<br />

11<br />

9<br />

7


Time series<br />

12


ppmv<br />

ppmv<br />

CO 2 at Ispra from October 2007 to December 2010<br />

13<br />

550<br />

530<br />

510<br />

490<br />

470<br />

450<br />

430<br />

410<br />

390<br />

370<br />

350<br />

All data CO 2 Ispra October 2007 to December 2010<br />

550<br />

530<br />

510<br />

490<br />

470<br />

450<br />

430<br />

410<br />

390<br />

370<br />

350<br />

Mid-day CO 2 Ispra vs Mace Head flask samples 2007-2010


ppbv<br />

ppbv<br />

CH 4 at Ispra from October 2007 to December 2010<br />

14<br />

3200<br />

All data CH 4 Ispra October 2007 to December 2010<br />

3000<br />

2800<br />

2600<br />

2400<br />

2200<br />

2000<br />

1800<br />

3200<br />

Mid-day CH 4 Ispra vs Mace Head flask samples 2007-2010<br />

3000<br />

2800<br />

2600<br />

2400<br />

2200<br />

2000<br />

1800


ppbv<br />

ppbv<br />

N 2 O at Ispra from October 2007 to December 2010<br />

15<br />

355<br />

All data N 2 O Ispra October 2007 to December 2010<br />

350<br />

345<br />

340<br />

335<br />

330<br />

325<br />

320<br />

315<br />

355<br />

Mid-day N 2 O at Ispra vs continuous Mace Head data 2007-2010<br />

350<br />

345<br />

340<br />

335<br />

330<br />

325<br />

320<br />

315


pptv<br />

pptv<br />

SF 6 at Ispra from October 2007 to December 2010<br />

16<br />

30<br />

All data SF 6 Ispra October 2007 to December 2010<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

30<br />

Mid-day SF 6 at Ispra vs continuous Mace Head data 2007-2010<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0


222<br />

Radon at Ispra from September 2008 to December 2010<br />

17<br />

35<br />

Hourly mean Radon at Ispra from September 2008 to December 2009<br />

30<br />

222 Radon (Bq m<br />

-3 )<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

25<br />

Monthly mean Radon at Ispra from September 2008 to December 2009<br />

222 Radon (Bq m<br />

-3 )<br />

20<br />

15<br />

10<br />

5<br />

0


difference in ppmv<br />

difference in ppbv<br />

Good agreement between the PICARRO <strong>and</strong> GC-system for simultaneous CO 2 <strong>and</strong> CH 4<br />

