12.01.2015 Views

Sound insulation of Finnish building boards - Centria tutkimus ja ...

Sound insulation of Finnish building boards - Centria tutkimus ja ...

Sound insulation of Finnish building boards - Centria tutkimus ja ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Sound</strong> <strong>insulation</strong> <strong>of</strong><br />

<strong>Finnish</strong> <strong>building</strong> <strong>boards</strong><br />

Petra Larm, Jarkko Hakala, Valtteri Hongisto<br />

Work Environmental Research Report Series 22<br />

<strong>Finnish</strong> Institute <strong>of</strong> Occupational Health, 2006


Larm P, Hakala J, Hongisto V<br />

<strong>Sound</strong> <strong>insulation</strong> <strong>of</strong> <strong>Finnish</strong> <strong>building</strong> <strong>boards</strong>


Work Environmental Research Report Series 22<br />

<strong>Finnish</strong> Institute <strong>of</strong> Occupational Health, 2006<br />

SUMMARY OF PUBLICATION<br />

Publication:<br />

Authors:<br />

Title:<br />

PROJECT<br />

Work Environmental Research Report Series 22, <strong>Finnish</strong><br />

Institute <strong>of</strong> Occupational Health, Helsinki, Finland, 2006.<br />

ISBN 951­802­713­7, ISSN 1458­9311<br />

Larm P, Hakala J, Hongisto V<br />

<strong>Sound</strong> <strong>insulation</strong> <strong>of</strong> <strong>Finnish</strong> <strong>building</strong> <strong>boards</strong><br />

Research project: dBuilding<br />

Department in Charge: <strong>Finnish</strong> Institute <strong>of</strong> Occupational Health, Good Indoor<br />

Environment Theme, Laboratory <strong>of</strong> Ventilation and<br />

Acoustics, Turku<br />

Financier:<br />

Tekes, <strong>Finnish</strong> Institute <strong>of</strong> Occupational Health, companies<br />

Project Duration: 1/2003 –12/2006 FIOH project number: 305017<br />

Date <strong>of</strong> publication: Aug 23, 2006 Permission to publish: Aug 2006<br />

Pages: 34 Volume: 1<br />

ABSTRACT<br />

The airborne sound <strong>insulation</strong> <strong>of</strong> 27 <strong>Finnish</strong> <strong>building</strong> <strong>boards</strong> were investigated in<br />

laboratory conditions. The goal was to attain reliable and comparable sound<br />

<strong>insulation</strong> data for these products by using the same measurement arrangement and<br />

mounting method during each test. The sound reduction index was determined<br />

according to ISO 140­3 and ISO 717­1. Physical properties, such as the total loss<br />

factor, surface mass, and Young's modulus, were also determined to improve the<br />

material data base used in sound <strong>insulation</strong> prediction models. The measurements<br />

were made in the laboratory <strong>of</strong> acoustics <strong>of</strong> <strong>Finnish</strong> Institute <strong>of</strong> Occupational Health<br />

in Turku.<br />

The surface masses <strong>of</strong> the <strong>boards</strong> lied between 3 and 31 kg/m 2 . The weighted sound<br />

reduction indices, R w , lied between 23 and 40 dB. The results predicted by the<br />

physical properties <strong>of</strong> the <strong>boards</strong> will be presented in a subsequent report. The<br />

results <strong>of</strong> this study can be exploited by manufacturers, designers, constructors and<br />

researchers.


Larm P, Hakala J, Hongisto V<br />

<strong>Sound</strong> <strong>insulation</strong> <strong>of</strong> <strong>Finnish</strong> <strong>building</strong> <strong>boards</strong><br />

JULKAISUTIEDOT<br />

Julkaisu:<br />

Kirjoitta<strong>ja</strong>t:<br />

Otsikko:<br />

Työympäristötutkimuksen raporttisar<strong>ja</strong> 22, Työterveyslaitos,<br />

Helsinki, 2006<br />

ISBN 951­802­713­7, ISSN 1458­9311<br />

Larm P, Hakala J, Hongisto V<br />

Rakennuslevyjen ääneneristävyys<br />

PROJEKTITIEDOT<br />

Tutkimusprojekti: Ääneneristävyys vaativissa rakennuksissa ­ dBuilding<br />

Vastuullinen osasto: Työterveyslaitos, Laadukas sisäympäristö ­teema,<br />

Ilmastointi­ <strong>ja</strong> akustiikkalaboratorio, Turku<br />

Rahoitta<strong>ja</strong>: Tekes, Työterveyslaitos, 6 rakennusalan yritystä<br />

Projektin kesto: 1/2003 –12/2006 TTL:n projektinumero: 305017<br />

Painopäivämäärä: 23.8.2006 Julkaisuvapaa: heti<br />

Sivu<strong>ja</strong>: 34 Painos: 1<br />

TIIVISTELMÄ<br />

Tutkimuksessa selvitettiin 27 suomalaisen rakennuslevyn ilmaääneneristävyys<br />

laboratorio­olosuhteissa. Tarkoituksena oli aikaansaada mahdollisimman<br />

vertailukelpoisia mittaustuloksia. Jokaisen mittauksen yhteydessä käytettiin samo<strong>ja</strong><br />

mittausjärjestelmiä eikä näytteen asennustapaa muutettu näytteiden välillä.<br />

Ilmaääneneristävyys määritettiin ISO 140­3 <strong>ja</strong> ISO 717­1 mukaan. Myös<br />

kokonaishäviökerroin, pintamassa <strong>ja</strong> Youngin moduli määritettiin, jotta voitaisiin<br />

parantaa ääneneristävyyden ennustelaskelmissa käytettävää materiaalitietokantaa.<br />

Mittaukset tehtiin Työterveyslaitoksen ilmastointi­ <strong>ja</strong> akustiikkalaboratoriossa<br />

Turussa.<br />

Tutkittujen rakennuslevyjen pintamassat vaihtelivat 3 <strong>ja</strong> 31 kg/m 2 välillä.<br />

Ilmaääneneristysluvun R w arvot vaihtelivat 23 <strong>ja</strong> 40 dB välillä. Levyjen fysikaalisten<br />

ominaisuuksien mukaan ennustetut tulokset esitetään vasta seuraavassa raportissa.<br />

Tutkimuksen tuloksia voivat hyödyntää rakennustuotevalmista<strong>ja</strong>t <strong>ja</strong> ­toimitta<strong>ja</strong>t,<br />

suunnitteli<strong>ja</strong>t, rakenta<strong>ja</strong>t <strong>ja</strong> tutki<strong>ja</strong>t.


Work Environmental Research Report Series 22<br />

<strong>Finnish</strong> Institute <strong>of</strong> Occupational Health, 2006<br />

FOREWORD<br />

This investigation was a part <strong>of</strong> dBuilding project which was carried out<br />

during 2003­2006 in <strong>Finnish</strong> Institute <strong>of</strong> Occupational Health in Turku. The<br />

aim <strong>of</strong> the project was to develop the prediction models <strong>of</strong> airborne sound<br />

<strong>insulation</strong> <strong>of</strong> multilayer walls.<br />

As a part <strong>of</strong> the project, the sound <strong>insulation</strong> <strong>of</strong> single <strong>building</strong> <strong>boards</strong> had to<br />

be investigated since they form the basis <strong>of</strong> multilayer walls. There were<br />

very little reliable data available on single <strong>building</strong> <strong>boards</strong> as such, although<br />

they are applied in various multilayer structures.<br />

The measurements were carried out by Jarkko Hakala and Petra Larm<br />

during December 2004 and July 2005.<br />

The research project was financed by Tekes, Rautaruukki, Knauf, Saint­<br />

Gobain Isover, Antti­Teollisuus, Aker Yards Piikkiö and Kurikan Interiööri.<br />

Thanks are due to the contact persons for their support and useful<br />

comments in the meetings <strong>of</strong> the steering group.<br />

The final report <strong>of</strong> the dBuilding project deals with the prediction model <strong>of</strong><br />

multilayered walls. The report will be published during 2007 in this report<br />

series.<br />

Turku, August 23, 2006<br />

Valtteri Hongisto


Larm P, Hakala J, Hongisto V<br />

<strong>Sound</strong> <strong>insulation</strong> <strong>of</strong> <strong>Finnish</strong> <strong>building</strong> <strong>boards</strong><br />

TABLE OF CONTENTS<br />

1. INTRODUCTION...................................................................................................... 7<br />

2. MATERIALS AND METHODS..................................................................................... 8<br />

3. MOUNTING ........................................................................................................... 10<br />

4. THEORY IN BRIEF................................................................................................. 12<br />

5. RESULTS............................................................................................................... 14<br />

5.1 The dependence <strong>of</strong> R W on the surface mass........................................................ 15<br />

5.2 Predicted R W versus measured R W ...................................................................... 15<br />

5.3 <strong>Sound</strong> <strong>insulation</strong> as a function <strong>of</strong> frequency ....................................................... 15<br />

5.4 The total loss factor............................................................................................ 20<br />

6. DISCUSSION......................................................................................................... 21<br />

REFERENCES............................................................................................................. 22<br />

A1. DESCRIPTIONS OF THE BUILDING BOARDS........................................................ 23<br />

A2. METHODS IN DETAIL .......................................................................................... 24<br />

A2.1 <strong>Sound</strong> reduction index...................................................................................... 24<br />

A2.2 The uncertainty <strong>of</strong> the sound <strong>insulation</strong> measurement..................................... 25<br />

A2.3 Young's modulus .............................................................................................. 29<br />

A2.4 The total loss factor <strong>of</strong> the board...................................................................... 30<br />

A3. SOUND REDUCTION INDICES AND TOTAL LOSS FACTORS .................................. 32


Work Environmental Research Report Series 22<br />

<strong>Finnish</strong> Institute <strong>of</strong> Occupational Health, 2006<br />

1. INTRODUCTION<br />

At present, lightweight <strong>building</strong> <strong>boards</strong> are being commonly used in various<br />

wall structures because <strong>of</strong> their low costs and easy construction.<br />

