13.01.2015 Views

Version One – Homework 1 – Juyang Huang – 24018 – Jan 16 ...

Version One – Homework 1 – Juyang Huang – 24018 – Jan 16 ...

Version One – Homework 1 – Juyang Huang – 24018 – Jan 16 ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Version</strong> <strong>One</strong> – <strong>Homework</strong> 1 – <strong>Juyang</strong> <strong>Huang</strong> – <strong>24018</strong> – <strong>Jan</strong> <strong>16</strong>, 2008 1<br />

This print-out should have 66 questions.<br />

Multiple-choice questions may continue on<br />

the next column or page – find all choices<br />

before answering. The due time is Central<br />

time.<br />

Charge in Lightning 03<br />

23:01, trigonometry, numeric, > 1 min, normal.<br />

001 (part 1 of 1) 10 points<br />

A strong lightning bolt transfers about 25 C<br />

to Earth.<br />

The charge on an electron is 1.60218 ×<br />

10 −19 C.<br />

How many electrons are transferred<br />

Correct answer: 1.56038 × 10 20 .<br />

Explanation:<br />

Let : q = 25 C .<br />

The charge is proportional to the number<br />

of electrons, so<br />

keywords:<br />

q = n q e<br />

n = q q e<br />

−25 C<br />

=<br />

−1.60218 × 10 −19 C<br />

= 1.56038 × 10 20 .<br />

AP EM 1993 MC 55<br />

23:04, trigonometry, multiple choice, < 1 min,<br />

fixed.<br />

002 (part 1 of 1) 10 points<br />

Two metal spheres that are initially uncharged<br />

are mounted on insulating stands,<br />

as shown.<br />

−<br />

−<br />

− −<br />

X<br />

Y<br />

side opposite to the rubber rod. Y is allowed<br />

to touch X and then is removed some distance<br />

away. The rubber rod is then moved far away<br />

from X and Y.<br />

What are the final charges on the spheres<br />

Sphere X<br />

1. Zero Zero<br />

Sphere Y<br />

2. Negative Negative<br />

3. Negative Positive<br />

4. Positive Negative correct<br />

5. Positive Positive<br />

Explanation:<br />

The force is repulsive if the charges are of<br />

the same sign, so when the negatively charged<br />

rod moves close to the sphere X, the negatively<br />

charged electrons will be pushed to<br />

sphere Y. If X and Y are separated before<br />

the rod moves away, those charges will remain<br />

on X and Y. Therefore, X is positively<br />

charged and Y is negatively charged.<br />

keywords:<br />

Acceleration of a Particle<br />

23:05, trigonometry, numeric, > 1 min, normal.<br />

003 (part 1 of 1) 10 points<br />

A particle of mass 50 g and charge 50 µC is<br />

released from rest when it is 50 cm from a<br />

second particle of charge −20 µC.<br />

Determine the magnitude of the initial acceleration<br />

of the 50 g particle.<br />

Correct answer: 719 m/s 2 .<br />

Explanation:<br />

A negatively charged rubber rod is brought<br />

close to but does not make contact with sphere<br />

X. Sphere Y is then brought close to X on the<br />

Let : m = 50 g ,<br />

q = 50 µC = 5 × 10 −5 C ,<br />

d = 50 cm = 0.5 m ,<br />

Q = −20 µC = −2 × 10 −5 C ,<br />

k e = 8.9875 × 10 9 .<br />

and


<strong>Version</strong> <strong>One</strong> – <strong>Homework</strong> 1 – <strong>Juyang</strong> <strong>Huang</strong> – <strong>24018</strong> – <strong>Jan</strong> <strong>16</strong>, 2008 2<br />

The force exerted on the particle is<br />

F = k e<br />

|q 1 | |q 2 |<br />

r 2<br />

‖⃗a‖ = k e<br />

‖⃗q‖ ‖ ⃗ Q‖<br />

m d 2<br />

keywords:<br />

= m a<br />

= k e<br />

∣ ∣ 5 × 10 −5 C ∣ ∣ ∣ ∣−2 × 10 −5 C ∣ ∣<br />

(0.05 kg) (0.5 m 2 )<br />

= 719 m/s 2 .<br />

Hanging Charges<br />

23:05, trigonometry, numeric, > 1 min, normal.<br />

004 (part 1 of 1) 10 points<br />

Two identical small charged spheres hang in<br />

equilibrium with equal masses as shown in<br />

the figure. The length of the strings are equal<br />

and the angle (shown in the figure) with the<br />

vertical is identical.<br />

The acceleration of gravity is 9.8 m/s 2<br />

and the value of Coulomb’s constant is<br />

8.98755 × 10 9 N m 2 /C 2 .<br />

q<br />

m<br />

θ<br />

a<br />

L<br />

q<br />

m<br />

From the right triangle in the figure above,<br />

we see that<br />

sin θ = a L .<br />

Therefore<br />

a = L sin θ<br />

= (0.15 m) sin(5 ◦ )<br />

= 0.0130734 m .<br />

The separation of the spheres is r = 2 a =<br />

0.0261467 m . The forces acting on one of the<br />

spheres are shown in the figure below.<br />

T cos θ<br />

F<br />

e<br />

θ<br />

mg<br />

T<br />

θ<br />

T sin θ<br />

Because the sphere is in equilibrium, the<br />

resultant of the forces in the horizontal and<br />

vertical directions must separately add up to<br />

zero:<br />

∑<br />

Fx = T sin θ − F e = 0<br />

0.15 m<br />

∑<br />

Fy = T cos θ − m g = 0 .<br />

5 ◦<br />

0.03 kg 0.03 kg<br />

Find the magnitude of the charge on each<br />

sphere.<br />

Correct answer: 4.4233 × 10 −8 C.<br />

Explanation:<br />

Let : L = 0.15 m ,<br />

m = 0.03 kg ,<br />

θ = 5 ◦ .<br />

and<br />

From the second equation in the system<br />

above, we see that T =<br />

m g , so T can be<br />

cos θ<br />

eliminated from the first equation if we make<br />

this substitution. This gives a value<br />

F e = m g tan θ<br />

= (0.03 kg) ( 9.8 m/s 2) tan(5 ◦ )<br />

= 0.0257217 N ,<br />

for the electric force.<br />

From Coulomb’s law, the electric force between<br />

the charges has magnitude<br />

|F e | = k e<br />

|q| 2<br />

r 2 ,


<strong>Version</strong> <strong>One</strong> – <strong>Homework</strong> 1 – <strong>Juyang</strong> <strong>Huang</strong> – <strong>24018</strong> – <strong>Jan</strong> <strong>16</strong>, 2008 3<br />