measurements (year 2009 data)<br />

18<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

200<br />

150<br />

100<br />

Agreement between the PICARRO <strong>and</strong> the GC for CO 2<br />

SD Picarro data<br />

PIC - GC-data<br />

20 70 120 170 220 270 320 370<br />

Day of Year<br />

Agreement between the PICARRO <strong>and</strong> the GC for CH 4<br />

SD Picarro data<br />

PIC - GC-data<br />

50<br />

0<br />

-50<br />

-100<br />

-150<br />

-200<br />

20 70 120 170 220 270 320 370<br />

Day of Year


Good agreement between the PICARRO <strong>and</strong> GC-system for<br />

simultaneous CO 2 <strong>and</strong> CH 4 measurements for 2009<br />

19<br />

ppmv CO2<br />

ppbv CH4<br />

550<br />

530<br />

510<br />

490<br />

470<br />

450<br />

430<br />

410<br />

390<br />

370<br />

350<br />

2800<br />

2700<br />

2600<br />

2500<br />

2400<br />

2300<br />

2200<br />

2100<br />

2000<br />

1900<br />

1800<br />

PICARRO<br />

GC-FID<br />

2009 CO 2 PICARRO vs GC<br />

0 50 100 150 200 250 300 350<br />

Day of Year<br />

PICARRO<br />

GC-FID<br />

2009 CH 4 PICARRO vs GC<br />

0 50 100 150 200 250 300 350<br />

Day of Year<br />

560<br />

510<br />

460<br />

410<br />

360<br />

2800<br />

2600<br />

2400<br />

2200<br />

2000<br />

1800<br />

2009 CO 2 PICARRO vs GC<br />

y = 0.9965x + 1.239<br />

R² = 0.9965<br />

360 410 460 510 560<br />

2009 CH 4 PICARRO vs GC<br />

y = 0.9971x + 7.6626<br />

R² = 0.9955<br />

1800 2000 2200 2400 2600 2800


Radon-based regional flux estimates<br />

20


ppbv CH4<br />

222 Radon flux in Bq m<br />

-2 h<br />

-1<br />

Radon based flux estimate<br />

Provided that the 222 Radon soil exhalation rate F Rn is known the F GHG can be estimated from the<br />

slope Δ[GHG]/ Δ[Rn] expressed as:<br />

F GHG / F Rn = Δ[GHG] / Δ[Rn] (Dörr <strong>and</strong> Münnich, Tellus, 1990)<br />

21<br />

2150<br />

2100<br />

Night time CH4 vs 222Radon on<br />

27/03/2009<br />

80<br />

70<br />

Ispra 222 Radon soil flux<br />

2050<br />

2000<br />

60<br />

50<br />

annualmean<br />

1950<br />

1900<br />

1850<br />

y = 88.23x + 1411.3<br />

R² = 0.78<br />

4.0 9.0 14.0 19.0<br />

Bq Radon<br />

40<br />

30<br />

20<br />

Estimated flux<br />

Measured flux<br />

0 100 200 300 400<br />

DOY<br />

• Only hourly mean night time measurement between 19:00 – 7:00 h with a R > 0.7 (R 2 > 0.49) are<br />

used.<br />

• 222 Radon decay during this time interval ( 222 Radon lifetime of 5.5 days) is neglected.<br />

• Based on dynamic chamber measurements (Alphaguard) of the 222 Radon soil exhalation rate at<br />

Ispra we estimate a yearly mean value of 56 Bq m -2 h -1 . Here we assume a seasonal deviation of -<br />

20% in winter <strong>and</strong> +20% in summer.


Overview of all 2008-2010 GHG fluxes<br />

22<br />

2500<br />

All CO 2 fluxes 2008-2010<br />

0.30<br />

All N 2 O fluxes 2008-2010<br />

2000<br />

0.25<br />

Flux in mg m -2 h -1<br />

1500<br />

1000<br />

500<br />

Flux in mg m -2 h -1<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0<br />

0 50 100 150 200 250 300 350 400<br />

0.00<br />

0 50 100 150 200 250 300 350 400<br />

5.0<br />

All CH 4 fluxes 2008-2010<br />

5.E-04<br />

All SF 6 fluxes 2008-2010<br />

4.5<br />

4.0<br />

4.E-04<br />

Flux in mg m -2 h -1<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

Flux in mg m -2 h -1<br />

3.E-04<br />

2.E-04<br />

1.E-04<br />

0.0<br />

0.E+00<br />

0 50 100 150 200 250 300 350 400<br />

0 50 100 150 200 250 300 350 400<br />

• Enhanced methane fluxes are found during winter time mostly from the Po<br />

Valley region<br />

• Occasionally high N 2 O fluxes<br />

• A strong (night time) biogenic respiration signal is apparent in Spring<br />

• No strong sign of rice paddy methane emissions at Ispra


Annual mean fluxes for Ispra compared to other European estimates<br />

23<br />

Area Annual mean CH 4 -flux sd Reference<br />

Rn-flux mg m -2 h -1<br />

Western Europe, 1996-04 Annual 57 1.36 0.23 Messager et al., ACPD, 2008<br />

Germany, Schaunsl<strong>and</strong> 1991-95 Wintertime 53 1.06 0.55 Schmidt et al., Tellus, 1996<br />

Germany, Heidelberg 1996-08 Annual 57 0.72 0.43 Levin et al., Phil. Trans R. Soc., 2011<br />

Italy, Po Valley 2008 Wintertime 47 1.36 0.54 this work<br />

Italy, Po Valley 2009 Annual 56 1.12 0.44 this work<br />

Italy, Po Valley 2010 Annual 56 1.04 0.62 this work<br />

Europe 1996-04 Annual Inventory 0.83 0.10 UNFCCC, 2005 (in Messager et al., 2008)<br />

