13.01.2015 Views

A Statistical Mechanical Derivation of the van der Waals Equation of ...

A Statistical Mechanical Derivation of the van der Waals Equation of ...

A Statistical Mechanical Derivation of the van der Waals Equation of ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The <strong>Statistical</strong> <strong>Mechanical</strong> <strong>Derivation</strong> <strong>of</strong> <strong>the</strong> <strong>van</strong> <strong>der</strong> <strong>Waals</strong> <strong>Equation</strong> <strong>of</strong> State<br />

and its associated <strong>the</strong>rmodynamic properties<br />

David Keffer<br />

Department <strong>of</strong> Chemical Engineering<br />

The University <strong>of</strong> Tennessee, Knoxville<br />

dkeffer@utk.edu<br />

started: February 23, 2005<br />

last updated: February 23, 2005<br />

We will perform our <strong>der</strong>ivation in <strong>the</strong> canonical ensemble, where we specify <strong>the</strong> number<br />

<strong>of</strong> molecules, N, <strong>the</strong> volume, V, and <strong>the</strong> temperature T. For a monatomic ideal gas, <strong>the</strong> wellknown<br />

partition function is<br />

Q<br />

IG<br />

1 ⎛ V ⎞<br />

⎜ ⎟<br />

N!<br />

⎝ Λ ⎠<br />

=<br />

3<br />

N<br />

(1)<br />

where <strong>the</strong> <strong>the</strong>rmal deBroglie wavelength is defined as<br />

Λ =<br />

2<br />

h<br />

2πmk<br />

B<br />

T<br />

(2)<br />

where h is Planck’s constant, k B is Boltzmann’s constant, and m is <strong>the</strong> mass <strong>of</strong> <strong>the</strong> molecule. The<br />

<strong>van</strong> <strong>der</strong> <strong>Waals</strong> fluid differs from an ideal gas in two ways. First, <strong>the</strong> molecules have a finite<br />

minimum molar volume, b. In o<strong>the</strong>r words, <strong>the</strong>y can not be compressed to infinite density. This<br />

volume occupied by <strong>the</strong> molecules is not part <strong>of</strong> <strong>the</strong> accessible volume <strong>of</strong> <strong>the</strong> system. Therefore,<br />

<strong>the</strong> partition function becomes,<br />

Q<br />

1 ⎛V<br />

⎜<br />

N!<br />

⎝<br />

−<br />

Λ<br />

=<br />

3<br />

Nb ⎞<br />

⎟<br />

⎠<br />

N<br />

(3)<br />

where we have multiplied b by N to account for <strong>the</strong> total volume occupied by molecules. The<br />

second way in that a <strong>van</strong> <strong>der</strong> <strong>Waals</strong> fluid differs from an ideal gas is that <strong>the</strong> <strong>van</strong> <strong>der</strong> <strong>Waals</strong><br />

molecule experiences a net attractive force to all o<strong>the</strong>r molecules. This attraction is based upon a<br />

mean field approximation. The energy associated with each molecule is linearly proportional to<br />

<strong>the</strong> molar density <strong>of</strong> <strong>the</strong> system,<br />

N<br />

E vdw<br />

= −a<br />

(4)<br />

V<br />

This energetic term modifies <strong>the</strong> partition function to become<br />

1


Q<br />

vdw<br />

=<br />

1 ⎛V<br />

⎜<br />

N!<br />

⎝<br />

N<br />

− Nb ⎞ ⎛ NE ⎞ ⎛ − ⎞ ⎛<br />

⎜ −<br />

vdw 1 V Nb N<br />

⎟ exp<br />

⎟ = ⎜ ⎟ exp<br />

⎜<br />

3 3<br />

Λ ⎠ ⎝ k<br />

BT<br />

⎠ N!<br />

⎝ Λ ⎠ ⎝Vk<br />

N<br />

2<br />

B<br />

a ⎞<br />

⎟<br />

T ⎠<br />

(5)<br />

As always, we require <strong>the</strong> natural log <strong>of</strong> <strong>the</strong> partition function<br />