Optimization is <strong>of</strong>ten needed in order to achieve the desired characteristics<br />

and sound <strong>insulation</strong> with defined cost, efficiency and other conditions. The<br />

experimental testing <strong>of</strong> structures is time consuming and, thus, the<br />

prediction <strong>of</strong> the behaviour <strong>of</strong> a wall is <strong>of</strong>ten a good alternative. A prediction<br />

model for different kind <strong>of</strong> single and multilayer wall structures has been<br />

developed and used in FIOH for the prediction <strong>of</strong> sound <strong>insulation</strong>. The<br />

model is now being further developed. Also the databases are extended and<br />

improved.<br />

Building <strong>boards</strong> have been tested in various different projects but the<br />

comparison between the achieved results is not reliable because <strong>of</strong> different<br />

testing conditions. The mounting <strong>of</strong> the board, e.g. the position <strong>of</strong> the board<br />

in the niche <strong>of</strong> the test opening and the screwing tightness can have a<br />

significant effect on the results. It is also difficult to obtain test data from<br />

companies, because usually only R w values have been published and original<br />

test data is not available in public. The data can also be obsolete or<br />

imperfectly reported.<br />

The differences between different <strong>building</strong> <strong>boards</strong> are rather small, if their<br />

surface masses are <strong>of</strong> the same class. The differences can be only a few<br />

decibels. Such small differences can be buried under inter­laboratory<br />

differences, which have been reported to be even several decibels at certain<br />

frequencies and 1 to 2 dB for R w . To obtain comparable data for <strong>building</strong><br />

<strong>boards</strong>, it is preferable that the measurements are carried out in the same<br />

laboratory using the same apparatus and same mounting practice.<br />

Although the differences between <strong>building</strong> <strong>boards</strong> can be only a few decibels<br />

it does not mean that their comparison is worthless. The choice <strong>of</strong> the<br />

optimum <strong>building</strong> board is very important in multilayer wall structures.<br />

Typically, multilayer wall comprises 2 to 4 <strong>boards</strong> but 8 <strong>building</strong> <strong>boards</strong> are<br />

used sometimes. In such cases, the effect on optimization on the total<br />

performance <strong>of</strong> the wall can be even 10 dB.<br />

The main goal <strong>of</strong> this study was to produce reliable data <strong>of</strong> the sound<br />

<strong>insulation</strong> <strong>of</strong> the most commonly used <strong>building</strong> <strong>boards</strong> in Finland.<br />

Altogether 27 commonly used <strong>building</strong> <strong>boards</strong> available in Finland in 2005<br />

were selected for the study. The main parameter studied was the sound<br />

reduction index. The specimens were all tested exactly in the same way, so<br />

the results are as comparable as possible. Also basic material parameters<br />

were determined, such as Young's modulus, total loss factor and surface<br />

mass <strong>of</strong> the board.<br />

The prediction <strong>of</strong> the multilayer structures is facilitated and made more<br />

accurate as the measured values can be exploited in the predictions. This is<br />

valuable data also for manufacturers and designers.<br />

7


Larm P, Hakala J, Hongisto V<br />

<strong>Sound</strong> <strong>insulation</strong> <strong>of</strong> <strong>Finnish</strong> <strong>building</strong> <strong>boards</strong><br />

2. MATERIALS AND METHODS<br />

The specimens and some <strong>of</strong> their basic characteristics are presented in Table<br />

2.1. The English and <strong>Finnish</strong> trade names <strong>of</strong> the specimen, information on<br />

their material and manufacturers/importers can be found from Appendix 1.<br />

Table 2.1. The specimens and their properties.<br />

Specimen Specimen Thickness Size Surface mass<br />

No. [mm] [mm] [kg/m 2 ]<br />

Plaster<strong>boards</strong><br />

1 KS6 7 1200 x 2240 5.9<br />

2 KTS9 9 1200 x 2240 7.6<br />

3 KN13 13 1200 x 2240 8.8<br />

4 KEK13 13 1200 x 2240 11.7<br />

5 DG15 15 1200 x 2240 16.8<br />

Minerit<br />

6 WS4 5 1200 x 2240 7.7<br />

7 LW 8 1200 x 2240 9.8<br />

8 WS8 8 1200 x 2240 13.2<br />

9 HD8 8 1200 x 2240 14.7<br />

10 Pastel8 8 1200 x 2240 14.8<br />

11 HD10 10 1200 x 2240 18.4<br />

Wood based<br />

12 Chip11 11 1200 x 2240 7.0<br />

13 MDF12 12 1200 x 2240 9.2<br />

14 Ply15 15 1200 x 2240 10.4<br />

15 MDF19 19 1200 x 2240 13.8<br />

16 Chip22 22 1200 x 2240 13.9<br />

17 Ply21 21 1200 x 2240 15.0<br />

Wood fiber board<br />

18 LION12 12 1200 x 2240 3.1<br />

19 LION25 24 1200 x 2240 8.0<br />

Aquapanel<br />

20 AqID13 13 900 x 1200 14.0<br />

21 AqOD13 13 900 x 1200 15.6<br />

Steel<br />

22 Steel2 2 1240 x 2240 15.6<br />

23 Steel4 4 1245 x 2245 31.2<br />

Others<br />

24 MultiCo8 8 1200 x 2240 8.4<br />

25 Master10 10 1200 x 2240 10.1<br />

26 UniCo12.5 10 1200 x 2240 10.5<br />

27 SXL18 18 570 x 2240 22.4<br />

*The number after the specimen name is the thickness informed by the manufacturer. The<br />

measured thickness values are presented in the third column.<br />

8


Work Environmental Research Report Series 22<br />

<strong>Finnish</strong> Institute <strong>of</strong> Occupational Health, 2006<br />

<strong>Sound</strong> reduction index R (dB) was measured according to ISO 140­3 [1] at<br />

frequencies from 50 to 10000 Hz in 1/3 octave bands. The highest<br />

measured frequency was extended from the normal 5000 Hz to 10000 Hz to<br />

be able to observe the coincidence dip <strong>of</strong> most <strong>of</strong> the specimens.<br />

The weighted sound reduction index R W (dB) was determined according to<br />

ISO 717­1 [2] using frequency range from 100 to 3150 Hz. At low<br />

frequencies, the measurement was carried out by sound intensity method<br />

(ISO 15186­3) [3] to improve the measurement accuracy.<br />

The results <strong>of</strong> sound reduction index are presented in the frequency range<br />

from 100 to 10000 Hz, because the frequency range 50 –80 Hz suffered<br />

from inaccuracies. The measurement results from the pressure and intensity<br />

methods were combined in the following way. The results from the intensity<br />

method (ISO 15186) were used at frequencies from 100 Hz to 200 Hz and<br />

above that, the results from the pressure method (ISO 140­3) were used. A<br />

more detailed description <strong>of</strong> the sound reduction index measurement is<br />

presented in Appendix 2.<br />

Young's modulus E [Pa] is a measure <strong>of</strong> the stiffness <strong>of</strong> the material. The<br />

parameter is needed for the prediction <strong>of</strong> the sound <strong>insulation</strong> as the speed<br />

<strong>of</strong> the bending wave in a board depends on the Young's modulus <strong>of</strong> the<br />

board material. Young's modulus was measured using a self made bending<br />

machine. The detailed description <strong>of</strong> the measurement method can be found<br />

from Appendix 2.<br />

The surface mass [kg/m 2 ] <strong>of</strong> each specimen was determined using a<br />

laboratory scale UWE PM­150. The values could be slightly different from<br />

their nominal values.<br />

The sound <strong>insulation</strong> <strong>of</strong> a <strong>building</strong> board depends not only on the board<br />

characteristics but also on the coupling to the surrounding structures. The<br />

total loss factor characterises the boundary conditions <strong>of</strong> the mounting. It<br />

is a sum <strong>of</strong> different loss mechanisms: internal losses <strong>of</strong> the board, losses<br />

from the edges and sound radiation losses. The total loss factor was<br />

measured because it affects the sound <strong>insulation</strong> mainly at and above the<br />

critical frequency and variations in mounting can explain inter­laboratory<br />

differences between the values <strong>of</strong> sound reduction index. The total loss<br />

factors <strong>of</strong> the mounted <strong>building</strong> elements were measured according to ISO<br />

140­3:1995(E) Annex E. A detailed description <strong>of</strong> the measurement method<br />

for the total loss factor can be found from the Appendix 2.<br />

9


Larm P, Hakala J, Hongisto V<br />

<strong>Sound</strong> <strong>insulation</strong> <strong>of</strong> <strong>Finnish</strong> <strong>building</strong> <strong>boards</strong><br />

3. MOUNTING<br />

The specimens were mounted in a built­in frame <strong>of</strong> a test opening using 20<br />

mm x 20 mm wooden laths with a screw attachment (division <strong>of</strong> 20 cm).<br />

Thus, the boundary condition at the edges <strong>of</strong> the specimen was "fixed". The<br />

perimeter <strong>of</strong> the frame was sealed with acrylic mass, and the perimeter <strong>of</strong><br />

the specimen with an adhesive tape.<br />

The test opening was in a double filler wall. The two parts <strong>of</strong> the filler wall<br />

were isolated from each other. The dimensions <strong>of</strong> the test opening were<br />

1250 mm x 2250 x 480 mm. The typical width <strong>of</strong> commercial <strong>boards</strong> is 1200<br />

mm. Therefore, the opening was narrowed by one inch board to the width <strong>of</strong><br />