Area Annual mean CO 2 -flux sd Reference<br />

Rn-flux g m -2 h -1<br />

Western Europe, 1996-04 Annual 57 0.468 0.171 Messager et al., ACPD, 2008<br />

Germany, Schaunsl<strong>and</strong> 1991-95 Wintertime 53 0.458 0.189 Schmidt et al., Tellus, 1996<br />

Italy, Po Valley 2008 Wintertime 47 0.422 0.105 this work<br />

Italy, Po Valley 2009 Annual 56 0.576 0.224 this work<br />

Italy, Po Valley 2010 Annual 56 0.493 0.256 this work<br />

Europe 1996-04 Annual Inventory 0.543 0.030 ORCHIDEE + UNFCCC, 2005 (in Messager et al., 2008)<br />

Area Annual mean N 2 O-flux sd Reference<br />

Rn-flux ug m -2 h -1<br />

Western Europe, 1996-04 Annual 57 59 15 Messager et al., ACPD, 2008<br />

Germany, Schaunsl<strong>and</strong> 1996-98 Annual 57 66 6 Schmidt et al., JGR, 2001<br />

Germany, Heidelberg, 1996-98 Annual 57 68 8 Schmidt et al., JGR, 2001<br />

Italy, Po Valley 2008 Wintertime 47 42 9 this work<br />

Italy, Po Valley 2009 Annual 56 56 23 this work<br />

Italy, Po Valley 2010 Annual 56 42 26 this work<br />

Europe 1996-04 Annual Inventory 64 7 UNFCCC, 2005 (in Messager et al., 2008)


Annual mean fluxes of CH 4 <strong>and</strong> N 2 O for the Po Valley compared to other European estimates<br />

24<br />

FLux in mg m -2 h -1<br />

2.00<br />

1.80<br />

1.60<br />

1.40<br />

1.20<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

0.00<br />

European flux estimates for CH 4 compared<br />

Western<br />

Europe, 1996-<br />

04 Annual<br />

Germany,<br />

Schaunsl<strong>and</strong><br />

1991-95<br />

Wintertime<br />

Germany,<br />

Heidelberg<br />

1996-08<br />

Annual<br />

Italy, Po Valley<br />

2008<br />

Wintertime<br />

Italy, Po Valley<br />

2009 Annual<br />

Italy, Po Valley<br />

2010 Annual<br />

Flux in ug m -2 h -1<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Western<br />

Europe, 1996-<br />

04 Annual<br />

European N 2 O flux estimates compared<br />

Germany,<br />

Schaunsl<strong>and</strong><br />

1996-98<br />

Annual<br />

Germany,<br />

Heidelberg,<br />

1996-98<br />

Annual<br />

Italy, Po Valley<br />

2008<br />

Wintertime<br />

Italy, Po Valley<br />

2009 Annual<br />

Italy, Po Valley<br />

2010 Annual


Flux data partitioning into three sectors based on HYSPLIT 12 hr back-trajectory<br />

analysis <strong>and</strong> local meteorology data (wind speed, wind direction, <strong>and</strong> RH%)<br />

25<br />

1.North-Northwest sector: (blue)<br />

2.Stagnant conditions: (red)<br />

3.South-Po Valley: (green)<br />

2<br />

2.00<br />

2008 October-December<br />

1.80<br />

Northerlies<br />

1.60<br />

Stagnant<br />

Flux in g m -2 h -1<br />

1.40<br />

1.20<br />

1.00<br />

0.80<br />

0.60<br />

Po-Valley<br />

2.00<br />

1.80<br />

2010 annual average<br />

Northerlies<br />

0.40<br />

1.60<br />

Stagnant<br />

Flux in g m -2 h -1<br />

0.20<br />

0.00<br />

2.00<br />

1.80<br />

1.60<br />

1.40<br />

1.20<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

0.00<br />

F_CO2 F_CH4 (*10-3) F_N2O (*10-4) SF6 (*10-6)<br />

2009 annual average<br />

Northerlies<br />

Stagnant<br />

Po-Valley<br />

F_CO2 F_CH4 (*10-3) F_N2O (*10-4) SF6 (*10-6)<br />

Flux in g m -2 h -1<br />

1.40<br />

1.20<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

0.00<br />

Po Valley<br />

F_CO2 F_CH4 (*10-3) F_N2O (*10-4) SF6 (*10-6)<br />

• Enhanced GHG fluxes are related<br />

to air masses coming from the Po<br />

Valley region (in green).