where |q| is the magnitude of the charge on<br />

each sphere.<br />

Note: The term |q| 2 arises here because the<br />

charge is the same on both spheres.<br />

This equation can be solved for |q| to give<br />

√<br />

|F e | r<br />

|q| =<br />

2<br />

=<br />

keywords:<br />

k e<br />

√<br />

(0.0257217 N) (0.0261467 m) 2<br />

(8.98755 × 10 9 N m 2 /C 2 )<br />

= 4.4233 × 10 −8 C .<br />

Serway CP 15 11<br />

23:05, trigonometry, numeric, > 1 min, normal.<br />

005 (part 1 of 2) 10 points<br />

Three charges are arranged in a triangle as<br />

shown.<br />

The Coulomb constant is 8.98755 ×<br />

10 9 N · m 2 /C 2 .<br />

y<br />

5 nC<br />

+<br />

−<br />

−3 nC<br />

0.3 m<br />

0.1 m<br />

+<br />

6 nC<br />

What is the net electrostatic force on the<br />

charge at the origin<br />

Correct answer: 1.38102 × 10 −5 N.<br />

Explanation:<br />

x<br />

F 1,2 θ<br />

F 1,3<br />

F<br />

The repulsive force<br />

q 1 q 2<br />

F 1,2 = k C<br />

r1,2<br />

2<br />

= 8.98755 × 10 9 N · m 2 /C 2<br />

(<br />

5 × 10 −9 C ) ( 6 × 10 −9 C )<br />

×<br />

(0.3 m) 2<br />

= 2.99585 × 10 −6 N<br />

acts along the negative x-axis, and the attractive<br />

force<br />

q 1 |q 3 |<br />

F 1,3 = k C<br />

r1,3<br />

2<br />

= 8.98755 × 10 9 N · m 2 /C 2<br />

(<br />

5 × 10 −9 C ) ( −3 × 10 −9 C )<br />

×<br />

(0.1 m) 2<br />

= −1.34813 × 10 −5 N<br />

acts along the negative y-axis.<br />

Thus<br />

F net = [ (2.99585 × 10 −6 N) 2<br />

+(−1.34813 × 10 −5 N) 2] 1/2<br />

= 1.38102 × 10 −5 N .<br />

Let : q 1 = 5 nC = 5 × 10 −9 C ,<br />

q 2 = 6 nC = 6 × 10 −9 C ,<br />

q 3 = −3 nC = −3 × 10 −9 C ,<br />

r 1,2 = 0.3 m ,<br />

r 1,3 = 0.1 m , and<br />

k C = 8.98755 × 10 9 N · m 2 /C 2 .<br />

006 (part 2 of 2) 10 points<br />

What is the direction of this force (as an angle<br />

between −180 ◦ and 180 ◦ measured from the<br />

positive x-axis, with counterclockwise positive)<br />

Correct answer: −102.529 ◦ .<br />

Explanation:


<strong>Version</strong> <strong>One</strong> – <strong>Homework</strong> 1 – <strong>Juyang</strong> <strong>Huang</strong> – <strong>24018</strong> – <strong>Jan</strong> <strong>16</strong>, 2008 4<br />

The electric field strength E ∝ 1 r 2 , so<br />

tan θ = F 1,3<br />

F 1,2<br />

( )<br />

θ = tan −1 F1,3<br />

F 1,2<br />

( 1.34813 × 10<br />

= tan −1 −5 )<br />

N<br />

2.99585 × 10 −6 N<br />

= 77.4712 ◦<br />

E A<br />

E B<br />

=<br />

keywords:<br />

1<br />

r 2 A<br />

1<br />

r 2 B<br />

= r2 B<br />

r 2 A<br />

=<br />

(2 r)2<br />

r 2 = 4 .<br />

below the negative x-axis. From the positive<br />

x-axis, the angle is<br />

−180 ◦ + 77.4712 ◦ = −102.529 ◦ .<br />

Two Charge Field<br />

23:13, trigonometry, multiple choice, > 1 min,<br />

wording-variable.<br />

008 (part 1 of 3) 10 points<br />

Two point-charges at fixed locations produce<br />

an electric field as shown below.<br />

keywords:<br />

AP B 1993 MC 68<br />

23:07, trigonometry, multiple choice, < 1 min,<br />

fixed.<br />

007 (part 1 of 1) 10 points<br />

The diagram shows an isolated, positive<br />

charge Q, where point B is twice as far away<br />

from Q as point A.<br />

A<br />

X<br />

B<br />

+Q A B<br />

Y<br />

0 10 cm 20 cm<br />

The ratio of the electric field strength at<br />

point A to the electric field strength at point<br />

B is<br />

1. E A<br />

E B<br />

= 8 1 .<br />

2. E A<br />

E B<br />

3. E A<br />

E B<br />

= 2 1 .<br />

4. E A<br />

E B<br />

= 1 1 .<br />

5. E A<br />

E B<br />

= 1 2 .<br />

Explanation:<br />

= 4 1 . correct<br />

Let : r B<br />

= 2 r A<br />

.<br />

A negative charge placed at point X would<br />

move<br />

1. toward charge B. correct<br />

2. toward charge A.<br />

3. along an equipotential plane.<br />

Explanation:<br />

The electric field runs from a positive potential<br />

to a negative potential, so it points<br />

from a positive charge to a negative charge.<br />

Therefore the charge B is positive. A negative<br />

charge will move toward a positive potential,<br />

which creates lower potential energy and a<br />

higher kinetic energy.<br />

009 (part 2 of 3) 10 points<br />

The electric field at point X is


<strong>Version</strong> <strong>One</strong> – <strong>Homework</strong> 1 – <strong>Juyang</strong> <strong>Huang</strong> – <strong>24018</strong> – <strong>Jan</strong> <strong>16</strong>, 2008 5<br />