1220 mm where the specimen was easy to fix.<br />

The nominal specimen area was 2.7 m 2 . If the nominal size <strong>of</strong> the board was<br />

smaller than the test opening, the opening was covered using two or three<br />

<strong>boards</strong> and the joints <strong>of</strong> the <strong>boards</strong> were sealed with an adhesive tape. The<br />

sealing between the <strong>boards</strong> was tested by measuring the sound intensity<br />

coming through the sealing and the solid board before each sound <strong>insulation</strong><br />

measurement.<br />

measurement direction<br />

AS­1<br />

280<br />

acrylmastic duct tape<br />

1250<br />

AS­2<br />

200<br />

section <strong>of</strong> the single wall panel<br />

Figure 3.1. Mounting <strong>of</strong> the specimen, seen from above. AS­1 and AS­2<br />

indicate the isolated walls between the test rooms. The specimens were<br />

installed in the middle <strong>of</strong> AS­1 as shown.<br />

10


Work Environmental Research Report Series 22<br />

<strong>Finnish</strong> Institute <strong>of</strong> Occupational Health, 2006<br />

Figure 3.2. Mounting <strong>of</strong> the specimen comprised <strong>of</strong> three pieces <strong>of</strong> <strong>building</strong><br />

board (specimen no. 20, AqID13).<br />

11


Larm P, Hakala J, Hongisto V<br />

<strong>Sound</strong> <strong>insulation</strong> <strong>of</strong> <strong>Finnish</strong> <strong>building</strong> <strong>boards</strong><br />

4. THEORY IN BRIEF<br />

Some basic equations concerning the sound <strong>insulation</strong> behaviour <strong>of</strong> a thin<br />

single <strong>building</strong> board are presented in this chapter for easier interpretation<br />

<strong>of</strong> the results. More detailed information on the sound <strong>insulation</strong> <strong>of</strong> wall<br />

structures is found e.g. from reference [4].<br />

<strong>Sound</strong> reduction index R [dB] is defined as the logarithm to the base 10 <strong>of</strong><br />

the ratio <strong>of</strong> the sound power incident to the board W 1 to the sound power<br />

transmitted through the board W 2 (assuming that there is no flanking<br />

transmission through any other component than the board being tested):<br />

W1<br />

R 10log dB<br />

(1)<br />

10<br />

W2<br />

If the board is assumed to be thin and infinite, a simplified prediction model<br />

can be used with good accuracy up to the critical frequency. At frequency f<br />

[Hz] sound reduction index depends on the surface mass m [kg/m 2 ] <strong>of</strong> the<br />

board according to:<br />

2f<br />

<br />

( ) 20log10 10<br />

<br />

R f <br />

<br />

c0<br />

<br />

mf<br />

<br />

42 10log<br />

ln<br />

S dB<br />

The finite size <strong>of</strong> the board was taken into account by using a Sewell's<br />

correction term, which depends on the frequency and the area S [m 2 ] <strong>of</strong> the<br />

board and the velocity <strong>of</strong> sound in air c 0 (343 m/s).<br />

Equation (2) is called the field incidence mass law. It is valid in reverberant<br />

rooms where sound reaches the specimen evenly from all directions.<br />

However, the mass law is valid only below the half <strong>of</strong> the critical frequency f c<br />

<strong>of</strong> the specimen. At the critical frequency f c , the wavelength <strong>of</strong> the bending<br />

wave in the panel coincides with the wavelength <strong>of</strong> the sound propagating in<br />

air. At and above critical frequency, the sound energy is effectively<br />

transmitted through the element and, thus, there is a dip in the sound<br />

<strong>insulation</strong> curve. This is called the coincidence phenomenon. The critical<br />

frequency can be calculated from<br />

f c<br />

2<br />

0<br />

12 1<br />

2 m<br />

<br />

<br />

3<br />

c<br />

(3)<br />

2<br />

Eh<br />

where is Poisson's ratio (typically 0.25...0.28), E is Young's modulus [Pa]<br />

and h is the thickness <strong>of</strong> the board [m].<br />

In Fig. 4.1, the measured sound reduction index for specimen no. 4 (KEK13)<br />

is presented. The critical frequency is found to be 2500 Hz. The critical<br />

frequency and the half <strong>of</strong> the critical frequency are indicated in the figure.<br />

The mass law value calculated by Eq. (2) is also presented.<br />

(2)<br />

12


Work Environmental Research Report Series 22<br />

<strong>Finnish</strong> Institute <strong>of</strong> Occupational Health, 2006<br />

60<br />

50<br />

40<br />

R [dB]<br />

30<br />

20<br />

10<br />

0<br />

f c /2<br />

f c<br />

100<br />

160<br />

250<br />

400<br />

630<br />

1000<br />

1600<br />

2500<br />

4000<br />

6300<br />

10000<br />

Frequency [Hz]<br />

Mass law<br />

KEK13<br />

Figure 4.1. The mass law curve calculated by Equation (2). Surface mass <strong>of</strong><br />

the specimen was 11.7 kg/m 2 .<br />

13


Larm P, Hakala J, Hongisto V<br />

<strong>Sound</strong> <strong>insulation</strong> <strong>of</strong> <strong>Finnish</strong> <strong>building</strong> <strong>boards</strong><br />

5. RESULTS<br />

In Table 5.1, the measured data are presented for every specimen including<br />

the surface mass, the critical frequency, Young's modulus and R W . This data<br />

is discussed more in detail in the following chapters.<br />

Table 5.1. The measured surface mass, the critical frequency, Young's<br />

modulus and R W <strong>of</strong> the specimens.<br />

Specimen Specimen Surface mass Critical frequency Young's modulus R w<br />

number [kg/m 2 ] [Hz] [Pa] x 10 9 [dB]<br />

Plasterboard<br />

1 KS6 5.9 5000 5.4 28<br />

2 KTS9 7.6 3150 4.8 28<br />

3 KN13 8.8 2500 3.0 28<br />

4 KEK13 11.7 2500 4.5 29<br />

5 DG15 16.8 2000 7.8 31<br />

Minerit<br />

6 WS4 7.7 5000 15 30<br />

7 LW 9.8 3150 9.6 30<br />

8 WS8 13.2 3150 15 31<br />

9 HD8 14.7 3150 16 33<br />

10 Pastel8 14.8 3150 15 32<br />

11 HD10 18.4 2500 15 32<br />

Wood based<br />

12 Chip11 7.0 4000 2.9 29<br />

13 MDF12 9.2 2500 6.3 28<br />

14 Ply15 10.4 1600 11 26<br />

15 MDF19 13.8 1600 4.8 28<br />

16 Chip22 13.9 2000 3.4 29<br />

17 Ply21 15.0 1250 11 28<br />

Wood fiber board<br />

18 LION12 3.1 8000 0.3 23<br />

19 LION25 8.0 4000 0.2 30<br />

Aquapanel<br />

20 AqID13 14.0 2000 7.9 30<br />

21 AqOD13 15.6 2500 3.9 33<br />

Steel<br />

22 Steel2 15.6 8000 213 36<br />

23 Steel4 31.2 3150 213 40<br />

Others<br />

24 MultiCo8 8.4 4000 7.6 30<br />

25 Master10 10.1 3150 7.4 29<br />

26 UniCo12.5 10.5 3150 2.3 32<br />

27 SXL18 22.4 2000 7.6 33<br />

14


Work Environmental Research Report Series 22<br />

<strong>Finnish</strong> Institute <strong>of</strong> Occupational Health, 2006<br />

5.1 The dependence <strong>of</strong> R W on the surface mass<br />

The measured surface masses and R W values are plotted in Figure 5.1.1 with<br />

the designated <strong>building</strong> board groups according to Table 5.1. R W as a<br />

function <strong>of</strong> the surface mass predicted by the mass law <strong>of</strong> Eq. (2) is also<br />

presented.<br />

The surface masses <strong>of</strong> the specimen varied from 3 to 30 kg/m 2 , and the<br />

weighted sound reduction indices from 23 to 40 dB.<br />

Most <strong>of</strong> the specimens could not reach the R W value predicted by the mass<br />

law. This results from the fact that their critical frequency falls upon the<br />

frequency range <strong>of</strong> R W calculation (100 –3150 Hz). The mass law is valid<br />

only for frequencies below approximately half <strong>of</strong> the critical frequency.<br />

Specimen 1, 6, 12, 18, 19, 22 and 24 (see Table 5.1) are situated close to<br />

the mass law line because they have a high critical frequency.<br />

According to Equations (2) and (3), it is expected that the higher the surface<br />

mass, the higher is the sound reduction. Also, the higher the surface mass,<br />

the lower is the critical frequency and, thus, the wider is the deviation from<br />

the mass law. This behaviour could be detected with the specimen groups<br />

composed <strong>of</strong> specimen having reasonably monotropic material properties,<br />

i.e. bending stiffnesses are equal in vertical and horizontal directions. Such<br />

specimens were plaster<strong>boards</strong>, Minerit board and steel.<br />

Other specimen groups reveal a more complicated behaviour around the<br />

critical frequency. It is expected that these <strong>boards</strong> have orthotropic<br />

properties, i.e., their bending stiffness varies considerably in vertical and<br />

horizontal directions.<br />

5.2 Predicted R W versus measured R W<br />

The mass law is theoretically the maximum limit for the sound <strong>insulation</strong> <strong>of</strong><br />

a construction board. An optimal board has R W close to the value predicted<br />

by the mass law. Thus, the ratio <strong>of</strong> the measured R W to the predicted R W can<br />

be considered as an indicator <strong>of</strong> the mass optimality <strong>of</strong> the sound <strong>insulation</strong>.<br />

In Table 5.2.1, the predicted R W values, as calculated by Eq. (2), and the<br />

ratios <strong>of</strong> the measured R W to the predicted R W are presented for all the<br />

specimens. The higher the ratio "Measured R w / Predicted R w " is, the better<br />

sound <strong>insulation</strong> the board gives relative to its surface mass. Boards having<br />

a high critical frequency give the highest mass optimality.<br />

5.3 <strong>Sound</strong> <strong>insulation</strong> as a function <strong>of</strong> frequency<br />

The sound reduction indices as a function <strong>of</strong> frequency are presented in<br />