2<br />

⎛V<br />

− Nb ⎞ N a<br />

ln ( Qvdw<br />

) = −ln( N!<br />

) + N ln⎜<br />

+<br />

3<br />

⎟<br />

(6)<br />

⎝ Λ ⎠ Vk T<br />

We use Stirling’s approximation for <strong>the</strong> natural log <strong>of</strong> <strong>the</strong> factorial <strong>of</strong> a large number<br />

B<br />

2<br />

⎛V<br />

− Nb ⎞ N a<br />

ln ( Qvdw<br />

) = −N<br />

ln( N ) + N + N ln⎜<br />

+<br />

3<br />

⎟<br />

(7)<br />

⎝ Λ ⎠ Vk T<br />

The first <strong>the</strong>rmodynamic property that we will calculate is <strong>the</strong> pressure because that is what<br />

everyone associates with <strong>the</strong> <strong>van</strong> <strong>der</strong> <strong>Waals</strong> equation <strong>of</strong> state.<br />

( Q)<br />

⎛ ∂ ln ⎞ k<br />

BT<br />

a k<br />

BT<br />

a<br />

p = k<br />

BT⎜<br />

⎟ = − = −<br />

(8)<br />

2<br />

2<br />

⎝ ∂V<br />

⎠ V<br />

N , T<br />

V Vm<br />

− b V<br />

− b ⎛ ⎞<br />

m<br />

N<br />

⎜ ⎟<br />

⎝ N ⎠<br />

V<br />

where we have defined a molecular volume, V m<br />

≡ . This is <strong>the</strong> <strong>van</strong> <strong>der</strong> <strong>Waals</strong> equation <strong>of</strong><br />

N<br />

state.<br />

Now let’s <strong>der</strong>ive o<strong>the</strong>r <strong>the</strong>rmodynamic functions. We will start with <strong>the</strong> molecular<br />

Helmholtz free energy,<br />

A<br />

=<br />

⎡<br />

⎛V<br />

− Nb ⎞ Na ⎤<br />

( Q) = −k<br />

T − ln( N ) + 1+<br />

+ ⎥ ⎦<br />

A k<br />

BT<br />

= − ln<br />

N , T B ⎢<br />

ln⎜<br />

⎟<br />

(9)<br />

N N<br />

⎣<br />

⎝ Λ ⎠ Vk<br />

BT<br />

m 3<br />

The molecular internal energy is<br />

B<br />

E<br />

m<br />

=<br />

E<br />

N<br />

=<br />

k<br />

BT<br />

N<br />

2<br />

( Q)<br />

⎛ ∂ ln<br />

⎜<br />

⎝ ∂T<br />

⎞<br />

⎟<br />

⎠<br />

N , V<br />

=<br />

3<br />

2<br />

k T −<br />

B<br />

Na<br />

V<br />

=<br />

3<br />

2<br />

k T −<br />

B<br />

a<br />

V<br />

m<br />

(10)<br />

Unlike <strong>the</strong> ideal gas, <strong>the</strong> internal energy <strong>of</strong> a vdW fluid is not only a function <strong>of</strong> temperature but<br />

also a function <strong>of</strong> molar volume. The chemical potential is<br />