1. stronger than the field at point Y . correct<br />

2. weaker than the field at point Y .<br />

3. the same as that the field at point Y .<br />

Explanation:<br />

The field at X is stronger than the field<br />

at Y , since the number of field lines per unit<br />

volume at X is greater than the number of<br />

field lines per unit volume at Y .<br />

010 (part 3 of 3) 10 points<br />

Estimate the ratio of the magnitude of<br />

charge A to the magnitude of charge B. Your<br />

answer must be within ± 5%.<br />

Correct answer: 1.88889 .<br />

Explanation:<br />

The number of field lines is proportional to<br />

the magnitude of the charge.<br />

keywords:<br />

Q A<br />

≈ −17 = −1.88889<br />

Q B 9<br />

∣ Q A ∣∣∣<br />

∣ ≈ 1.88889 .<br />

Q B<br />

Maximum force on one charge<br />

23:05, calculus, multiple choice, > 1 min,<br />

fixed.<br />

011 (part 1 of 1) 10 points<br />

Charge Q is on the y axis a distance a from<br />

the origin and charge q is on the x axis a<br />

distance d from the origin.<br />

What is the value of d for which the x<br />

component of the force on q is the greatest<br />

1. d = 0<br />

2. d = a<br />

3. d = √ 2 a<br />

4. d = a 2<br />

5. d = a √<br />

2<br />

correct<br />

6. d = q Q a<br />

7. d = q Q<br />

√<br />

2 a<br />

8. d = q a<br />

Q 2<br />

9. d = q a<br />

√<br />

Q 2<br />

Explanation:<br />

We have the force on charge q on the x axis<br />

due to charge Q on the y axis<br />

⃗F = 1<br />

4 π ɛ 0<br />

q Q<br />

r 2 ˆr ,<br />

where r = √ a 2 + d 2 . So the x component of<br />

the force on q is<br />

F x = 1 q Q<br />

4 π ɛ 0 r 2 cos θ<br />

= 1<br />

4 π ɛ 0<br />

q Q<br />

a 2 + d 2<br />

d<br />

√<br />

a 2 + d 2<br />

= 1<br />

4 π ɛ 0<br />

q Q d<br />

(a 2 + d 2 ) 3/2 .<br />

For maximum x component of the force,<br />

∂ F x<br />

= 0 is required. Therefore<br />

∂d<br />

keywords:<br />

∂F x<br />

∂d =<br />

q Q a 2 − 2 d 2<br />

4 π ɛ 0 (a 2 + d 2 ) 5/2 = 0<br />

a 2 − 2 d 2 = 0<br />

d = √ a . 2<br />

Charged Semicircle<br />

23:10, calculus, numeric, > 1 min, normal.<br />

012 (part 1 of 3) 10 points<br />

Consider the setup shown in the figure below,<br />

where the arc is a semicircle with radius<br />

r. The total charge Q is negative, and distributed<br />

uniformly on the semicircle. The<br />

charge on a small segment with angle ∆θ is<br />

labeled ∆q.


<strong>Version</strong> <strong>One</strong> – <strong>Homework</strong> 1 – <strong>Juyang</strong> <strong>Huang</strong> – <strong>24018</strong> – <strong>Jan</strong> <strong>16</strong>, 2008 6<br />

y<br />

y<br />

∆θ A<br />

k |∆q| cos θ<br />

II I<br />

4. ∆E x =<br />

−<br />

x<br />

r<br />

θ<br />

r<br />

−<br />

III IV<br />

k |∆q| sin θ<br />

5. ∆E<br />

x<br />

x =<br />

r<br />

O<br />

6. ∆E x = k |∆q| r 2<br />

− −−<br />

−−<br />

B<br />

7. ∆E x = k |∆q| (sin θ) r 2<br />

−<br />

−−−−<br />

−<br />

− −−<br />

−<br />

∆q is given by<br />

1. None of these<br />

2. ∆q = Q<br />

3. ∆q = Q ∆θ<br />

2π<br />

4. ∆q = 2 Q ∆θ<br />

π<br />

5. ∆q = Q ∆θ correct<br />

π<br />

6. ∆q = Q 2 π<br />

8. ∆E x = k |∆q| (cos θ) r 2<br />

9. ∆E x = k |∆q| (cos θ) r<br />

10. ∆E x = k |∆q| (sin θ) r<br />

Explanation:<br />

Negative charge attracts a positive test<br />

charge. At O, ∆E points toward ∆q . According<br />

to the sketch, the vector ∆E x is pointing<br />

along the negative x axis. The magnitude of<br />

the ∆E x is given by<br />

∆E x = ∆E cos θ = k |∆q|<br />

r 2 cos θ .<br />

7. ∆q = 2 Q π<br />

8. ∆q = Q π<br />

9. ∆q = 2 π Q<br />

10. ∆q = π Q<br />

Explanation:<br />

The angle of a semicircle is π, thus the<br />

charge on a small segment with angle ∆θ is<br />

∆q = Q ∆θ<br />

π<br />

013 (part 2 of 3) 10 points<br />

The magnitude of the x-component of the<br />

electric field at the center, due to ∆q, is given<br />

by<br />

1. ∆E x = k |∆q|<br />

r 2<br />

2. ∆E x =<br />

3. ∆E x =<br />

k |∆q| sin θ<br />

r 2<br />

k |∆q| cos θ<br />

r 2<br />

.<br />

correct<br />

014 (part 3 of 3) 10 points<br />

Determine the magnitude of the electric field<br />

at O . The total charge is −7.5 µC, the radius<br />

of the semicircle is 14 cm, and the Coulomb<br />

constant is 8.98755 × 10 9 N · m 2 /C 2 .<br />

Correct answer: 2.18941 × 10 6 N/C.<br />

Explanation:<br />

Let : Q = −7.5 µC ,<br />

r = 14 cm , and<br />

k = 8.98755 × 10 9 N · m 2 /C 2 .<br />

By symmetry of the semicircle, the y-<br />

component of the electric field at the center<br />

is<br />

E y = 0 .<br />

Combining part 1 and part 2,<br />

∆E x =<br />

k |∆q| cos θ<br />

r 2<br />

= k |Q|<br />

π r 2<br />

cos θ ∆θ


<strong>Version</strong> <strong>One</strong> – <strong>Homework</strong> 1 – <strong>Juyang</strong> <strong>Huang</strong> – <strong>24018</strong> – <strong>Jan</strong> <strong>16</strong>, 2008 7<br />