Figures 5.3.1 –5.3.7. The specimens are grouped according to Table 5.1.<br />

<strong>Sound</strong> reduction indices are tabulated in Appendix 3.<br />

If the same material but different thicknesses are compared, it becomes<br />

evident that the thinner the board is, the higher is the critical frequency. As<br />

a consequence <strong>of</strong> high critical frequency, the mass optimality is high in<br />

Table 5.2.1. In general, it is more optimal to use thin <strong>boards</strong> instead <strong>of</strong> thick<br />

<strong>boards</strong> because they lead to higher sound <strong>insulation</strong> with lower mass.<br />

Some <strong>boards</strong> have a gentle coincidence dip, such as Aquapanel outdoor and<br />

UniCo board. This is probably due to their different stiffnesses in vertical and<br />

horizontal directions, which results in two critical frequencies <strong>of</strong> the board. If<br />

the critical frequencies are close enough, they can not be distinguished, but<br />

together they form a wider coincidence gap.<br />

15


Larm P, Hakala J, Hongisto V<br />

<strong>Sound</strong> <strong>insulation</strong> <strong>of</strong> <strong>Finnish</strong> <strong>building</strong> <strong>boards</strong><br />

42<br />

40<br />

23<br />

38<br />

36<br />

22<br />

Rw [dB]<br />

34<br />

32<br />

30<br />

28<br />

1<br />

12<br />

6<br />

2<br />

26<br />

8<br />

19 24<br />

7<br />

10<br />

25<br />

4<br />

3 13<br />

15<br />

9<br />

20<br />

21<br />

16<br />

17<br />

5<br />

11<br />

27<br />

26<br />

14<br />

24<br />

22<br />

18<br />

1 10 100<br />

Surface mass [kg/m 2 ]<br />

Fig. 5.1.1. The dependence <strong>of</strong> measured R W on the surface mass. For the<br />

specimen numbers, see Table 5.1.<br />

16


Work Environmental Research Report Series 22<br />

<strong>Finnish</strong> Institute <strong>of</strong> Occupational Health, 2006<br />

Table 5.2.1. Optimality <strong>of</strong> the sound <strong>insulation</strong> <strong>of</strong> the specimens.<br />

Specimen Specimen Predicted R w Measured R w /<br />

number [dB] Predicted R w<br />

Plasterboard<br />

1 KS6 28 1.00<br />

2 KTS9 30 0.93<br />

3 KN13 31 0.90<br />

4 KEK13 33 0.88<br />

5 DG15 37 0.84<br />

Minerit<br />

6 WS4 30 1.00<br />

7 LW 32 0.94<br />

8 WS8 35 0.89<br />

9 HD8 35 0.94<br />

10 Pastel8 36 0.89<br />

11 HD10 37 0.86<br />

Wood based<br />

12 Chip11 29 1.00<br />

13 MDF12 31 0.90<br />

14 Ply15 32 0.81<br />

15 MDF19 35 0.80<br />

16 Chip22 35 0.83<br />

17 Ply21 36 0.78<br />

Wood fiber board<br />

18 LION12 22 1.05<br />

19 LION25 30 1.00<br />

Aquapanel<br />

20 AqID13 35 0.86<br />

21 AqOD13 36 0.92<br />

Steel<br />

22 Steel2 36 1.00<br />

23 Steel4 42 0.95<br />

Others<br />

24 MultiCo8 31 0.97<br />

25 Master10 32 0.91<br />

26 UniCo12.5 32 1.00<br />

27 SXL18 39 0.85<br />

17


Larm P, Hakala J, Hongisto V<br />

<strong>Sound</strong> <strong>insulation</strong> <strong>of</strong> <strong>Finnish</strong> <strong>building</strong> <strong>boards</strong><br />

50<br />

50<br />

40<br />

40<br />

30<br />

30<br />

20<br />

10<br />

0<br />

100<br />

160<br />

250<br />

400<br />

630<br />

1000<br />

1600<br />

2500<br />

4000<br />

6300<br />

10000<br />

R [dB]<br />

20<br />

10<br />

0<br />

100<br />

160<br />

250<br />

400<br />

630<br />

1000<br />

1600<br />

2500<br />

4000<br />

6300<br />

10000<br />

R [dB]<br />

Frequency [Hz]<br />

Frequency [Hz]<br />

DG15 16.8 kg/m2<br />

KN13 8.8 kg/m2<br />

KS6 5.9 kg/m2<br />

KEK13 11.7 kg/m2<br />

TS9 7.6 kg/m2<br />

HD10 18.4 kg/m2<br />

HD8 14.7 kg/m2<br />

LW8 9.8 kg/m2<br />

Pastel8 14.8 kg/m2<br />

WS8 13.2 kg/m2<br />

WS4 7.7 kg/m2<br />

Fig. 5.3.1. Plaster<strong>boards</strong>.<br />

Fig. 5.3.2. Minerit <strong>boards</strong>.<br />

50<br />

50<br />

40<br />

40<br />

30<br />

30<br />

20<br />

10<br />

0<br />

100<br />

160<br />

250<br />

400<br />

630<br />

1000<br />

1600<br />

2500<br />

4000<br />

6300<br />

10000<br />

R [dB]<br />

20<br />

10<br />

0<br />

100<br />

160<br />

250<br />

400<br />

630<br />

1000<br />

1600<br />

2500<br />

4000<br />

6300<br />

10000<br />

R [dB]<br />

Frequency [Hz]<br />

Frequency [Hz]<br />

Ply21 15.0 kg/m2<br />

MDF19 13.8 kg/m2<br />

MDF12 9.2 kg/m2<br />

Chip22 13.9 kg/m2<br />

Ply15 10.4 kg/m2<br />

Chip12 7.0 kg/m2<br />

LION25 8.0 kg/m2<br />

LION12 3.1 kg/m2<br />

Fig. 5.3.3. Wood based <strong>boards</strong>.<br />

Fig. 5.3.4. Wood fibre <strong>boards</strong>.<br />

18


Work Environmental Research Report Series 22<br />

<strong>Finnish</strong> Institute <strong>of</strong> Occupational Health, 2006<br />

50<br />

50<br />

40<br />

40<br />

30<br />

30<br />

20<br />

10<br />

0<br />

100<br />

160<br />

250<br />

400<br />

630<br />

1000<br />

1600<br />

2500<br />

4000<br />

6300<br />

10000<br />

R [dB]<br />

20<br />

10<br />

0<br />

100<br />

160<br />

250<br />

400<br />

630<br />

1000<br />

1600<br />

2500<br />

4000<br />

6300<br />

10000<br />

R [dB]<br />

Frequency [Hz]<br />

Frequency [Hz]<br />

AqOD13 15.6 kg/m2<br />

AqID13 14.0 kg/m2<br />

Steel 4 mm 31.2 kg/m2<br />

Steel 2 mm 15.6 kg/m2<br />

Fig. 5.3.5. Aqua panels.<br />

Fig. 5.3.6. Steel plates.<br />

50<br />

40<br />

30<br />

R [dB]<br />

20<br />

10<br />

0<br />

100<br />

160<br />

250<br />

400<br />

630<br />

1000<br />

1600<br />

2500<br />

4000<br />

6300<br />

10000<br />

Frequency [Hz]<br />

SXL18 22.4 kg/m2 UniCo10 10.5 kg/m2<br />

Master10 10.1 kg/m2 MultiCo8 8.4 kg/m2<br />

Fig. 5.3.7. Various other <strong>building</strong> <strong>boards</strong>.<br />

19


Larm P, Hakala J, Hongisto V<br />

<strong>Sound</strong> <strong>insulation</strong> <strong>of</strong> <strong>Finnish</strong> <strong>building</strong> <strong>boards</strong><br />

5.4 The total loss factor<br />

The total loss factors <strong>of</strong> the mounted specimens are presented Appendix 3.<br />

The total loss factors were quite the same for all the specimens. The<br />

average total loss factor across frequencies from 100 –10000 Hz was 0.02<br />

–0.03 for all the specimens except for the steel, which had an average<br />

value <strong>of</strong> 0.01. Below the critical frequency, the total loss factors were<br />

around 0.03.<br />

For most <strong>of</strong> the specimen, there was a dip in the total loss factor curve at<br />

the critical frequency, such as in the Fig. 5.4.1.<br />

1.000<br />

MDF19<br />

MDF12<br />

0.100<br />

0.010<br />

0.001<br />

100<br />

125<br />

160<br />

200<br />

250<br />

315<br />

400<br />

500<br />

630<br />

800<br />

1000<br />

1250<br />

1600<br />

2000<br />

2500<br />

3150<br />

4000<br />

5000<br />

6300<br />

8000<br />

10000<br />

Loss factor<br />

Frequency [dB]<br />

Fig. 5.4.1. The total loss factors <strong>of</strong> the MDF <strong>boards</strong> as a function <strong>of</strong><br />

frequency.<br />

20


Work Environmental Research Report Series 22<br />

<strong>Finnish</strong> Institute <strong>of</strong> Occupational Health, 2006<br />

6. DISCUSSION<br />

The results attained in this study provide a reliable comparison between the<br />

specimens studied, which helps the constructor to choose the right board<br />

according to the need. The studied group represents a wide range <strong>of</strong> the<br />

<strong>building</strong> <strong>boards</strong> used in Finland in 2004. However, all possible <strong>boards</strong> in the<br />

market was not included.<br />

High efforts were made to obtain good accuracy <strong>of</strong> individual <strong>boards</strong> and<br />

reliable comparability between <strong>boards</strong>. The total loss factor and Young's<br />

modulus are advantageous data to be used in the prediction for sound<br />

<strong>insulation</strong> <strong>of</strong> <strong>building</strong> <strong>boards</strong>.<br />

In the general utilization <strong>of</strong> the results as such, some points are to<br />

remember:<br />

<br />

<br />

<br />

The specimen size was rather small. A small specimen is more sensitive<br />

to edge constraint conditions. Mounting was the same for every<br />

specimen, so the comparability does not suffer from the small size as<br />

such, however, the results may not exactly be the same for larger<br />

specimen sizes.<br />

The vertical stud spacing was 1200 mm. The results may not be directly<br />

adapted on walls having the common stud spacing <strong>of</strong> 600 mm.<br />