µ = −k<br />

⎛ ∂ ln<br />

T⎜<br />

⎝ ∂N<br />

( Q)<br />

The molecular entropy is<br />

B<br />

⎞<br />

⎟<br />

⎠<br />

T , V<br />

= −k<br />

B<br />

⎡ ⎛Vm<br />

− b ⎞<br />

T ⎢ln⎜<br />

⎟ −<br />

3<br />

⎣ ⎝ Λ ⎠ V<br />

m<br />

b 2a<br />

+<br />

− b V k T<br />

m<br />

B<br />

⎤<br />

⎥<br />

⎦<br />

(11)<br />

2


S E − A E − ⎡ ⎛ − ⎞⎤<br />

= = = = ⎢<br />

5 + ln⎜<br />

b<br />

m<br />

Am<br />

Vm<br />

S<br />

m<br />

k<br />

B<br />

⎟<br />

3 ⎥<br />

(12)<br />

N NT T ⎣2<br />

⎝ Λ ⎠⎦<br />

The molecular enthalpy is<br />

H<br />

m<br />

H E + PV<br />

3<br />

= = = Em<br />

+ PVm<br />

= k<br />

BT<br />

− 2<br />

N N<br />

2<br />

a<br />

V<br />

m<br />

k<br />

BTVm<br />

+<br />

V − b<br />

m<br />

(13)<br />

The molecular Gibbs free energy is<br />

G H − TS<br />

⎡ V ⎛V<br />

− b ⎞⎤<br />

a<br />

= H TS k T<br />

(14)<br />

⎣<br />

⎦ Vm<br />

m<br />

m<br />

Gm<br />

= =<br />

m<br />

−<br />

m<br />

= −<br />

B ⎢1 − + ln⎜<br />

⎟ − 2<br />

3 ⎥<br />

N N<br />

Vm<br />

− b ⎝ Λ ⎠<br />

In addition to <strong>the</strong> basic <strong>the</strong>rmodynamic properties, we can also calculate a variety <strong>of</strong><br />

<strong>the</strong>rmodynamic properties from <strong>the</strong> partial <strong>der</strong>ivatives.<br />

⎛ ∂p<br />

⎞<br />

⎜ ⎟<br />

⎝ ∂T<br />

⎠<br />

V m<br />

k<br />

B<br />

=<br />

V − b<br />

m<br />

(15)<br />

⎛ ∂p<br />

⎞<br />

⎜<br />

V<br />

⎟<br />

⎝ ∂<br />

m ⎠<br />

T<br />

= −<br />

k<br />

+ 2<br />

2<br />

3<br />

( V − b) m<br />

B<br />

T<br />

a<br />

V<br />

m<br />

(16)<br />

⎛ ∂V<br />

⎜<br />

⎝ ∂T<br />

m<br />

⎞<br />

⎟<br />

⎠<br />

p<br />

⎛ ∂p<br />

⎞<br />

⎜ ⎟<br />

⎝ ∂T<br />

⎠<br />

= −<br />

⎛ ∂p<br />

⎞<br />

⎜<br />

V<br />

⎟<br />

⎝ ∂<br />

m ⎠<br />

Vm<br />

T<br />

=<br />

1<br />

T a<br />

− 2<br />

V − b k<br />

m<br />

( V − b)<br />

m<br />

3<br />

BVm<br />

(17)<br />

The molecular constant volume-heat capacity is<br />

C<br />

v<br />

⎛ ∂E<br />

⎞<br />

m<br />

= ⎜ ⎟ = k<br />

B<br />

(18)<br />

⎝ ∂T<br />

⎠V<br />

2<br />

m<br />

3<br />

The molecular constant-pressure heat capacity is<br />

C<br />

p<br />

⎛ ∂H<br />

⎞<br />

⎜ ⎟<br />

⎝ ∂T<br />

⎠<br />

m<br />

m<br />

m<br />

= = + p<br />

(19)<br />

p<br />

⎛ ∂E<br />

⎞<br />

⎜ ⎟<br />

⎝ ∂T<br />

⎠<br />

p<br />

⎛ ∂V<br />

⎞<br />

⎜ ⎟<br />

⎝ ∂T<br />

⎠<br />

p<br />

Now we need, <strong>the</strong> first term on <strong>the</strong> RHS. Going to <strong>the</strong> Tables <strong>of</strong> P.W. Bridgman, we have<br />