Therefore, the magnitude of the electric field<br />

at the center is given by<br />

E = E x =<br />

= 2 k |Q|<br />

π r 2 .<br />

∫ π/2<br />

−π/2<br />

k |Q|<br />

π r 2<br />

cos θ dθ<br />

For the above values, the magnitude is given<br />

by<br />

E = 2 ( 8.98755 × 10 9 N · m 2 /C 2) |(−7.5 µC)|<br />

π (14 cm) 2<br />

= 2.18941 × 10 6 N/C .<br />

The direction is along negative x axis.<br />

y<br />

y<br />

∆θ A II I<br />

−<br />

x<br />

θ<br />

r<br />

− E<br />

III IV<br />

x<br />

O<br />

keywords:<br />

−<br />

−−−−<br />

−<br />

− −−<br />

−<br />

− −−<br />

−−<br />

B<br />

Flux Through a Pyramid<br />

24:01, trigonometry, numeric, > 1 min, normal.<br />

015 (part 1 of 1) 10 points<br />

A (6 m by 6 m) square base pyramid with<br />

height of 4 m is placed in a vertical electric<br />

field of 52 N/C.<br />

6 m<br />

52 N/C<br />

4 m<br />

Calculate the total electric flux which goes<br />

out through the pyramid’s four slanted surfaces.<br />

Correct answer: 1872 N m 2 /C.<br />

Explanation:<br />

By Gauss’ law,<br />

Let : s = 6 m ,<br />

h = 4 m , and<br />

E = 52 N/C .<br />

Φ = ⃗ E · ⃗A<br />

Since there is no charge contained in the pyramid,<br />

the net flux through the pyramid must<br />

be 0 N/C. Since the field is vertical, the flux<br />

through the base of the pyramid is equal and<br />

opposite to the flux through the four sides.<br />

Thus we calculate the flux through the base<br />

of the pyramid, which is<br />

keywords:<br />

Φ = E A = E s 2<br />

= (52 N/C) (6 m) 2<br />

= 1872 N m 2 /C .<br />

Flux Through a Submarine<br />

24:02, trigonometry, numeric, > 1 min, normal.<br />

0<strong>16</strong> (part 1 of 1) 10 points<br />

The following charges are located inside a submarine:<br />

5 µC, −9 µC, 27 µC, and −84 µC.<br />

Calculate the net electric flux through the<br />

submarine.<br />

Correct answer: −6.88954 × 10 6 N · m 2 /C.<br />

Explanation:<br />

Let : q 1 = 5 µC = 5 × 10 −6 C ,<br />

q 2 = −9 µC = −9 × 10 −6 C ,<br />

q 3 = 27 µC = 2.7 × 10 −5 C ,<br />

q 4 = −84 µC = −8.4 × 10 −5 C .<br />

From Gauss’s Law:<br />

Φ = q 1 + q 2 + q 3 + q 4<br />

ɛ 0<br />

= (5 × 10−6 C) + (−9 × 10 −6 C)<br />

8.854 × 10 −12 C 2 /N · m 2<br />

and<br />

+ (2.7 × 10−5 C) + (−8.4 × 10 −5 C)<br />

8.854 × 10 −12 C 2 /N · m 2<br />

= −6.88954 × 10 6 N · m 2 /C .


<strong>Version</strong> <strong>One</strong> – <strong>Homework</strong> 1 – <strong>Juyang</strong> <strong>Huang</strong> – <strong>24018</strong> – <strong>Jan</strong> <strong>16</strong>, 2008 8<br />

keywords:<br />

Long Cylindrical Insulator 03<br />

24:03, trigonometry, numeric, > 1 min, normal.<br />

017 (part 1 of 1) 10 points<br />

Consider a long, uniformly charged, cylindrical<br />

insulator of radius R with charge density<br />

1 µC/m 3 . (The volume of a cylinder with<br />

radius r and length l is V = π r 2 l.)<br />

The value of the Permittivity of free space<br />

is 8.85419 × 10 −12 C 2 /N · m 2<br />

R<br />

1 cm<br />

What is the magnitude of the electric field<br />

inside the insulator at a distance 1 cm from<br />

the axis (1 cm < R)<br />

Correct answer: 564.705 N/C.<br />

Explanation:<br />

Let : r = 1 cm = 0.01 m ,<br />

ρ = 1 µC/m 3<br />

= 1 × 10 −6 C/m 3 , and<br />

ɛ 0 = 8.85419 × 10 −12 C 2 /N · m 2 .<br />

Consider a cylindrical Gaussian surface of<br />

radius r and length l much less than the<br />

length of the insulator so that the component<br />

of the electric field parallel to the axis is<br />

negligible.<br />

R<br />

r<br />

l<br />

The flux leaving the ends of the Gaussian<br />

cylinder is negligible, and the only contribution<br />

to the flux is from the side of the cylinder.<br />

Since the field is perpendicular to this surface,<br />

the flux is<br />

Φ s = 2 π r l E ,<br />

and the charge enclosed by the surface is<br />

Using Gauss’ law,<br />

Q enc = π r 2 l ρ .<br />

Φ s = Q enc<br />

ɛ 0<br />

2 π r l E = π r2 l ρ<br />

ɛ 0<br />

.<br />

Thus<br />

E =<br />

ρ r<br />

2 ɛ<br />

( 0<br />

1 × 10 −6 C/m 3) (0.01 m)<br />

=<br />

2 (8.85419 × 10 −12 C 2 /N · m 2 )<br />

keywords:<br />

= 564.705 N/C .<br />

Uniformly Charged Sphere 04<br />

24:03, trigonometry, multiple choice, < 1 min,<br />

fixed.<br />

018 (part 1 of 2) 10 points<br />

Given :<br />

V sphere = 4 π R3<br />

, and<br />

3<br />

A sphere = 4 π R 2 .<br />

Consider a sphere, which is an insulator,<br />

where charge is uniformly distributed<br />

throughout.<br />

Consider a spherical Gaussian surface with<br />

radius R , which is concentric to the sphere<br />

2<br />

with a radius R.<br />

Q is the total<br />

charge inside<br />

the sphere.<br />

p<br />

R<br />

R<br />

2


<strong>Version</strong> <strong>One</strong> – <strong>Homework</strong> 1 – <strong>Juyang</strong> <strong>Huang</strong> – <strong>24018</strong> – <strong>Jan</strong> <strong>16</strong>, 2008 9<br />

