13.01.2015 Views

A Statistical Mechanical Derivation of the van der Waals Equation of ...

A Statistical Mechanical Derivation of the van der Waals Equation of ...

A Statistical Mechanical Derivation of the van der Waals Equation of ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

⎛ ∂Em<br />

⎞<br />

⎜ ⎟<br />

⎝ ∂T<br />

⎠<br />

p<br />

= C<br />

V<br />

⎛ ∂p<br />

⎞<br />

+ T⎜<br />

⎟<br />

⎝ ∂T<br />

⎠<br />

Vm<br />

⎛ ∂Vm<br />

⎞<br />

⎜ ⎟<br />

⎝ ∂T<br />

⎠<br />

p<br />

⎛ ∂Vm<br />

⎞<br />

− p⎜<br />

⎟<br />

⎝ ∂T<br />

⎠<br />

p<br />

(20)<br />

Substituting equation (20) into equation (19) yields<br />

C<br />

p<br />

⎛ ∂p<br />

⎞ ⎛ ∂Vm<br />

⎞ 3<br />

1<br />

= CV<br />

+ T⎜<br />

⎟ ⎜ ⎟ = k<br />

B<br />

+ k<br />

B<br />

(21)<br />

2<br />

⎝ ∂T<br />

⎠V<br />

⎝ ∂T<br />

⎠ p<br />

2<br />

a( Vm<br />

− b)<br />

m<br />

1−<br />

2<br />

k TV<br />

B<br />

3<br />

m<br />

The constant-pressure heat capacity is a function <strong>of</strong> temperature and molar volume.<br />

Now let’s look at vapor-liquid equilibrium. The internal energy <strong>of</strong> vaporization is<br />

∆E<br />

m<br />

= E<br />

V<br />

m<br />

− E<br />

L<br />

m<br />

⎛ 1<br />

= a⎜<br />

L<br />

⎝Vm<br />

1<br />

−<br />

V<br />

V<br />

m<br />

⎞<br />

⎟<br />

⎠<br />

(22)<br />

The enthalpy <strong>of</strong> vaporization is<br />

∆H<br />

m<br />

= H<br />

V<br />

m<br />

− H<br />

L<br />

m<br />

= ∆E<br />

m<br />

+<br />

p∆V<br />

m<br />

⎛ 1<br />

= a⎜<br />

⎝V<br />

L<br />

m<br />

1<br />

−<br />

V<br />

V<br />

m<br />

⎞<br />

⎟<br />

+<br />

⎠<br />

p∆<br />

V L<br />

( V −V<br />

)<br />

m<br />

m<br />

(23)<br />

The entropy <strong>of</strong> vaporization is<br />

V<br />

V L<br />

⎛V<br />

⎞<br />

m<br />

− b<br />

∆S<br />

= − = ⎜ ⎟<br />

m<br />

S<br />

m<br />

S<br />

m<br />

k<br />

B<br />

ln L<br />

(24)<br />

⎝ Vm<br />

− b ⎠<br />

The molecular Gibbs free energy <strong>of</strong> vaporization is<br />

∆G<br />

m<br />

= G<br />

V<br />

m<br />

− G<br />

L<br />

m<br />

= k<br />

B<br />

L<br />

V<br />

L<br />

⎡ ⎛ V ⎞<br />

⎤ ⎛ ⎞<br />

m<br />

− b Vm<br />

Vm<br />

1 1<br />

T ⎢ln ⎜<br />

⎟ + − ⎥ + 2a<br />

⎜ −<br />

⎟ (25)<br />

V<br />

V<br />

L<br />

L V<br />

⎢⎣<br />

⎝Vm<br />

− b ⎠ Vm<br />

− b Vm<br />

− b⎥⎦<br />

⎝Vm<br />

Vm<br />

⎠<br />

Since <strong>the</strong> molecular Gibbs free energy <strong>of</strong> vaporization is zero at equilibrium, this gives a<br />

condition for vapor-liquid equilibrium, namely,<br />

L<br />

V<br />

L<br />

⎡ ⎛V<br />

⎞<br />

⎤ ⎛ 1 1 ⎞<br />

m<br />

− b Vm<br />

Vm<br />

k ⎢ln ⎜ ⎟ + − ⎥ + 2 ⎜ ⎟<br />

BT<br />

a<br />

−<br />

= 0<br />

(26)<br />

V<br />

V<br />

L<br />

L V<br />

⎢⎣<br />

⎝Vm<br />

− b ⎠ Vm<br />

− b Vm<br />

− b⎥⎦<br />

⎝Vm<br />

Vm<br />

⎠<br />

The chemical potentials should also be equal at equilibrium<br />

4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!