Annual flux average per sector<br />

26<br />

Flux in g m -2 h -1<br />

0.90<br />

0.80<br />

0.70<br />

0.60<br />

0.50<br />

0.40<br />

0.30<br />

0.20<br />

2008<br />

2009<br />

2010<br />

CO 2 annual mean<br />

Flux in mg m -2 h -1<br />

2.00<br />

1.80<br />

1.60<br />

1.40<br />

1.20<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

2008<br />

2009<br />

2010<br />

CH 4 annual mean<br />

0.10<br />

0.20<br />

0.00<br />

0.00<br />

Northerlies Regional Po Valley<br />

Northerlies Regional Po Valley<br />

Flux in ug m -2 h -1<br />

0.90<br />

0.80<br />

0.70<br />

0.60<br />

0.50<br />

0.40<br />

0.30<br />

0.20<br />

0.10<br />

2008<br />

2009<br />

2010<br />

N 2 O annual mean<br />

Flux in pg m -2 h -1<br />

0.35<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

2008<br />

2009<br />

2010<br />

SF 6 annual mean<br />

0.00<br />

0.00<br />

Northerlies Regional Po Valley<br />

Northerlies Regional Po Valley


High methane fluxes in air masses are mainly coming from the Po Valley<br />

with a slight tendency towards higher values during winter time<br />

27<br />

mg CH4 m -2 h -1<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

All sectors<br />

Po Valley<br />

Ispra 2008-2010 methane flux<br />

0 50 100 150 200 250 300 350<br />

Day of Year<br />

Po Valley CH 4 flux<br />

winter (NDJF):<br />

1.22±0.56<br />

summer (MJJAS):<br />

0.99±0.57<br />

March-April:<br />

1.02±0.60<br />

Is there a seasonality in anthropogenic emissions of CH 4 that we don’t know off<br />

EDGAR4.2 2008 CH 4 emissions for Italy<br />

16 20 78<br />

14<br />

48<br />

495<br />

mg CH 4 m -2 h -1<br />

2.0<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

Seasonal CH 4 Po Valley flux<br />

NDJF MJJAS MA<br />

Agricultural soils<br />

Enteric fermentation (cattle)<br />

Manure management<br />

Gas production <strong>and</strong><br />

distribution<br />

Heating<br />

661<br />

Oil refineries<br />

L<strong>and</strong>fills<br />

EDGAR4.2 data by<br />

courtesy of Greet<br />

Janssen-Maenhout<br />

199<br />

Transport<br />

Industry<br />

6 31<br />

215<br />

Waste water treatment<br />

Others


28<br />

Further highlights:<br />

High N 2 O events<br />

Clean air episodes at Ispra<br />

The potential contribution of Po<br />

Valley rice paddy emissions to the<br />

Ispra flux estimates


ppbv N2O<br />

Large N 2 O point source 40 km south of Ispra can explain N 2 O flux “outliers”<br />

29<br />

Radici Chimica SPA in Novarra (asl 149 m, lon 8.6433, lat 45.4599, ~40 km South of Ispra) is one of the main<br />

production plants in Europe of nitric <strong>and</strong> adipic acid.<br />

Foreward Hysplit trajectories starting at the factory (at 200 m altitude) at 21-12-2009 were N 2 O values reach to<br />