The total amount of flux flowing through<br />

the Gaussian surface is given by<br />

6. ‖ E‖ ⃗ = k Q2<br />

1. Φ = Q 2 R 2 .<br />

.<br />

Explanation:<br />

ɛ 0 Gauss’s Law gives us<br />

2. Φ = Q .<br />

4 ɛ<br />

4 π r 2 E = Q encl<br />

0 ɛ 0<br />

3. Φ = Q<br />

(<br />

.<br />

4 R<br />

2 ɛ 0<br />

4. Φ = Q<br />

= Q 3 π 2<br />

. correct<br />

ɛ 0<br />

4<br />

8 ɛ 0<br />

5. Φ = 2 Q<br />

3 π R3<br />

.<br />

= Q ,<br />

ɛ 0 8 ɛ 0<br />

Q<br />

E = ( ) 2 R<br />

4 π 8 ɛ 0<br />

2<br />

Q<br />

=<br />

Φ = 4 π r 2 4 π ɛ<br />

E<br />

0 2 R 2<br />

= Q encl<br />

= k Q<br />

.<br />

2 R<br />

ɛ 2 .<br />

0<br />

Φ = Q encl<br />

keywords:<br />

ɛ<br />

⎡ 0<br />

( ) 3<br />

⎤<br />

4 π R<br />

= Q 3 2 ⎢<br />

ɛ 0 ⎣ 4 π<br />

⎥<br />

⎦<br />

3 R3<br />

= Q .<br />

8 ɛ 0<br />

019 (part 2 of 2) 10 points<br />

The magnitude of the electric field ‖ E‖ ⃗ at R 2<br />

q 2<br />

is given by<br />

1. ‖ E‖ ⃗ = k Q<br />

2 R 2 . correct<br />

q 1<br />

2. ‖ E‖ ⃗ = k Q<br />

R 2 .<br />

O<br />

3. ‖ E‖ ⃗ = 2 k Q<br />

R 2 .<br />

A<br />

4. ‖ E‖ ⃗ = 2 k Q2<br />

B<br />

R 2 .<br />

C<br />

5. ‖ E‖ ⃗ = k Q2<br />

R 2 .<br />

6. Φ = 4 Q<br />

ɛ 0<br />

.<br />

Explanation:<br />

Basic Concept: Gauss’ Law.<br />

Solution: For spherical symmetric case,<br />

) 3<br />

Shell Game 01 v2<br />

24:07, trigonometry, multiple choice, < 1 min,<br />

fixed.<br />

020 (part 1 of 3) 10 points<br />

Consider the following spherically symmetric<br />

situation: We have a charge q 1 on a metallic<br />

ball at the center, inside of a conducting shell<br />

of inner radius R 2 and outer radius R 3 . There<br />

is a total charge of q 2 on the shell.<br />

R 3 , q 2<br />

′′<br />

R 2 , q 2<br />

′<br />

R 1 , q 1<br />

a<br />

b<br />

c


<strong>Version</strong> <strong>One</strong> – <strong>Homework</strong> 1 – <strong>Juyang</strong> <strong>Huang</strong> – <strong>24018</strong> – <strong>Jan</strong> <strong>16</strong>, 2008 10<br />

Find E at A where OA = a.<br />

1. E A<br />

= k q 1<br />

a 2 correct<br />

2. E A<br />

= k q 1<br />

2 a 2<br />

3. E A<br />

= k q 1<br />

b 2<br />

4. E A<br />

= k q 1<br />

c 2<br />

5. E A<br />

= 0<br />

6. E A<br />

= k q 1<br />

3 a 2<br />

q 1<br />

7. E A<br />

= k √<br />

2 a 2<br />

8. E A<br />

= k 2 q 1<br />

a 2<br />

9. E A<br />

= k 3 q 1<br />

a 2<br />

10. E A<br />

= k 4 q 1<br />

a 2<br />

Explanation:<br />

Pick a Gaussian surface (sphere since we<br />

are in spherical symmetry) center at the point<br />

charge and of radius a. This surface contains<br />

only the point charge, so q encl = q 1 . The<br />

formula for E gives<br />

8. E B<br />

= k q 1 − q 2<br />

b 2<br />

9. E B<br />

= k 3 q 1<br />

b 2<br />

10. E B<br />

= k 4 q 1<br />

b 2<br />

Explanation:<br />

For an electrostatic situation, inside of a<br />

conductor, there is no charge; i.e., q inside = 0.<br />

Also, ⃗ E inside = 0 and there is no flux inside,<br />

Φ inside = 0.<br />

Thus<br />

E B<br />

= 0 .<br />

Notice also that since the electric field at B<br />

is zero, the total enclosed charge is zero, or<br />

q 1 + q ′ 2 = 0. Therefore<br />

q ′ 2 = −q 1 .<br />

This verifies that the charge on the inner<br />

surface of a conducting shell is −q 1 , where<br />

q 1 is the charge is the charge enclosed by the<br />

shell.<br />

022 (part 3 of 3) 10 points<br />

Find E at C, where OC = c.<br />

1. E C<br />

= 0<br />

E A<br />

= k q 1<br />

a 2 .<br />

021 (part 2 of 3) 10 points<br />

Find E at B, where OB = b.<br />

1. E B<br />

= 0 correct<br />

2. E B<br />

= k q 1<br />

a 2<br />

3. E B<br />

= k q 1<br />

b 2<br />

4. E B<br />

= k q 1<br />

2 b 2<br />

5. E B<br />

= k q 1<br />

c 2<br />

6. E B<br />

= k q 2<br />

2 b 2<br />

7. E B<br />

= k q 1 + q 2<br />

√<br />

2 b 2<br />

2. E C<br />

= k q 1<br />

a 2<br />

3. E C<br />

= k q 1 + q 2<br />

b 2<br />

4. E C<br />

= k q 1 − q 2<br />

2 a 2<br />

5. E C<br />

= k q 1<br />

c 2<br />

6. E C<br />

= k q 1<br />

2 b 2<br />

7. E C<br />

= k q 1 + q 2<br />

c 2<br />

8. E C<br />

= k q 1 − q 2<br />

c 2<br />

9. E C<br />

= k 3 q 1<br />

c 2<br />

10. E C<br />

= k 4 q 1<br />

c 2<br />

Explanation:<br />

correct


<strong>Version</strong> <strong>One</strong> – <strong>Homework</strong> 1 – <strong>Juyang</strong> <strong>Huang</strong> – <strong>24018</strong> – <strong>Jan</strong> <strong>16</strong>, 2008 11<br />