The values presented in this study are laboratory values (R w ). They are<br />

<strong>of</strong>ten not reached in <strong>building</strong>s (R' w ) due to flanking and sound leaks.<br />

21


Larm P, Hakala J, Hongisto V<br />

<strong>Sound</strong> <strong>insulation</strong> <strong>of</strong> <strong>Finnish</strong> <strong>building</strong> <strong>boards</strong><br />

REFERENCES<br />

1. ISO 140­3:1995 (E) Acoustics – Measurement <strong>of</strong> sound <strong>insulation</strong> in<br />

<strong>building</strong>s and <strong>of</strong> <strong>building</strong> elements ­ Part 3: Laboratory measurements <strong>of</strong><br />

airborne sound <strong>insulation</strong> <strong>of</strong> <strong>building</strong> elements<br />

2. ISO 717­1:1996 (E) Acoustics –Rating <strong>of</strong> sound <strong>insulation</strong> <strong>of</strong> <strong>building</strong><br />

elements ­ Part 1: Airborne sound <strong>insulation</strong><br />

3. ISO/DIS 15186­3:2000 ­ Acoustics ­ Measurement <strong>of</strong> sound <strong>insulation</strong> in<br />

<strong>building</strong>s and <strong>of</strong> <strong>building</strong> elements using sound intensity ­ Part 3:<br />

Laboratory measurements at low frequencies<br />

4. Hongisto V, Models for calculating the sound <strong>insulation</strong> <strong>of</strong> wall structures<br />

(in <strong>Finnish</strong>, abstract in English), Työympäristötutkimuksen raporttisar<strong>ja</strong><br />

2, Työterveyslaitos, Helsinki, Finland, 2003.<br />

22


Appendix A1. Descriptions <strong>of</strong> the <strong>building</strong> <strong>boards</strong><br />

A1. DESCRIPTIONS OF THE BUILDING BOARDS<br />

Trade name in English Abbreviation Trade name in <strong>Finnish</strong> Manufacturer / Importer Materials<br />

Plaster<strong>boards</strong><br />

Renovation board KS6 Saneerauslevy Oy Knauf Ab gypsum<br />

External Sheathing Board KTS9 Tuulensuo<strong>ja</strong>levy Oy Knauf Ab gypsum<br />

Normal gypsumboard KN13 Normaali sisäverhouslevy Oy Knauf Ab gypsum<br />

Hardboard KEK13 Erikoiskova sisäverhouslevy Oy Knauf Ab gypsum<br />

Floor board DG15 Lattiakipsilevy Oy Knauf Ab gypsum<br />

Minerit<br />

Windstopper WS Windstopper Oy Minerit Ab fibre cement<br />

Light Weight LW Lu<strong>ja</strong> A Oy Minerit Ab fibre cement<br />

Heavy Duty HD Lu<strong>ja</strong> Classic Oy Minerit Ab fibre cement<br />

Pastel Okra Pastel Lu<strong>ja</strong> Pastel Okra Oy Minerit Ab fibre cement<br />

Wood based<br />

Chipboard chip* Lastulevy Schauman sawdust, small chips <strong>of</strong> wood<br />

Medium Density Board MDF MDF glued wood fibres<br />

Plywood ply* Vaneri cross­banded veneers glued together<br />

Wood fiber board<br />

12 mm LION­Weathershield LION12* Tuulileijona <strong>Finnish</strong> Fibreboard Ltd. wood fibres, resin, wax<br />

25 mm LION­Weathershield LION25* Runkoleijona <strong>Finnish</strong> Fibreboard Ltd. wood fibres, resin, wax<br />

Aquapanel<br />

Aquapanel®CementBoard Indoor AqID* Aquapanel®CementBoard Indoor Oy Knauf Ab cement<br />

Aquapanel®CementBoard Outdoor AqOD* Aquapanel®CementBoard Outdoor Oy Knauf Ab cement<br />

Steel<br />

Steel Teräs<br />

Others<br />

MultiCo MultiCo palamaton sisäverhouslevy Eternit N.V. / Innobuild Oy Ab cement, pulp, minerals<br />

Master Master­levy Lemminkäinen Oyj calsium silicate, filling material, fibres<br />

UniCo UniCo verkkovahvistettu märkälevy Innobuild Oy Ab light concrete core, fibre glass coated<br />

Sasmox Flooring board SXL Sasmox Lattialevy Sasmox Oy calcinated gypsum, wood chips<br />

* This abbreviation is not used for commercial purposes.<br />

23


Larm P, Hakala J, Hongisto V<br />

<strong>Sound</strong> <strong>insulation</strong> <strong>of</strong> <strong>Finnish</strong> <strong>building</strong> <strong>boards</strong><br />

A2. METHODS IN DETAIL<br />

A2.1 <strong>Sound</strong> reduction index<br />

The sound reduction index R [dB] <strong>of</strong> the <strong>building</strong> <strong>boards</strong> was measured<br />

according to ISO 140­3:1995 in an accredited test laboratory T193 (Finasaccreditation).<br />

The sound was produced with three uncorrelated pink noise generators<br />

(Behringer Ultra Curve DSP 8000, Brüel&Kjær 2133, Neutrik MR­1) using<br />

three different sound sources in the source room. The loudspeaker signals<br />

were amplified with a terminal amplifier (QSC 1300 W USA) and with an<br />

active subwo<strong>of</strong>er (Yorkville Pulse).<br />

The sound levels in the source room and in the receiving room were<br />

measured simultaneously using rotating microphone booms (B&K 3923) and<br />

condenser microphones (B&K 4165 with the pre­amplifier B&K 2669). The<br />

radius <strong>of</strong> the rotation was 100 cm. The averaging time was 64 seconds.<br />

Microphone booms and their positions and rotation angles were fixed to<br />

achieve a good repeatability. The microphones and the measurement<br />

channels were calibrated before the measurements with a pistonphone<br />

calibrator (B&K 4231).<br />

The reverberation time was measured in the receiving room using<br />

interrupted noise method (a test signal <strong>of</strong> pink noise produced with the real<br />

time analyzer and amplified with a terminal amplifier (Eagle PA)). Two fixed<br />

loudspeaker positions were used with three microphone positions resulting<br />

in six sound decays. The reverberation time was determined in conformance<br />

with ISO 354:2003 using two averaged decay signals from the decay range<br />

<strong>of</strong> ­5 to ­25 dB. The sound analysis was made with the two­channel real<br />

time analyzer (B&K 2133).<br />

The acoustical measurement equipment fulfilled the following IEC standards<br />

and grades <strong>of</strong> accuracy:<br />

IEC 60651 <strong>Sound</strong> level meters, type 1<br />

IEC 60804 Integrating sound level meters, type 1<br />

IEC 61260 Octave­band and fractional­octave­band filters, class 1<br />

IEC 60942 <strong>Sound</strong> level calibrators, class 1<br />

The temperature and the relative humidity <strong>of</strong> the measurement rooms were<br />

measured with a psykrometer (Casella London 5200). The specimen was<br />

weighed with a 150 kg precision weighing machine (PM 150). The<br />

dimensions <strong>of</strong> the specimen were measured with a roll meter (K­Pr<strong>of</strong>).<br />

At low frequencies, from 50 –200 Hz, the measurement accuracy was<br />

improved using intensity measurement, applying ISO/DIS 15186­3. The<br />

measurement equipment consisted <strong>of</strong> B&K Investigator 2260 with a sound<br />

intensity probe (B&K 3595) and an intensity microphone pair (B&K 4197)<br />

using a 50 mm spacer between the microphones. The amplitude and phase<br />

responses were calibrated prior to measurement (B&K 4297).<br />

The intensity in front <strong>of</strong> the <strong>building</strong> board at the receiving room was<br />

measured by scanning the area with a steady pace holding the measuring<br />

equipment in hand. The scanning distance from the specimen was 44 cm.<br />

The scanning was made twice and the two results averaged. The individual<br />

scanning paths were perpendicular to each other. The distance between the<br />

scanning lines was 30 cm. The sound pressure levels at the source room<br />

measured with ISO 140­3 method were used in calculation.<br />

24


Appendix A2. Methods in detail<br />

60<br />

50<br />

40<br />

R, RI [dB]<br />

30<br />

20<br />

10<br />

0<br />

R<br />

RI<br />

Result<br />

ISO 717­1<br />

100<br />

160<br />

250<br />

400<br />

630<br />

1000<br />

1600<br />

2500<br />

4000<br />

6300<br />

10000<br />

Frequency [Hz]<br />

Figure A1. The combination <strong>of</strong> the results from the intensity (RI) and<br />

pressure (R) method. The value <strong>of</strong> the ISO 717­1 reference curve at 500 Hz<br />

is the weighted sound reduction index R W (indicated with a cross).<br />

A2.2 The uncertainty <strong>of</strong> the sound <strong>insulation</strong> measurement<br />

The uncertainty <strong>of</strong> the test is defined in ISO 140­2:1991(E) Annex A. The<br />

uncertainty <strong>of</strong> reproducibility expresses the range within which the test<br />

results between laboratories should lie with a probability <strong>of</strong> 95 %.<br />

Reproducibility can be determined by Inter­Laboratory tests where the same<br />

test specimen is tested in, at least, 5 different laboratories. The laboratory<br />

participated in an Inter­Laboratory test <strong>of</strong> Nordtest 2001 together with four<br />

other Nordic laboratories. The round­robin specimen was a window, which<br />

was tested in the same test opening as used in this study. The uncertainty<br />

<strong>of</strong> the sound reduction index R W was ± 1.7 dB while ISO 140­2:1991<br />

expected an uncertainty <strong>of</strong> ± 2 dB. The test results <strong>of</strong> this laboratory were<br />

in good agreement with the average over all laboratories. The uncertainty in<br />

third­octave bands is presented in Fig. A2.<br />

25


Larm P, Hakala J, Hongisto V<br />

<strong>Sound</strong> <strong>insulation</strong> <strong>of</strong> <strong>Finnish</strong> <strong>building</strong> <strong>boards</strong><br />