340 ppbv arriving at Ispra in less then half a day.<br />

344<br />

342<br />

340<br />

338<br />

336<br />

334<br />

332<br />

330<br />

328<br />

326<br />

324<br />

322<br />

N2O<br />

CH4<br />

Elevated N 2 O <strong>and</strong> CH 4 from the Novarra area<br />

2900<br />

2700<br />

2500<br />

2300<br />

2100<br />

1900<br />

1700<br />

1500<br />

ppbv CH4<br />

ISPRA<br />

F N2O for this event:<br />

189±40 μg m -2 h -1<br />

Average 2009 Po Valley F N2O :<br />

54±23 μg m -2 h -1 NOVARRA nitric acid plant


ppbV CH4<br />

RH%<br />

Strong Föhn events simultaneously observed at Ispra <strong>and</strong> Jungfraujoch station<br />

30<br />

2100<br />

2050<br />

2000<br />

1950<br />

Clean air Föhn events at Ispra<br />

CH4 JFJ<br />

CH4 Ispra<br />

Föhn air<br />

RH% Ispra<br />

100<br />

90<br />

80<br />

70<br />

60<br />

1900<br />

50<br />

1850<br />

1800<br />

1750<br />

1700<br />

03/23/08<br />

00:00<br />

03/24/08<br />

00:00<br />

03/25/08<br />

00:00<br />

DAY-TIME (9:00 - 16:00)<br />

Föhn<br />

03/26/08<br />

Ispra<br />

03/27/08 03/28/08 03/29/08<br />

JFJ<br />

03/30/08 03/31/08<br />

difference<br />

04/01/08 04/02/08Match<br />

00:00 00:00 00:00 00:00 00:00 00:00 00:00 00:00<br />

events Mean sd Mean sd JFJ-Ispra<br />

RH% 21 7<br />

WS 3.2 DAY-TIME 2.2 (9:00 - 16:00)<br />

04/03/08<br />

00:00<br />

Föhn O3 Ispra 42 8 JFJ 52 10 difference 10 Match 1.24<br />

events CO Mean 190 sd 23.7 Mean 159 sd 13 JFJ-Ispra -30 0.84<br />

RH% CH4 21 1885 716 1881 21 -4 1.00<br />

WS N2O 3.2 322.25 2.2 0.65 322.27 1.5 0.02 1.00<br />

O3 SF6 42 6.64 80.12 52 6.76 10 0.33 10 0.12 1.24 1.02<br />

CO 190 23.7 159 13 -30 0.84<br />

CH4 1885 16 1881 21 -4 1.00<br />

Excellent agreement N2O 322.25 is found 0.65 between 322.27 the 1.5 ambient 0.02 air composition 1.00 observed at<br />

Ispra <strong>and</strong> SF6 JFJ during 6.64Föhn 0.12 events 6.76 as seen 0.33during 0.12January 1.02 to April of 2008.<br />

04/04/08<br />

00:00<br />

04/05/08<br />

00:00<br />

40<br />

30<br />

20<br />

10<br />

0<br />

04/06/08<br />

00:00


Po Valley rice paddies flooded between April-September<br />

31<br />

Meteosat-7, visible channel, 26<br />

April 2001, 11:00 UTC<br />

L<strong>and</strong>sat-7 Thematic Mapper (TM), 20 May 2001<br />

(courtesy US Geological Survey).


July-August peak in methane fluxes from a Po Valley rice paddy: can<br />

32<br />

we see that in the data at Ispra<br />

2009 June-August highest rice paddy emissions<br />

~ 0.3 μmol CH 4 m -2 s -1<br />

Data <strong>and</strong> plot from Meijide<br />

et al., BGD, 2011.<br />

2400<br />

2300<br />

Ispra CH 4 May to October 2009<br />

June-August high CH 4<br />

2200<br />

ppbv CH4<br />

2100<br />

2000<br />

1900<br />

1800<br />

EDGAR4.2 agricultural soils emissions estimate for 2008: ~48 kTon y -1 .<br />

A mean methane flux of 0.3 μmol CH 4 m -2 s -1 extrapolated to a total rice paddy area of 2 * 10 9 m 2<br />

<strong>and</strong> an emission period of 60 days corresponds to ~50 kTon from the Po Valley.