Here the Gaussian surface is a sphere centered<br />

at the point charge q 1 and of radius c.<br />

The enclosed charge in this sphere is all the<br />

charge, or q 1 + q 2 . The electric field at C is<br />

keywords:<br />

E C<br />

= k q 1 + q 2<br />

c 2 .<br />

Solid Conducting Sphere<br />

24:08, trigonometry, multiple choice, < 1 min,<br />

fixed.<br />

023 (part 1 of 1) 10 points<br />

A positive charge of 10 −6 coulomb is placed<br />

on an insulated solid conducting sphere.<br />

Which of the following is true<br />

1. When a second conducting sphere is<br />

connected by a conducting wire to the first<br />

sphere, charge is transferred until the electric<br />

potentials of the two spheres are equal.<br />

correct<br />

2. The electric field inside the sphere is constant<br />

in magnitude, but not zero.<br />

3. The electric field in the region surrounding<br />

the sphere increases with increasing distance<br />

from the sphere.<br />

4. An insulated metal object acquires a net<br />

positive charge when brought near to, but not<br />

in contact with, the sphere.<br />

5. The charge resides uniformly throughout<br />

the sphere.<br />

Explanation:<br />

Every point in the conductor becomes equipotential,<br />

and the electric field is defined as<br />

the gradient of the electric potential, so inside<br />

the conducting sphere, all points are equipotential<br />

and there is no electric field.<br />

Outside the conducting sphere, the electric<br />

field is the same when there are net charges at<br />

the center of the sphere, so the electric field<br />

decreases with increasing distance from the<br />

sphere.<br />

If there is no net charge on the insulated<br />

metal object when brought near to, but not<br />

in contact with the sphere, there is also no<br />

net charge on it. Only the charge distribution<br />

changes.<br />

Since there is repulsion among like charges,<br />

charges reside uniformly on the surface of the<br />

sphere.<br />

keywords:<br />

Field From a Charged Plate JM<br />

24:06, trigonometry, multiple choice, < 1 min,<br />

fixed.<br />

024 (part 1 of 1) 10 points<br />

A uniformly charged conducting plate with<br />

area A has a total charge Q which is positive.<br />

The figure below shows a cross-sectional view<br />

of the plane and the electric field lines due to<br />

the charge on the plane. The figure is not<br />

drawn to scale.<br />

+Q<br />

+<br />

E<br />

E<br />

+<br />

+<br />

+ P<br />

+<br />

+<br />

Find the magnitude of the field at point P ,<br />

which is a distance a from the plate. Assume<br />

that a is very small when compared to the<br />

dimensions of the plate, such that edge effects<br />

can be ignored.<br />

1. ‖ ⃗ E‖ = Q<br />

ɛ 0 A<br />

2. ‖ ⃗ E‖ = Q<br />

2 ɛ 0 A correct<br />

3. ‖ E‖ ⃗ = Q<br />

4 ɛ 0 A<br />

4. ‖ E‖ ⃗ Q<br />

=<br />

4 π ɛ 0 a 2<br />

5. ‖ ⃗ E‖ = Q<br />

4 π ɛ 0 a<br />

6. ‖ ⃗ E‖ = 2 ɛ 0 Q A<br />

7. ‖ ⃗ E‖ = ɛ 0 Q A


¡<br />

<strong>Version</strong> <strong>One</strong> – <strong>Homework</strong> 1 – <strong>Juyang</strong> <strong>Huang</strong> – <strong>24018</strong> – <strong>Jan</strong> <strong>16</strong>, 2008 12<br />

8. ‖ ⃗ E‖ = 4 π ɛ 0 a 2 Q<br />

9. ‖ ⃗ E‖ = 4 π ɛ 0 a Q<br />

Coaxial Cable 01<br />

24:05, calculus, multiple choice, < 1 min, normal.<br />

025 (part 1 of 4) 10 points<br />

A long coaxial cable consists of an inner cylindrical<br />

conductor with radius R 1 and an outer<br />

cylindrical conductor shell with inner radius<br />

R 2 and outer radius R 3 as shown. The cable<br />

extends out perpendicular to the plane<br />

shown. The charge on the inner conductor<br />

per unit length along the cable is λ and the<br />

corresponding charge on the outer conductor<br />

per unit length is −λ (same in magnitudes<br />

but with opposite signs) and λ > 0.<br />

−Q<br />

10. ‖ ⃗ E‖ = ɛ 0 Q a 2<br />

Explanation:<br />

Basic Concepts Gauss’ Law, electrostatic<br />

properties of conductors.<br />

Solution: Let us consider the Gaussian<br />

surface shown in the figure.<br />

+Q<br />

+<br />

+<br />

E + E<br />

+ S<br />

+<br />

+<br />

Due to the symmetry of the problem, there<br />

is an electric flux only through the right and<br />

left surfaces and these two are equal. If the<br />

cross section of the surface is S, then Gauss’<br />

Law states that<br />

keywords:<br />

Φ TOTAL<br />

= 2 E S<br />

= 1 ɛ 0<br />

Q<br />

A S , so<br />

E =<br />

Q<br />

2 ɛ 0 A .<br />

Q<br />

R 2<br />

R 3<br />

R 1<br />

Find the magnitude of the electric field at<br />

the point a distance r 1 from the axis of the<br />

inner conductor, where R 1 < r 1 < R 2 .<br />

1. E = 0<br />

λ<br />

2. E = correct<br />

2 π ɛ 0 r 1<br />

3. E =<br />

λ<br />

√<br />

2 π ɛ0 r 1<br />

4. E =<br />

λ<br />

√<br />

3 π ɛ0 r 1<br />

5. E =<br />

2 λ<br />

√<br />

3 π ɛ0 r 1<br />

6. E = λ R 1<br />

4 π ɛ 0 r 1<br />

2<br />

7. E = λ R 1<br />

3 π ɛ 0 r 1<br />

2<br />

8. E = λ2 R 1<br />

4 π ɛ 0 r 1<br />

2<br />

9. E =<br />

λ<br />

2 π ɛ 0 R 1<br />

10. None of these.<br />

Explanation:<br />

Pick a cylindrical Gaussian surface with the<br />

radius r 1 and apply the Gauss’s law; we obtain<br />

E · l · 2 π r 1 = Q ɛ 0<br />

λ<br />

E = .<br />

2 π ɛ 0 r 1<br />

026 (part 2 of 4) 10 points<br />

The electric field vector points<br />

1. in the negative ˆr direction


<strong>Version</strong> <strong>One</strong> – <strong>Homework</strong> 1 – <strong>Juyang</strong> <strong>Huang</strong> – <strong>24018</strong> – <strong>Jan</strong> <strong>16</strong>, 2008 13<br />

