13.01.2015 Views

A Statistical Mechanical Derivation of the van der Waals Equation of ...

A Statistical Mechanical Derivation of the van der Waals Equation of ...

A Statistical Mechanical Derivation of the van der Waals Equation of ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Q<br />

vdw<br />

=<br />

1 ⎛V<br />

⎜<br />

N!<br />

⎝<br />

N<br />

− Nb ⎞ ⎛ NE ⎞ ⎛ − ⎞ ⎛<br />

⎜ −<br />

vdw 1 V Nb N<br />

⎟ exp<br />

⎟ = ⎜ ⎟ exp<br />

⎜<br />

3 3<br />

Λ ⎠ ⎝ k<br />

BT<br />

⎠ N!<br />

⎝ Λ ⎠ ⎝Vk<br />

N<br />

2<br />

B<br />

a ⎞<br />

⎟<br />

T ⎠<br />

(5)<br />

As always, we require <strong>the</strong> natural log <strong>of</strong> <strong>the</strong> partition function<br />

2<br />

⎛V<br />

− Nb ⎞ N a<br />

ln ( Qvdw<br />

) = −ln( N!<br />

) + N ln⎜<br />

+<br />

3<br />

⎟<br />

(6)<br />

⎝ Λ ⎠ Vk T<br />

We use Stirling’s approximation for <strong>the</strong> natural log <strong>of</strong> <strong>the</strong> factorial <strong>of</strong> a large number<br />

B<br />

2<br />

⎛V<br />

− Nb ⎞ N a<br />

ln ( Qvdw<br />

) = −N<br />

ln( N ) + N + N ln⎜<br />

+<br />

3<br />

⎟<br />

(7)<br />

⎝ Λ ⎠ Vk T<br />

The first <strong>the</strong>rmodynamic property that we will calculate is <strong>the</strong> pressure because that is what<br />

everyone associates with <strong>the</strong> <strong>van</strong> <strong>der</strong> <strong>Waals</strong> equation <strong>of</strong> state.<br />

( Q)<br />

⎛ ∂ ln ⎞ k<br />

BT<br />

a k<br />

BT<br />

a<br />

p = k<br />

BT⎜<br />

⎟ = − = −<br />

(8)<br />

2<br />

2<br />

⎝ ∂V<br />

⎠ V<br />

N , T<br />

V Vm<br />

− b V<br />

− b ⎛ ⎞<br />

m<br />

N<br />

⎜ ⎟<br />

⎝ N ⎠<br />

V<br />

where we have defined a molecular volume, V m<br />

≡ . This is <strong>the</strong> <strong>van</strong> <strong>der</strong> <strong>Waals</strong> equation <strong>of</strong><br />

N<br />

state.<br />

Now let’s <strong>der</strong>ive o<strong>the</strong>r <strong>the</strong>rmodynamic functions. We will start with <strong>the</strong> molecular<br />

Helmholtz free energy,<br />

A<br />

=<br />

⎡<br />

⎛V<br />

− Nb ⎞ Na ⎤<br />

( Q) = −k<br />

T − ln( N ) + 1+<br />

+ ⎥ ⎦<br />

A k<br />

BT<br />

= − ln<br />

N , T B ⎢<br />

ln⎜<br />

⎟<br />

(9)<br />

N N<br />

⎣<br />

⎝ Λ ⎠ Vk<br />

BT<br />

m 3<br />

The molecular internal energy is<br />

B<br />

E<br />

m<br />

=<br />

E<br />

N<br />

=<br />

k<br />

BT<br />

N<br />

2<br />

( Q)<br />

⎛ ∂ ln<br />

⎜<br />

⎝ ∂T<br />

⎞<br />

⎟<br />

⎠<br />

N , V<br />

=<br />

3<br />

2<br />

k T −<br />

B<br />

Na<br />

V<br />

=<br />

3<br />

2<br />

k T −<br />

B<br />

a<br />

V<br />

m<br />

(10)<br />

Unlike <strong>the</strong> ideal gas, <strong>the</strong> internal energy <strong>of</strong> a vdW fluid is not only a function <strong>of</strong> temperature but<br />

also a function <strong>of</strong> molar volume. The chemical potential is<br />

µ = −k<br />

⎛ ∂ ln<br />

T⎜<br />

⎝ ∂N<br />

( Q)<br />

The molecular entropy is<br />

B<br />

⎞<br />

⎟<br />

⎠<br />

T , V<br />

= −k<br />

B<br />

⎡ ⎛Vm<br />

− b ⎞<br />

T ⎢ln⎜<br />

⎟ −<br />

3<br />

⎣ ⎝ Λ ⎠ V<br />

m<br />

b 2a<br />

+<br />

− b V k T<br />

m<br />

B<br />

⎤<br />

⎥<br />

⎦<br />

(11)<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!