3


⎛ ∂Em<br />

⎞<br />

⎜ ⎟<br />

⎝ ∂T<br />

⎠<br />

p<br />

= C<br />

V<br />

⎛ ∂p<br />

⎞<br />

+ T⎜<br />

⎟<br />

⎝ ∂T<br />

⎠<br />

Vm<br />

⎛ ∂Vm<br />

⎞<br />

⎜ ⎟<br />

⎝ ∂T<br />

⎠<br />

p<br />

⎛ ∂Vm<br />

⎞<br />

− p⎜<br />

⎟<br />

⎝ ∂T<br />

⎠<br />

p<br />

(20)<br />

Substituting equation (20) into equation (19) yields<br />

C<br />

p<br />

⎛ ∂p<br />

⎞ ⎛ ∂Vm<br />

⎞ 3<br />

1<br />

= CV<br />

+ T⎜<br />

⎟ ⎜ ⎟ = k<br />

B<br />

+ k<br />

B<br />

(21)<br />

2<br />

⎝ ∂T<br />

⎠V<br />

⎝ ∂T<br />

⎠ p<br />

2<br />

a( Vm<br />

− b)<br />

m<br />

1−<br />

2<br />

k TV<br />

B<br />

3<br />

m<br />

The constant-pressure heat capacity is a function <strong>of</strong> temperature and molar volume.<br />

Now let’s look at vapor-liquid equilibrium. The internal energy <strong>of</strong> vaporization is<br />

∆E<br />

m<br />

= E<br />

V<br />

m<br />

− E<br />

L<br />

m<br />

⎛ 1<br />

= a⎜<br />

L<br />

⎝Vm<br />

1<br />

−<br />

V<br />

V<br />

m<br />

⎞<br />

⎟<br />

⎠<br />

(22)<br />

The enthalpy <strong>of</strong> vaporization is<br />

∆H<br />

m<br />

= H<br />

V<br />

m<br />

− H<br />

L<br />

m<br />

= ∆E<br />

m<br />

+<br />

p∆V<br />

m<br />

⎛ 1<br />

= a⎜<br />

⎝V<br />

L<br />

m<br />

1<br />

−<br />

V<br />

V<br />

m<br />

⎞<br />

⎟<br />

+<br />

⎠<br />

p∆<br />

V L<br />

( V −V<br />

)<br />

m<br />

m<br />

(23)<br />

The entropy <strong>of</strong> vaporization is<br />

V<br />

V L<br />

⎛V<br />

⎞<br />

m<br />

− b<br />

∆S<br />

= − = ⎜ ⎟<br />

m<br />

S<br />

m<br />

S<br />

m<br />

k<br />

B<br />

ln L<br />

(24)<br />

⎝ Vm<br />

− b ⎠<br />

The molecular Gibbs free energy <strong>of</strong> vaporization is<br />

∆G<br />

m<br />

= G<br />

V<br />

m<br />

− G<br />

L<br />

m<br />

= k<br />

B<br />

L<br />

V<br />

L<br />

⎡ ⎛ V ⎞<br />

⎤ ⎛ ⎞<br />

m<br />

− b Vm<br />

Vm<br />

1 1<br />

T ⎢ln ⎜<br />

⎟ + − ⎥ + 2a<br />

⎜ −<br />

⎟ (25)<br />

V<br />

V<br />

L<br />

L V<br />

⎢⎣<br />

⎝Vm<br />

− b ⎠ Vm<br />

− b Vm<br />

− b⎥⎦<br />

⎝Vm<br />

Vm<br />

⎠<br />

Since <strong>the</strong> molecular Gibbs free energy <strong>of</strong> vaporization is zero at equilibrium, this gives a<br />

condition for vapor-liquid equilibrium, namely,<br />

L<br />

V<br />

L<br />

⎡ ⎛V<br />

⎞<br />

⎤ ⎛ 1 1 ⎞<br />

m<br />

− b Vm<br />

Vm<br />

k ⎢ln ⎜ ⎟ + − ⎥ + 2 ⎜ ⎟<br />

BT<br />

a<br />

−<br />

= 0<br />

(26)<br />

V<br />

V<br />

L<br />

L V<br />

⎢⎣<br />

⎝Vm<br />

− b ⎠ Vm<br />

− b Vm<br />

− b⎥⎦<br />

⎝Vm<br />

Vm<br />

⎠<br />

The chemical potentials should also be equal at equilibrium<br />

4


∆µ = µ<br />

V<br />

− µ<br />

L<br />

= k<br />

B<br />

L<br />

⎡ ⎛V<br />

⎞<br />

⎤ ⎛ ⎞<br />

m<br />

− b b b 1 1<br />

T ⎢ln ⎜<br />

⎟ + − ⎥ − 2a<br />

⎜ −<br />

⎟ (27)<br />

V<br />

V<br />

L<br />

V L<br />

⎢⎣<br />

⎝Vm<br />

− b ⎠ Vm<br />

− b Vm<br />

− b⎥⎦<br />

⎝Vm<br />

Vm<br />

⎠<br />

This expression doesn’t look <strong>the</strong> same as equation (26), but if you get a common denominator in<br />

equations (26) and (27) <strong>the</strong>n it turns out that <strong>the</strong>y are identical equations.<br />