30<br />

Reproducibility (dB)<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

50<br />

80<br />

125<br />

200<br />

315<br />

500<br />

800<br />

1250<br />

2000<br />

3150<br />

5000<br />

Frequency (Hz)<br />

Nordtest 2001<br />

ISO 140­2 Annex A<br />

Figure A2. The maximum permitted reproducibility value <strong>of</strong> airborne sound<br />

reduction index R W as suggested by ISO 140­2, and obtained in Nordtest<br />

project 2001.<br />

Fig. A3 represents the reliability <strong>of</strong> independent tests in this laboratory. It<br />

contains annual measurement results <strong>of</strong> 4 mm steel plate during 2000 and<br />

2006. The tests were carried out in the same test opening as used in this<br />

study. During every test, the specimen was installed to the same location<br />

using same sealing and support bars every time. R W value was 37 dB in<br />

every test.<br />

Figs. A2 and A3 give good evidence that the comparability <strong>of</strong> <strong>building</strong> <strong>boards</strong><br />

should be very reliable especially above 100 Hz. However, the reliability <strong>of</strong><br />

the results is worsened considerably in the range 50 ... 100 Hz when<br />

pressure method is used (ISO 140­3). Therefore, sound intensity method<br />

was used instead.<br />

The laboratory layout is presented in Fig. A4.<br />

26


Appendix A2. Methods in detail<br />

Airborne sound reduction index R [dB]<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

R1<br />

R2<br />

R3<br />

R4<br />

R5<br />

R6<br />

R7<br />

average<br />

0<br />

50<br />

80<br />

125<br />

200<br />

315<br />

500<br />

800<br />

1250<br />

2000<br />

3150<br />

5000<br />

Frequency [Hz]<br />

Figure A3. The accuracy <strong>of</strong> independent tests in the laboratory. The data<br />

contains seven individual test results (R1­R7) during years 2000­2006 for<br />

the same 4 mm thick steel plate. The tests were carried out by ISO 140­3<br />

using the same mounting practice, same apparatus but different operators.<br />

27


Larm P, Hakala J, Hongisto V<br />

<strong>Sound</strong> <strong>insulation</strong> <strong>of</strong> <strong>Finnish</strong> <strong>building</strong> <strong>boards</strong><br />

source room<br />

7650 x 2950 h = 3600<br />

receiving room<br />

6900 x 4500 h = 3650<br />

Neutrik MR1<br />

noise generator<br />

C<br />

QSC 1300 W USA<br />

amplifier (2ch)<br />

1<br />

2<br />

test opening<br />

2250 x 1250<br />

a<br />

a<br />

Behringer DSP 8000<br />

signal processor<br />

microphone<br />

E<br />

B<br />

microphone<br />

Eagle PA 4060E<br />

amplifier<br />

B&K 2133<br />

real time analyzer<br />

D<br />

test opening<br />

2650 x 3840<br />

Focal 1<br />

Focal 2<br />

A<br />

Y1<br />

X1<br />

Y2<br />

X2<br />

Ch A<br />

Ch B<br />

source room<br />

receiving room<br />

microphone<br />

1<br />

2<br />

microphone<br />

rotating<br />

microphone boom<br />

3600<br />

r=1000<br />

h=1800<br />

test opening<br />

2<br />

2.8 m<br />

r=1000<br />

h=1550<br />

3650<br />

480<br />

vibration isolator<br />

section a­a<br />

Figure A4. The laboratory layout and the equipment for measuring the<br />

sound reduction index.<br />

28


Appendix A2. Methods in detail<br />

A2.3 Young's modulus<br />

The Young's modulus was measured with a custom­made bending machine<br />

(Fig. A5). A <strong>building</strong> board was placed on two support beams made <strong>of</strong> steel.<br />

The board was bended by adding load masses. The bending force from the<br />

load masses was transmitted to the board from two points at the median<br />

line <strong>of</strong> the board using two push rods. The deflection <strong>of</strong> the board was<br />

measured with a dial measuring gauge having an accuracy <strong>of</strong> 0.01 mm.<br />

The Young's modulus can be calculated from<br />

3<br />

Fl<br />

E ;<br />

48Ix<br />

where<br />

3<br />

bh<br />

I ; F mg<br />

12<br />

(A1)<br />

E = Young's modulus<br />

[Pa]<br />

F = the force applied to the board<br />

[N]<br />

l = the length <strong>of</strong> the board between the support beams [m]<br />

I = the moment <strong>of</strong> the board [m 4 ]<br />

x = the maximum deflection <strong>of</strong> the board<br />

[m]<br />

b = the width <strong>of</strong> the board<br />

[m]<br />

h = the thickness <strong>of</strong> the board<br />

[m]<br />

m = the load mass<br />

[kg]<br />

g = the gravitational acceleration constant = 9.81 [m/s 2 ]<br />

The deflection <strong>of</strong> the board was measured with various load masses. The<br />

measured deflection was plotted against the applied force and fitted linearly<br />

with the least squares fitting. With the fitted slope, the Young's modulus was<br />

determined.<br />

In the derivation <strong>of</strong> the Eq. (A1), the specimen is assumed to be a beam.<br />

The width <strong>of</strong> the board is large compared to its thickness so the assumption<br />

is not totally true. The value measured for steel with this method was 213<br />

GPa. In the literature 210 GPa is given for steel, which is close to the value<br />

gained with this method [4]. Therefore, the measurement method seems to<br />

be reliable.<br />

The reliability <strong>of</strong> the measurement method can be evaluated also by<br />

comparing the measured and predicted critical frequencies. According to Eq.<br />

(3), the critical frequency can be calculated by<br />

f c<br />

2<br />

0<br />

12 1<br />

2 m<br />

<br />

<br />

3<br />

c<br />

<br />

2<br />

Eh<br />

The measured critical frequency is plotted against the above square root<br />

expression in Fig. 5.5.1. It was expected that the Poisson's ratio was =0.28<br />

for all specimens. Because the surface mass and the thickness <strong>of</strong> the board<br />

can be measured with a rather good accuracy, it can be assumed that the<br />

variation <strong>of</strong> the data points from the fitted line results mainly from the<br />

inaccuracy <strong>of</strong> the measurement method for Young's modulus and also the<br />

detection <strong>of</strong> the critical frequency with a 1/3 octave band resolution. The<br />

fitting is satisfactory for most <strong>of</strong> the specimen.<br />

Two specimens are quite far from the fitting curve, namely Unico12.5 and<br />

Lion12. This is not surprising because Young's modulus was quite difficult to<br />

measure reliably for these <strong>boards</strong>. Not much weight could be put on the<br />

<strong>boards</strong>, because UniCo12.5 is very flexible and its Young's modulus depends<br />

29


Larm P, Hakala J, Hongisto V<br />

<strong>Sound</strong> <strong>insulation</strong> <strong>of</strong> <strong>Finnish</strong> <strong>building</strong> <strong>boards</strong><br />

on the measurement direction, whereas Lion12 is porous and breaks very<br />

easily.<br />

Critical frequency f c , Hz<br />

9000<br />

8000<br />

7000<br />

Measured<br />

Predicted<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

0.00 0.02 0.04 0.06 0.08 0.10 0.12<br />

Sqrt(m/(E*h3))<br />

Fig. A5. The comparison <strong>of</strong> measured and predicted critical frequency. The<br />

closer the measured values are to the line, the better was the agreement<br />

between the theory and measurement.<br />

A2.4 The total loss factor <strong>of</strong> the board<br />

The total loss factors were measured according to ISO 140­3:1995(E)<br />

Annex E. The loss factor can be calculated by<br />

2.2<br />

, (A2)<br />

fT<br />

where<br />

= the total loss factor<br />

f = frequency [Hz]<br />

T = reverberation time<br />

[s]<br />

The determination <strong>of</strong> loss factor requires only the determination <strong>of</strong> the<br />

reverberation time <strong>of</strong> the board when the board was mounted to the test<br />

opening. The board was shaken with an electromagnetic shaker (B&K 4813).<br />

The excitation was transmitted to the mass plate through a push rod. The<br />

reverberation times were determined using the MLS method. The MLS<br />

excitation signal was generated with a real­time analyzer (Norsonic RTA<br />

840) and amplified with a power amplifier (B&K 2707). The measurements<br />

were made using three excitation points and two receiver points. The<br />

reverberation time was, thus, calculated as an average <strong>of</strong> six<br />

measurements. The measurement was made with the analyzer. In the<br />

calculation, the reverberation time was determined between ­5...­25 dB<br />

below the maximum level, and backwards integration was used.<br />

30


Appendix A2. Methods in detail<br />

The vibration <strong>of</strong> the plate was detected with two accelerometers (B&K<br />

4370). They were attached to the board with a thin layer <strong>of</strong> bee wax. The<br />

accelerometer signals were handled with the real­time analyzator. The<br />

sensitivity <strong>of</strong> the transducer and cable chain was checked before and after<br />

the measurements with an accelerometer calibrator (B&K 4291). The<br />

measurement arrangement is given in Fig. A6.<br />

Figure A6. left) The equipment for measuring Young's modulus.<br />

right) The measurement <strong>of</strong> the total loss factors.<br />

31


Larm P, Hakala J, Hongisto V<br />

<strong>Sound</strong> <strong>insulation</strong> <strong>of</strong> <strong>Finnish</strong> <strong>building</strong> <strong>boards</strong><br />

A3. SOUND REDUCTION INDICES AND TOTAL LOSS<br />

FACTORS<br />

Table A1. <strong>Sound</strong> reduction index R [dB] in 1/3 octave bands for frequencies 100 –<br />