Potential event flux contribution from rice paddies<br />

33<br />

~50 kTon from rice paddies corresponds to a potential flux contribution of<br />

the order of ~0.5 mg CH 4 m -2 h -1 evenly distributed over the Po Valley basin<br />

(7 * 10 10 m 2 ) during July <strong>and</strong> August.<br />

mg CH4 m -2 h -1<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

Ispra 2008-2010 methane flux<br />

All sectors<br />

Po Valley<br />

0 50 100 150 200<br />

Day of Year<br />

250 300 350<br />

N.B. compared to the potential strength of other major source the contribution<br />

from rice paddies is relatively small.


34<br />

The greenhouse gas monitoring activity in<br />

support of the JRC TM5 inverse modeling<br />

<strong>and</strong> the EDGAR emission database:<br />

To improve our underst<strong>and</strong>ing of the role of<br />

the Po Valley hotspot in the European GHG<br />

emission budget


Ispra (green) <strong>and</strong> Milan in the TM5 grid<br />

35


Comparison between 2008 CH 4 observations <strong>and</strong> the TM5 model for Ispra 36<br />

TM5 forward simulation of methane for 2008 for a 1 x 1 degree resolution. Black dots denote<br />

the hourly mean measured methane, the blue line is the mean model output, whereas the light<br />

blue shaded area represents the uncertainty range due to the model representativeness error.


Total EDGAR based a-priori CH 4 emissions in the TM5 model Ispra<br />

domain versus our flux estimates<br />

37<br />

Catchment area Emission in mg CH 4 m 2 h -1<br />

Model 1x1 degree grid 0.93<br />

Model 30 km footprint total 1.02<br />

Model 30 km footprint North 0.68<br />

Model 30 km footprint South 1.35<br />

Measured flux North: 0.36 – 0.46<br />

Measured flux South (Po Valley) 1.04 – 1.36


Total EDGAR based a-priori N 2 O emissions in the TM5 model Ispra<br />

domain versus our flux estimates<br />

38<br />

Catchment area Emission in mg N 2 O m 2 h -1<br />

Model 1x1 degree grid<br />

0.312 (biased from factory point source!)<br />

Model 30 km footprint total 0.032<br />

Model 30 km footprint North 0.021<br />

Model 30 km footprint South 0.043 (factory point source not included!)<br />

Measured flux North: 0.012 – 0.030<br />

Measured flux South (Po Valley) 0.042 – 0.054<br />

38


39<br />

Link of the Ispra GHG-monitoring<br />

activity to monitoring networks <strong>and</strong><br />

programs<br />

39


Connection of the JRC-Ispra GHG-Station to international<br />

monitoring programmes <strong>and</strong> networks<br />

40<br />

GEOMON (http://www.geomon.eu/)<br />

ICOS (http://icos-infrastructure.eu/)<br />

InGOS (www.ingos-infrastructure.eu/)<br />

40


Near real-time data presentation on the GEOMON-IMECC <strong>and</strong> ICOS data site<br />

41<br />

41


42<br />

Outlook<br />

Set-up of a 65 m tower starting in 2012 at the JRC-<br />

Ispra site to establish a long-term GHG monitoring<br />

facility combined with the Ispra EMEP/GAW activity.


Summary; what have we learned from the Ispra GHG<br />

station so far<br />

43<br />

• The Ispra station is the currently the only ground based station bordering the Po Valley region<br />

which is one of the global pollution hotspots, complementing a number of mountain station in<br />

the area.<br />

• The Ispra station encounters clean continental background level northerly air masses<br />

comparable to high altitude mountain stations that strongly contrast polluted southerly Po Valley<br />

air masses.<br />

• The 222 Radon based flux estimates allows for model independent emission estimates for the Po<br />

Valley region.<br />

• Our flux estimates indicate significantly enhanced emissions from the Po Valley relative to air<br />

masses from the North.<br />

• Model simulations are consistent within the model representativeness error.<br />

• Our regional flux estimates for CH 4 <strong>and</strong> N 2 O are in good agreement with total a-priori estimates<br />

from EDGAR.<br />

• A higher sampling mast will increase the catchment area of the station <strong>and</strong> lower the influence<br />

of local sources <strong>and</strong> the strong local influence of ecosystem respiration.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!