So at VLE, given <strong>the</strong> temperature, we have three unknowns: <strong>the</strong> vapor molar volume, <strong>the</strong><br />

liquid molar volume, and <strong>the</strong> vapor pressure. The two molar volumes are found by<br />

simultaneously solving equation (27) and <strong>the</strong> condition <strong>of</strong> mechanical equilibrium, namely<br />

k<br />

BT<br />

a k<br />

BT<br />

a<br />

∆p = pV<br />

− pL<br />

= − − + = 0<br />

(28)<br />

V<br />

2 L<br />

2<br />

V −<br />

V<br />

−<br />

L<br />

m<br />

b V Vm<br />

b V<br />

m<br />

Once <strong>the</strong> molar volumes are known, <strong>the</strong> vapor pressure can be obtained by evaluating equation<br />

(8) at ei<strong>the</strong>r molar volume.<br />

For a certain application, we may want to know <strong>the</strong> change in <strong>the</strong> molar volume as a<br />

function <strong>of</strong> temperature along <strong>the</strong> two-phase boundary <strong>of</strong> <strong>the</strong> phase diagram, also known as <strong>the</strong><br />

saturation line. In or<strong>der</strong> to obtain an analytical expression for this <strong>der</strong>ivative, we must<br />

differentiate both equation (27) and (28) with respect to temperature. We will <strong>the</strong>n obtain two<br />

<strong>der</strong>ivatives, one for <strong>the</strong> liquid and one for <strong>the</strong> vapor. We will combine <strong>the</strong> two equations to solve<br />

for <strong>the</strong> two <strong>der</strong>ivatives individually. We begin by differentiating equation (27) with respect to<br />

temperature along <strong>the</strong> saturation line.<br />

m<br />

⎡<br />

k<br />

BT<br />

⎢<br />

⎢⎣<br />

V<br />

+ k<br />

B<br />

L<br />

m<br />

⎡ ⎛V<br />

⎢ln<br />

⎜<br />

⎢⎣<br />

⎝V<br />

1 ∂V<br />

− b ∂T<br />

L<br />

m<br />

V<br />

m<br />

L<br />

m<br />

sat<br />

− b ⎞<br />

⎟ +<br />

− b ⎠ V<br />

−<br />

V<br />

V<br />

m<br />

V<br />

m<br />

V<br />

1 ∂Vm<br />

− b ∂T<br />

b<br />

−<br />

− b V<br />

L<br />

m<br />

sat<br />

−<br />

b ⎤ ⎛ 1<br />

⎥ + 2a⎜<br />

− b⎥<br />

⎜ V<br />

⎦ ⎝Vm<br />

V 2<br />

( ) ∂<br />

L<br />

V − b T<br />

sat ( V − b)<br />

m<br />

b<br />

2<br />

∂V<br />

∂V<br />

V<br />

m<br />

∂T<br />

V<br />

m<br />

sat<br />

+<br />

1<br />

−<br />

V<br />

L 2<br />

m<br />

m<br />

b<br />

∂V<br />

L<br />

m<br />

∂T<br />

2<br />

sat<br />

∂V<br />

L<br />

m<br />

∂T<br />

⎞<br />

⎟ = 0<br />

⎟<br />

⎠<br />

sat<br />

⎤<br />

⎥<br />

⎥⎦<br />

(29)<br />

Next we differentiate equation (28)<br />

−<br />

V<br />

V<br />

L<br />

L<br />

∂Vm<br />

k<br />

B<br />

2 a ∂Vm<br />

k<br />

BT<br />

∂Vm<br />

k<br />

B a ∂Vm<br />

+ +<br />

+<br />

− − 2<br />

= 0<br />

2 2<br />

L<br />

∂T<br />

V −<br />

L 3<br />

m<br />

b ∂T<br />

m<br />

m<br />

sat<br />

Vm<br />

sat<br />

(30)<br />

V<br />

V<br />

3<br />

( ) ∂ −<br />

V<br />

−<br />

∂<br />

L<br />

V b T V<br />

sat m<br />

b V T<br />

sat ( V − b)<br />

m<br />

k<br />

B<br />

T<br />

Now we solve <strong>the</strong>se two equations for <strong>the</strong> two partial <strong>der</strong>ivatives. Take equation (30) and<br />