10000 Hz. R W values and the spectrum adaptation terms C [dB] and C tr [dB]. The<br />

specimens were listed in Table 2.1.<br />

Specimen<br />

Freq. [Hz] 1 2 3 4 5 6 7 8 9 10 11 12 13<br />

100 15.1 15.6 14.2 16.9 26.3 16.8 17.5 17.8 19.7 19.9 21.1 12.5 14.2<br />

125 14.5 16.9 14.0 17.8 21.3 16.7 17.5 20.6 21.1 21.2 21.5 14.0 13.2<br />

160 18.6 20.6 19.4 21.3 25.6 20.0 22.9 24.7 26.1 26.0 24.1 19.5 18.1<br />

200 16.8 19.4 21.2 22.8 24.4 19.7 22.2 25.2 26.6 26.1 26.9 20.3 19.1<br />

250 19.2 21.9 22.9 24.2 27.2 21.7 24.0 26.0 27.3 26.9 28.1 21.3 23.0<br />

315 21.2 22.4 23.4 25.7 26.9 23.3 24.6 26.9 28.0 27.9 29.4 22.3 23.3<br />

400 23.0 24.8 26.6 27.5 30.3 25.7 25.9 29.3 30.3 30.4 31.5 25.6 26.6<br />

500 24.3 26.1 26.9 28.6 30.7 26.8 27.8 30.2 31.6 31.6 32.3 26.0 27.4<br />

630 25.3 26.8 27.3 29.0 31.1 27.7 28.7 30.5 31.9 32.0 32.8 26.3 27.8<br />

800 26.8 28.0 28.7 30.5 32.5 28.7 29.9 32.0 33.1 33.2 33.9 27.9 29.3<br />

1000 28.1 29.5 30.2 32.0 33.2 30.3 31.0 33.5 34.5 34.1 35.0 29.2 30.3<br />

1250 29.6 30.8 31.4 32.7 32.9 31.6 32.8 34.7 35.8 35.2 35.5 30.5 31.2<br />

1600 30.9 31.7 31.7 32.5 29.4 32.7 33.6 35.2 36.4 35.6 34.6 31.3 31.1<br />

2000 32.0 31.9 30.2 28.7 26.2 34.0 33.9 34.6 36.2 35.2 30.3 31.8 29.2<br />

2500 32.5 30.6 23.2 22.9 28.2 34.8 32.6 28.8 31.4 29.2 26.2 30.9 23.2<br />

3150 31.6 23.5 23.2 26.0 31.4 35.2 24.5 25.1 26.4 26.9 30.0 27.3 23.7<br />

4000 25.1 23.4 27.5 29.2 33.6 33.2 24.5 29.0 30.4 31.3 32.6 23.8 27.5<br />

5000 23.5 26.9 27.9 30.6 36.8 25.0 27.7 30.7 32.6 32.6 35.3 25.9 29.0<br />

6300 26.7 27.1 32.4 34.7 41.1 26.3 27.9 33.7 35.4 36.7 39.0 28.7 31.4<br />

8000 26.5 31.5 36.8 39.6 44.4 29.5 32.4 37.8 40.0 41.1 44.4 30.9 35.2<br />

10000 34.3 38.5 42.8 44.6 47.4 34.5 38.8 44.5 46.9 47.7 48.7 33.6 39.9<br />

R W 28 28 28 29 31 30 30 31 33 32 32 29 28<br />

C ­1 ­1 ­2 ­2 ­2 ­1 ­1 ­1 ­2 ­1 ­1 ­1 ­2<br />

Ctr ­4 ­2 ­3 ­2 ­2 ­3 ­2 ­2 ­2 ­1 ­1 ­4 ­3<br />

Specimen<br />

Freq. [Hz] 14 15 16 17 18 19 20 21 22 23 24 25 26 27<br />

100 15.3 17.9 17.9 19.7 10.6 14.0 21.1 21.5 19.7 25.2 16.8 16.7 17.6 22.3<br />

125 19.9 20.2 21.6 19.3 7.9 15.9 16.9 21.2 21.2 25.3 17.5 17.4 18.4 23.9<br />

160 20.2 22.1 25.6 25.9 12.7 20.1 25.1 26.0 26.1 30.6 21.0 22.6 22.6 26.4<br />

200 22.5 24.2 25.6 23.4 13.3 21.2 23.2 26.3 25.8 30.8 21.0 22.6 22.3 28.4<br />

250 22.4 25.4 26.2 24.9 14.8 22.6 26.6 27.0 27.1 32.2 23.5 23.8 24.8 30.1<br />

315 24.5 26.5 25.9 24.8 15.4 23.3 26.3 27.5 28.2 32.8 23.2 24.9 25.2 29.3<br />

400 25.9 29.4 28.4 28.6 18.2 26.1 30.0 30.4 31.7 36.3 26.6 27.4 28.7 33.7<br />

500 27.7 30.0 29.8 29.0 18.9 27.2 30.6 31.7 31.8 38.0 27.1 28.3 29.3 34.3<br />

630 27.6 30.1 29.9 28.6 19.7 27.5 30.8 32.2 32.6 38.2 27.7 28.9 29.4 34.5<br />

800 28.2 30.8 31.0 27.6 21.5 29.0 32.1 33.2 33.9 40.0 29.2 30.3 30.9 35.3<br />

1000 28.7 30.6 31.4 24.8 23.2 30.2 32.6 34.5 35.5 41.6 30.7 31.4 32.1 35.7<br />

1250 26.2 28.2 31.1 24.1 25.2 31.4 32.6 35.2 37.3 42.9 31.9 32.6 33.5 34.1<br />

1600 22.5 24.0 27.5 26.3 27.1 32.1 29.9 34.8 38.6 44.0 33.0 33.0 34.5 29.7<br />

2000 22.5 23.8 24.5 29.5 28.9 32.5 25.8 32.4 40.2 44.5 33.9 32.3 34.9 28.8<br />

2500 25.6 26.9 25.1 31.8 30.0 31.9 26.6 30.7 41.3 42.6 33.1 25.8 33.8 31.1<br />

3150 28.2 29.6 27.6 34.0 30.5 28.2 29.7 30.9 42.7 31.2 25.9 23.5 31.4 32.8<br />

4000 29.3 31.3 30.5 36.4 30.6 18.0 32.0 32.6 44.0 33.5 23.6 27.0 31.8 34.6<br />

5000 32.0 33.8 32.1 39.9 29.6 21.1 35.2 33.9 44.4 35.8 27.5 28.1 32.0 38.0<br />

6300 35.3 36.7 32.9 43.2 23.5 30.6 39.6 36.2 33.8 37.7 28.2 31.5 33.5 41.8<br />

8000 38.7 40.7 34.0 45.5 17.0 26.1 43.2 40.0 31.4 41.9 31.9 35.8 34.9 45.6<br />

10000 43.5 45.0 39.0 46.2 31.6 32.2 46.9 46.3 33.9 49.3 39.6 42.4 39.6 49.2<br />

R W 26 28 29 28 23 30 30 33 36 40 30 29 32 33<br />

C ­1 ­1 ­2 ­1 ­1 ­1 ­1 ­1 ­1 ­3 ­1 ­1 ­1 ­1<br />

Ctr ­1 ­1 ­1 ­2 ­4 ­4 ­2 ­2 ­4 ­4 ­3 ­2 ­3 ­2<br />

32


Appendix A3. <strong>Sound</strong> reduction indices and total loss factors<br />

Table A2. <strong>Sound</strong> reduction index R [dB] in octave bands for frequencies 63 –8000 Hz.<br />

The specimens were listed in Table 2.1.<br />

Specimen<br />

Freq. [Hz] 1 2 3 4 5 6 7 8 9 10 11 12 13<br />

63 20.6 18.9 24.8 29.6 29.1 19.9 22.0 22.5 30.5 25.5 30.5 19.2 25.1<br />

125 16.5 18.3 16.7 19.1 24.9 18.2 20.1 22.0 23.2 23.2 22.5 16.5 15.7<br />

250 19.4 21.4 22.6 24.4 26.3 21.8 23.7 26.1 27.3 27.0 28.2 21.4 22.2<br />

500 24.3 26.0 26.9 28.4 30.7 26.8 27.6 30.0 31.3 31.4 32.2 26.0 27.3<br />

1000 28.3 29.6 30.2 31.8 32.9 30.4 31.4 33.5 34.6 34.2 34.9 29.3 30.3<br />

2000 31.9 31.4 29.6 29.6 28.1 33.9 33.4 33.7 35.2 34.1 31.6 31.3 28.9<br />

4000 28.2 24.9 26.7 29.0 34.5 32.8 25.8 28.8 30.5 30.9 33.2 25.9 27.2<br />

8000 30.8 34.8 39.3 41.3 45.0 31.4 35.2 40.9 43.2 44.1 45.6 31.5 36.8<br />

Freq. [Hz] 14 15 16 17 18 19 20 21 22 23 24 25 26 27<br />

63 22.2 28.3 24.6 22.6 12.2 20.7 26.7 36.8 27.2 28.2 21.6 20.8 25.0 37.2<br />

125 19.0 20.4 22.8 22.8 10.8 17.4 22.2 23.5 23.2 27.8 18.8 19.7 20.1 24.6<br />

250 23.2 25.5 25.9 24.4 14.6 22.5 25.6 27.0 27.1 32.0 22.7 23.9 24.3 29.3<br />

500 27.1 29.8 29.4 28.7 19.0 27.0 30.5 31.5 32.1 37.6 27.2 28.2 29.1 34.2<br />

1000 27.8 30.0 31.2 25.8 23.6 30.3 32.4 34.4 35.8 41.7 30.7 31.5 32.3 35.1<br />

2000 23.8 25.1 25.9 29.7 28.8 32.2 27.8 33.0 40.2 43.8 33.4 31.3 34.4 30.0<br />

4000 30.1 31.9 30.4 37.4 30.3 24.5 32.9 32.6 43.8 33.9 25.9 26.6 31.7 35.7<br />

8000 40.4 42.0 36.2 45.1 27.6 30.3 44.2 42.8 33.2 45.5 35.8 38.8 36.8 46.5<br />

Table A3. The total loss factors in 1/3 octave bands for frequencies 100 –10000 Hz. The<br />

specimens are listed in Table 3.1.1.<br />

Specimen<br />

Freq. [Hz] 1 2 3 4 5 6 7 8 9 10 11 12 13<br />

100 0.025 0.017 0.023 0.021 0.021 0.021 0.015 0.020 0.032 0.032 0.026 0.027 0.036<br />