2. in the positive ˆr direction correct<br />

Explanation:<br />

The field points from positive charge to<br />

negative change.<br />

Since the center conductor is negatively<br />

charged, the electric field vector points in the<br />

negative ˆr direction.<br />

027 (part 3 of 4) 10 points<br />

Find the magnitude of the electric field at the<br />

point a distance r 2 from the axis of the inner<br />

conductor, where R 3 < r 2 .<br />

1. E = 0 correct<br />

2. E =<br />

3. E =<br />

4. E =<br />

5. E =<br />

λ<br />

2 π ɛ 0 r 2<br />

λ<br />

√<br />

2 π ɛ0 r 2<br />

λ<br />

√<br />

3 π ɛ0 r 2<br />

2 λ<br />

√<br />

3 π ɛ0 r 2<br />

6. E = λ R 1<br />

4 π ɛ 0 r 2<br />

2<br />

7. E = λ R 1<br />

3 π ɛ 0 r 2<br />

2<br />

8. E = λ2 R 1<br />

4 π ɛ 0 r 2<br />

2<br />

9. E =<br />

λ<br />

2 π ɛ 0 R 1<br />

10. None of these.<br />

Explanation:<br />

Pick a cylindrical Gaussian surface with the<br />

radius r 2 and apply the Gauss’s law. Because<br />

there is no net charge inside the Gaussian<br />

surface, the electric field E = 0 .<br />

028 (part 4 of 4) 10 points<br />

For a 100 m length of coaxial cable with inner<br />

radius 1 mm and outer radius 1.5 mm.<br />

Find the capacitance C of the cable.<br />

Correct answer: 13.7207 nF.<br />

Explanation:<br />

Let : l = 100 m ,<br />

R 1 = 1 mm ,<br />

R 2 = 1.5 mm .<br />

and<br />

We calculate the potential across the capacitor<br />

by integrating −E · ds. We may choose<br />

a path of integration along a radius; i.e.,<br />

−E · ds = −Edr.<br />

V = − 1 ∫<br />

q<br />

R1<br />

2 π ɛ 0 l R 2<br />

∣<br />

= − 1 q<br />

2 π ɛ 0 l<br />

ln r<br />

∣<br />

= q<br />

2 π ɛ 0 l ln R 2<br />

R 1<br />

.<br />

dr<br />

r<br />

R 1<br />

R 2<br />

Since C = q , we obtain the capacitance<br />

V<br />

C =<br />

keywords:<br />

2 π ɛ 0 l<br />

( )<br />

R2<br />

ln<br />

R 1<br />

= 2 π (8.85419 × 10−12 c 2 /N · m 2 )<br />

( ) 1.5 mm<br />

ln<br />

1 mm<br />

× (100 m)<br />

= 13.7207 nF .<br />

Charge in a Closed Surface<br />

24:02, calculus, numeric, > 1 min, normal.<br />

029 (part 1 of 2) 10 points<br />

A closed surface with dimensions a = b =<br />

0.4 m and c = 0.36 m is located as in the figure.<br />

The electric field throughout the region<br />

is nonuniform and given by ⃗ E = (α + β x 2 ) î<br />

where x is in meters, α = 3 N/C, and<br />

β = 2 N/(C m 2 ).


<strong>Version</strong> <strong>One</strong> – <strong>Homework</strong> 1 – <strong>Juyang</strong> <strong>Huang</strong> – <strong>24018</strong> – <strong>Jan</strong> <strong>16</strong>, 2008 14<br />

y<br />

a<br />

E<br />

× (0.133632 N m 2 /C)<br />

= 1.1832 × 10 −12 C .<br />

z<br />

c<br />

What is the magnitude of the net charge<br />

enclosed by the surface<br />

Correct answer: 1.1832 × 10 −12 C.<br />

Explanation:<br />

Let : a = b = 0.4 m ,<br />

c = 0.36 m ,<br />

α = 3 N/C , and<br />

β = 2 N/(C m 2 ) .<br />

The electric field throughout the region is<br />

directed along the x-axis and the direction of<br />

d A ⃗ is perpendicular to its surface. Therefore,<br />

⃗E is parallel to d A ⃗ over the four faces of<br />

the surface which are perpendicular to the<br />

yz plane, and E ⃗ is perpendicular to d A ⃗ over<br />

the two faces which are parallel to the yz<br />

plane. That is, only the left and right sides<br />

of the right rectangular parallel piped which<br />

encloses the charge will contribute to the flux.<br />

The net electric flux through the cube is<br />

∫<br />

∫<br />

∆Φ = E x d A ⊥ − E x d A ⊥<br />

right side<br />

b<br />

a<br />

left side<br />

= a b [ α + β(a + c) 2 − α − β a 2]<br />

= a b β (2 a c + c 2 )<br />

= a b c β (2 a + c)<br />

= (0.4 m) (0.4 m) (0.36 m)<br />

× [2 N/(C m 2 )] [2 (0.4 m) + 0.36 m]<br />

= 0.133632 N m 2 /C ,<br />

so the enclosed charge is<br />

q = ɛ 0 ∆Φ<br />

= [8.85419 × 10 −12 C 2 /(N m 2 )]<br />

x<br />

030 (part 2 of 2) 10 points<br />

What is the sign of the charge enclosed in the<br />

surface<br />

1. positive correct<br />

2. negative<br />

3. Cannot be determined<br />

Explanation:<br />

Since there is more flux coming out of the<br />

surface than going into the surface, the sign<br />

of the enclosed charge must be positive.<br />

Flux Through a Loop 01<br />

24:01, calculus, numeric, > 1 min, normal.<br />

031 (part 1 of 1) 10 points<br />

A 40 cm diameter loop is rotated in a uniform<br />

electric field until the position of maximum<br />

electric flux is found. The flux in this position<br />

is measured to be 520000 N · m 2 /C.<br />

What is the electric field strength<br />

Correct answer: 4.13803 × 10 6 N/C.<br />

Explanation:<br />

Let : r = 20 cm = 0.2 m and<br />

By Gauss’ law,<br />

∮<br />

Φ =<br />

Φ = 520000 N · m 2 /C .<br />

⃗E · d ⃗ A<br />

The position of maximum electric flux will be<br />

that position in which the plane of the loop is<br />

perpendicular to the electric field; i.e., when<br />

⃗E · d ⃗ A = E dA. Since the field is constant,<br />

E =<br />

Φ = E A = Eπ r 2<br />

Φ<br />

π r 2<br />

= 520000 N · m2 /C<br />

π (0.2 m) 2<br />

= 4.13803 × 10 6 N/C .