combine like terms.<br />

⎛<br />

⎜<br />

⎜<br />

⎝<br />

k<br />

T<br />

a ⎞ V<br />

L<br />

∂V<br />

⎛ k T a ⎞<br />

m<br />

B<br />

∂Vm<br />

k<br />

B<br />

k<br />

B<br />

+ 2 ⎟ + ⎜ − ⎟ = −<br />

(31)<br />

m ⎠ ⎝ m<br />

m ⎠<br />

− B<br />

2<br />

2 3<br />

m<br />

V<br />

V 3<br />

( V b) V ⎟ T ⎜ L 2 L<br />

L<br />

V<br />

−<br />

∂ ( V b) V ⎟ ∂T<br />

Vm<br />

− b Vm<br />

− b<br />

sat −<br />

sat<br />

5


6<br />

( )<br />

( ) ⎟ ⎟ ⎠<br />

⎞<br />

⎜<br />

⎜<br />

⎝<br />

⎛<br />

−<br />

−<br />

∂<br />

∂<br />

⎟<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎜<br />

⎝<br />

⎛<br />

−<br />

−<br />

+<br />

−<br />

−<br />

−<br />

=<br />

∂<br />

∂<br />

3<br />

2<br />

3<br />

2<br />

2<br />

2<br />

L<br />

m<br />

L<br />

m<br />

B<br />

sat<br />

V<br />

m<br />

V<br />

m<br />

V<br />

m<br />

B<br />

V<br />

m<br />

B<br />

L<br />

m<br />

B<br />

sat<br />

L<br />

m<br />

V<br />

a<br />

b<br />

V<br />

T<br />

k<br />

T<br />

V<br />

V<br />

a<br />

b<br />

V<br />

T<br />

k<br />

b<br />

V<br />

k<br />

b<br />

V<br />

k<br />

T<br />

V<br />

(32)<br />

Next we combine terms in equation (29)<br />

( ) ( )<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

−<br />

−<br />

−<br />

+<br />

⎟<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎜<br />

⎝<br />

⎛<br />

−<br />

−<br />

= −<br />

∂<br />

∂<br />

⎟<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎜<br />

⎝<br />

⎛<br />

−<br />

−<br />

+<br />

−<br />

−<br />

∂<br />

∂<br />

⎟<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎜<br />

⎝<br />

⎛<br />

−<br />

−<br />

+<br />

−<br />

b<br />

V<br />

b<br />

b<br />

V<br />

b<br />

b<br />

V<br />

b<br />

V<br />

k<br />

T<br />

V<br />

V<br />

a<br />

b<br />

V<br />

Tb<br />

k<br />

b<br />

V<br />

T<br />

k<br />

T<br />

V<br />

V<br />

a<br />

b<br />

V<br />

Tb<br />

k<br />

b<br />

V<br />

T<br />

k<br />

L<br />

m<br />

V<br />

m<br />

V<br />

m<br />

L<br />

m<br />

B<br />

sat<br />

V<br />

m<br />

V<br />

m<br />

V<br />

m<br />

B<br />

V<br />

m<br />

B<br />

sat<br />

L<br />

m<br />

L<br />

m<br />

L<br />

m<br />

B<br />

L<br />

m<br />

B<br />

ln<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

(33)<br />

( )<br />

( ) ⎟ ⎟ ⎠<br />

⎞<br />

⎜<br />

⎜<br />

⎝<br />

⎛<br />

−<br />

−<br />

+<br />

−<br />

∂<br />

∂<br />

⎟<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎜<br />

⎝<br />

⎛<br />

−<br />

−<br />

+<br />

−<br />

+<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

−<br />

−<br />

−<br />

+<br />

⎟<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎜<br />

⎝<br />

⎛<br />

−<br />

−<br />

−<br />

=<br />

∂<br />

∂<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

ln<br />

L<br />

m<br />

L<br />

m<br />

B<br />

L<br />

m<br />

B<br />

sat<br />

V<br />

m<br />

V<br />