125 0.027 0.016 0.021 0.018 0.026 0.020 0.014 0.019 0.034 0.027 0.024 0.031 0.043<br />

160 0.026 0.018 0.019 0.015 0.025 0.023 0.014 0.018 0.038 0.026 0.019 0.029 0.032<br />

200 0.025 0.016 0.018 0.016 0.024 0.022 0.013 0.018 0.036 0.025 0.023 0.025 0.031<br />

250 0.032 0.016 0.017 0.015 0.020 0.024 0.015 0.018 0.033 0.034 0.021 0.031 0.035<br />

315 0.023 0.016 0.018 0.016 0.022 0.027 0.015 0.021 0.032 0.031 0.022 0.031 0.035<br />

400 0.034 0.018 0.019 0.016 0.020 0.026 0.017 0.018 0.044 0.028 0.022 0.036 0.035<br />

500 0.033 0.019 0.021 0.017 0.023 0.026 0.018 0.022 0.047 0.032 0.024 0.038 0.034<br />

630 0.035 0.023 0.021 0.017 0.024 0.032 0.022 0.021 0.051 0.034 0.030 0.037 0.037<br />

800 0.028 0.022 0.021 0.023 0.024 0.028 0.023 0.023 0.046 0.029 0.024 0.040 0.037<br />

1000 0.033 0.021 0.022 0.023 0.027 0.025 0.026 0.024 0.040 0.032 0.028 0.031 0.042<br />

1250 0.035 0.025 0.026 0.027 0.022 0.026 0.028 0.027 0.034 0.032 0.027 0.014 0.039<br />

1600 0.029 0.027 0.024 0.027 0.010 0.035 0.026 0.031 0.011 0.033 0.029 0.007 0.032<br />

2000 0.030 0.028 0.018 0.010 0.004 0.028 0.023 0.029 0.005 0.029 0.012 0.006 0.010<br />

2500 0.024 0.015 0.006 0.008 0.010 0.026 0.018 0.008 0.010 0.008 0.015 0.028 0.004<br />

3150 0.014 0.002 0.024 0.024 0.016 0.021 0.003 0.017 0.030 0.018 0.031 0.038 0.016<br />

4000 0.005 0.004 0.020 0.020 0.012 0.019 0.005 0.024 0.026 0.018 0.026 0.031 0.025<br />

5000 0.003 0.010 0.015 0.016 0.007 0.004 0.014 0.016 0.013 0.012 0.017 0.015 0.019<br />

6300 0.012 0.014 0.014 0.014 0.004 0.016 0.010 0.017 0.006 0.017 0.014 0.018 0.020<br />

8000 0.005 0.010 0.011 0.011 0.002 0.010 0.010 0.011 0.008 0.007 0.011 0.008 0.008<br />

10000 0.012 0.010 0.011 0.011 0.002 0.011 0.011 0.010 0.007 0.011 0.011 0.008 0.010<br />

Freq. [Hz] 14 15 16 17 18 19 20 21 22 24 25 26 27<br />

100 0.027 0.030 0.032 0.033 0.036 0.032 0.025 0.036 0.011 0.022 0.018 0.042 0.032<br />

125 0.031 0.033 0.034 0.030 0.031 0.030 0.024 0.036 0.010 0.020 0.017 0.038 0.029<br />

160 0.029 0.046 0.038 0.033 0.032 0.031 0.029 0.043 0.010 0.017 0.017 0.038 0.019<br />

200 0.025 0.032 0.036 0.038 0.036 0.032 0.022 0.038 0.011 0.017 0.017 0.040 0.028<br />

250 0.031 0.027 0.033 0.038 0.037 0.032 0.029 0.033 0.011 0.018 0.015 0.043 0.028<br />

315 0.031 0.034 0.032 0.043 0.036 0.032 0.027 0.034 0.012 0.021 0.016 0.041 0.031<br />

400 0.036 0.038 0.044 0.046 0.030 0.028 0.018 0.032 0.015 0.025 0.018 0.046 0.044<br />

500 0.038 0.037 0.047 0.045 0.037 0.029 0.021 0.043 0.014 0.025 0.016 0.038 0.044<br />

630 0.037 0.036 0.051 0.039 0.039 0.030 0.024 0.041 0.013 0.026 0.017 0.043 0.039<br />

800 0.040 0.042 0.046 0.024 0.032 0.026 0.023 0.034 0.015 0.026 0.018 0.049 0.046<br />

1000 0.031 0.028 0.040 0.018 0.033 0.024 0.026 0.040 0.016 0.028 0.026 0.049 0.034<br />

1250 0.014 0.018 0.034 0.012 0.040 0.024 0.024 0.040 0.016 0.029 0.030 0.039 0.030<br />

1600 0.007 0.007 0.011 0.043 0.023 0.017 0.011 0.031 0.017 0.028 0.026 0.036 0.017<br />

2000 0.006 0.011 0.005 0.041 0.018 0.015 0.005 0.022 0.016 0.024 0.025 0.036 0.019<br />

2500 0.028 0.035 0.010 0.040 0.015 0.002 0.020 0.015 0.015 0.022 0.006 0.028 0.018<br />

3150 0.038 0.033 0.030 0.040 0.017 0.018 0.013 0.012 0.003 0.023 0.009 0.018<br />

4000 0.031 0.032 0.026 0.032 0.016 0.007 0.014 0.011 0.004 0.019 0.014 0.014<br />

5000 0.015 0.020 0.013 0.018 0.012 0.013 0.010 0.015 0.015 0.007 0.012<br />

6300 0.018 0.016 0.006 0.020 0.008 0.007 0.007 0.017 0.016 0.007 0.011<br />

8000 0.008 0.010 0.013 0.003 0.001 0.005 0.011 0.010 0.004 0.007<br />

10000 0.008 0.010 0.013 0.006 0.002 0.007 0.013 0.011 0.006 0.011<br />

33


Larm P, Hakala J, Hongisto V<br />

<strong>Sound</strong> <strong>insulation</strong> <strong>of</strong> <strong>Finnish</strong> <strong>building</strong> <strong>boards</strong><br />

Previously published in the report series<br />

1. Hongisto V, Helenius R, Lindgren M: Kaksinkertaisen seinärakenteen ääneneristävyys –<br />

laboratorio<strong>tutkimus</strong>, 2002.<br />

2. Hongisto V: Monikerroksisen seinärakenteen ilmaääneneristävyyden ennustemalli, 2003.<br />

3. Työhygienian koulutuspäivät 2003, Imatra 20.–21.5.2003, 2003.<br />

4. Kaarlela A, Jokitulppo J, Keskinen E, Hongisto V: Toimistojen ääniympäristökysely ­ menetelmän<br />

kehitys, 2003.<br />

5. 6th European Seminar on Personal Equipment Seminar Report. Ed. Eero Korhonen, 2003.<br />

6. Larm P, Keränen J, Hongisto V: Avotoimistojen akustiikka ­ laboratorio<strong>tutkimus</strong>, 2004.<br />

7. Työhygienian koulutuspäivät 2004. (Helsinki 25.­26.5.2004.) Toim. Mir<strong>ja</strong> Kiilunen, 2004.<br />

8. Valkeapää A, Anttonen H, Niskanen J: Liike­ <strong>ja</strong> palvelurakennuksien tuulikaappien<br />

vedontorjunta, 2004.<br />

9. Kaarlela A, Jokitulppo J, Helenius R, Keskinen E, Hongisto V: Meluhaitat toimistotyössä –<br />

pilotti<strong>tutkimus</strong>, 2004.<br />

10. Toppila E, Laitinen H, Starck J, Pyykkö I: Klassinen musiikki <strong>ja</strong> kuulonsuojelu, 2004.<br />

11. Hirvonen A, Kiilunen M, Valkonen S: Biologisen monitoroinnin palveluanalytiikan vuositilasto<br />

2003, 2004.<br />

12. Heikkilä P, Saalo A, Soosaar A: Työpaikkojen ilman epäpuhtausmittaukset 1994–2003, 2005.<br />

13. Työhygienian koulutuspäivät 2005. (Tampere 15.–16.6.2005.) Toim. Starck J <strong>ja</strong> Laitinen R,<br />

2005.<br />

14. Hietanen M, von Nandelstadh P, Alanko T: Sähkömagneettiset kentät työympäristössä.<br />

Opaskir<strong>ja</strong> työntekijöiden altistumisen arvioimiseksi, 2005.<br />

15. Biologisen monitoroinnin palveluanalytiikan vuositilasto 2004, 2005.<br />

16. Elo A­R, Korhonen E, Starck J (Eds.): 7th European Seminar on Personal Protective Equipment.<br />

Seminar report, Work Environment Research Report Series nro 16, 2005<br />

17. Puuntyöstöpölyn hallinnan kehittäminen (FineWood), 2005.<br />

18. Hautalampi T, Henriks­Eckerman M­L, Engström K, Koskela H, Saarinen P & Välimaa J:<br />

Kemikaalialtistumisen rajoittaminen automaalaamoissa, 2006.<br />

19. Alanko T, Hietanen M, von Nandelstadh P: Työntekijöiden altistuminen tukiasemien<br />

radiotaajuisille kentille. Työterveyslaitos, 2006.<br />

20. Niemelä R: Virtual Space 4D, 2006.<br />

21. Valkonen S: Biologisen monitoroinnin palveluanalytiikan vuositilasto 2005, 2006.<br />

34

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!