m<br />

V<br />

m<br />

B<br />

V<br />

m<br />

B<br />

L<br />

m<br />

V<br />

m<br />

V<br />

m<br />

L<br />

m<br />

B<br />

sat<br />

L<br />

m<br />

V<br />

a<br />

b<br />

V<br />

Tb<br />

k<br />

b<br />

V<br />

T<br />

k<br />

T<br />

V<br />

V<br />

a<br />

b<br />

V<br />

Tb<br />

k<br />

b<br />

V<br />

T<br />

k<br />

b<br />

V<br />

b<br />

b<br />

V<br />

b<br />

b<br />

V<br />

b<br />

V<br />

k<br />

T<br />

V<br />

(34)<br />

Now we equate (32) and (34), and solve to obtain<br />

( ) ( )<br />

( )<br />

( )<br />

( )<br />

( ) ⎟ ⎟ ⎠<br />

⎞<br />

⎜<br />

⎜<br />

⎝<br />

⎛<br />

−<br />

−<br />

⎟<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎜<br />

⎝<br />

⎛<br />

−<br />

−<br />

−<br />

⎟<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎜<br />

⎝<br />

⎛<br />

−<br />

−<br />

+<br />

−<br />

⎟<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎜<br />

⎝<br />

⎛<br />

−<br />

−<br />

+<br />

−<br />

⎟<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎜<br />

⎝<br />

⎛<br />

−<br />

−<br />

+<br />

−<br />

⎥<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎢<br />

⎣<br />

⎡<br />

−<br />

−<br />

−<br />

+<br />

⎟<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎜<br />

⎝<br />

⎛<br />

−<br />

−<br />

+<br />

⎟<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎜<br />

⎝<br />

⎛<br />

−<br />

−<br />

−<br />

−<br />

−<br />

=<br />

∂<br />

∂<br />

3<br />

2<br />

3<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

3<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

ln<br />

2<br />

L<br />

m<br />

L<br />

m<br />

B<br />

V<br />

m<br />

V<br />

m<br />

B<br />

L<br />

m<br />

L<br />

m<br />

B<br />

L<br />

m<br />

B<br />

V<br />

m<br />

V<br />

m<br />

B<br />

V<br />

m<br />

B<br />

L<br />

m<br />

L<br />

m<br />

B<br />

L<br />

m<br />

B<br />

L<br />

m<br />

V<br />

m<br />

V<br />

m<br />

L<br />

m<br />

B<br />

L<br />

m<br />

L<br />

m<br />

B<br />

V<br />

m<br />

B<br />

L<br />

m<br />

B<br />

sat<br />

V<br />

m<br />

V<br />

a<br />

b<br />

V<br />

T<br />

k<br />

V<br />

a<br />

b<br />

V<br />

T<br />

k<br />

V<br />

a<br />

b<br />

V<br />

Tb<br />

k<br />

b<br />

V<br />

T<br />

k<br />

V<br />

a<br />

b<br />

V<br />

Tb<br />

k<br />

b<br />

V<br />

T<br />

k<br />

V<br />

a<br />

b<br />

V<br />

Tb<br />

k<br />

b<br />

V<br />

T<br />

k<br />

b<br />

V<br />

b<br />

b<br />

V<br />

b<br />

b<br />

V<br />

b<br />

V<br />

k<br />

V<br />

a<br />

b<br />

V<br />

T<br />

k<br />

b<br />

V<br />

k<br />

b<br />

V<br />

k<br />

T<br />

V<br />

(35)<br />

We can obtain <strong>the</strong> corresponding partial <strong>der</strong>ivative for <strong>the</strong> liquid phase by substituting equation<br />

(35) into equation (32).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!