<strong>Version</strong> <strong>One</strong> – <strong>Homework</strong> 1 – <strong>Juyang</strong> <strong>Huang</strong> – <strong>24018</strong> – <strong>Jan</strong> <strong>16</strong>, 2008 15<br />

keywords:<br />

Three Point Charges 17<br />

25:01, trigonometry, multiple choice, > 1 min,<br />

normal.<br />

032 (part 1 of 3) 10 points<br />

Consider three point charges at the vertices of<br />

an equilateral triangle. Let the potential be<br />

zero at infinity.<br />

The value of the Coulomb constant is<br />

8.98755 × 10 9 N · m 2 /C 2 .<br />

1.5 µC<br />

ĵ<br />

60 ◦<br />

0.2 m<br />

3 µC P −5 µC<br />

What is the electrostatic potential at the<br />

point P at the center of the base of the equilateral<br />

triangle given in the diagram<br />

Correct answer: −101917 V.<br />

Explanation:<br />

Let : q 1 = 1.5 µC = 1.5 × 10 −6 C ,<br />

q 2 = 3 µC = 3 × 10 −6 C ,<br />

q 3 = −5 µC = −5 × 10 −6 C ,<br />

a = 0.2 m , and<br />

k e = 8.98755 × 10 9 N · m 2 /C 2 .<br />

The potential at P is given by<br />

∑ q i<br />

V = k e .<br />

r i<br />

From the sketch below, the height h is given<br />

by √<br />

( a<br />

) √<br />

2 3<br />

h = a 2 − =<br />

2 2 a .<br />

Notice that q 1 > 0,q 2 > 0, and q 3 < 0.<br />

(<br />

q1<br />

V P = k e<br />

h + q 2<br />

a/2 + q )<br />

3<br />

a/2<br />

( )<br />

q1<br />

√ + q 2 + q 3<br />

3<br />

= 2 k e<br />

a<br />

= 2 ( 8.98755 × 10 9 N · m 2 /C 2)<br />

0.2 m<br />

i<br />

î<br />

×<br />

( 1.5 × 10 −6 C<br />

√<br />

3<br />

= −101917 V .<br />

+ 3 × 10 −6 C<br />

−5 × 10 −6 C )<br />

033 (part 2 of 3) 10 points<br />

What is the vertical component of the electric<br />

force on the 1.5 µC charge due to the 3 µC<br />

charge<br />

1. F = k e (1.5 µC) (3 µC)<br />

(0.2 m) 2 cot 30 ◦<br />

2. F = k e (1.5 µC) (3 µC)<br />

(0.2 m) 2 cot 60 ◦<br />

3. F = k e (1.5 µC) (3 µC)<br />

(0.2 m) 2 cos 30 ◦ correct<br />

4. F = k e (1.5 µC) (3 µC)<br />

(0.2 m) 2 cos 60 ◦<br />

5. F = k e (1.5 µC) (3 µC)<br />

(0.2 m) 2 tan 30 ◦<br />

6. F = k e (1.5 µC) (3 µC)<br />

(0.2 m) 2 tan 60 ◦<br />

7. F = k e (1.5 µC) (3 µC)<br />

(0.2 m) 2<br />

8. F = k e (1.5 µC) (3 µC)<br />

(0.2 m) 2 sin 45 ◦<br />

9. F = k e (1.5 µC) (3 µC)<br />

(0.2 m) 2 tan 45 ◦<br />

10. F = k e (1.5 µC) (3 µC)<br />

(0.2 m) 2 cot 45 ◦<br />

Explanation:<br />

F v = F cos α<br />

= k e q 1 q 2<br />

r 2<br />

cos α<br />

= k e (1.5 µC) (3 µC)<br />

(0.2 m) 2 cos 30 ◦<br />

034 (part 3 of 3) 10 points<br />

Find the total electrostatic energy of the system,<br />

again with the zero reference at infinity.<br />

Correct answer: −0.80888 J.


<strong>Version</strong> <strong>One</strong> – <strong>Homework</strong> 1 – <strong>Juyang</strong> <strong>Huang</strong> – <strong>24018</strong> – <strong>Jan</strong> <strong>16</strong>, 2008 <strong>16</strong><br />

Explanation:<br />

keywords:<br />

The total electrostatic energy of the system<br />

is the sum of the electrostatic energies<br />

between each pair of charges:<br />

U = U 12 + U 23 + U 31<br />

The electrostatic energy between the charges<br />

q i and q j is given by<br />

U ij =<br />

q i q j<br />

4 π ɛ 0 r<br />

−Q<br />

where r is the distance between the charges,<br />

so, since k e = 1 ,<br />

4 π ɛ 0<br />

]<br />

U = k e a<br />

[q 1 q 2 + q 2 q 3 + q 3 q 1<br />

= ( 8.98755 × 10 9 N · m 2 /C 2)<br />

[<br />

× (0.2 m) (1.5 × 10 −6 C) (3 × 10 −6 C)<br />

+ (3 × 10 −6 C) (−5 × 10 −6 C)<br />

]<br />

+ (−5 × 10 −6 C) (1.5 × 10 −6 C)<br />

= −0.80888 J .<br />

1. No charge flows.<br />

keywords:<br />

Moving a Charge<br />

25:02, trigonometry, numeric, > 1 min, normal.<br />

035 (part 1 of 1) 10 points<br />

It takes 120 J of work to move 1 C of charge<br />

from a positive plate to a negative plate.<br />

What voltage difference exists between the<br />

plates<br />

Correct answer: 120 V.<br />

Explanation:<br />

Let : W = 120 J and<br />

q = 1 C .<br />

The voltage difference is<br />

V = W q = 120 J<br />

1 C = 120 V .<br />

AP B 1993 MC 70<br />

25:03, trigonometry, multiple choice, < 1 min,<br />

fixed.<br />

036 (part 1 of 1) 10 points<br />

Two negatively charged spheres with different<br />

radii are shown in the figure below.<br />

−Q<br />

The two conductors are now conneted by a<br />

wire.<br />

Which of the following occurs when the two<br />

spheres are connected with a conducting wire<br />

2. Negative charge flows from the larger<br />

sphere to the smaller sphere until the electric<br />

field at the surface of each sphere is the<br />

same.<br />

3. Negative charge flows from the larger<br />

sphere to the smaller sphere until the electric<br />

potential of each sphere is the same.<br />

4. Negative charge flows from the smaller<br />

sphere to the larger sphere until the electric<br />

field at the surface of each sphere is the<br />

same.<br />

5. Negative charge flows from the smaller<br />

sphere to the larger sphere until the electric<br />

potential of each sphere is the same. correct<br />

Explanation:<br />

When the wire is connected, charge will flow<br />

until each surface is at the same potential.<br />

When disconnected the potential of each


<strong>Version</strong> <strong>One</strong> – <strong>Homework</strong> 1 – <strong>Juyang</strong> <strong>Huang</strong> – <strong>24018</strong> – <strong>Jan</strong> <strong>16</strong>, 2008 17<br />

sphere is given by<br />

V = k e q<br />

r .<br />

The smaller sphere is at a more negative potential<br />

than the larger sphere, so negative<br />

charge will flow from the smaller sphere to<br />

the large one until they are at the same potential.<br />

keywords:<br />

Equipotential Surfaces 02<br />

25:03, trigonometry, multiple choice, > 1 min,<br />

fixed.<br />

037 (part 1 of 2) 10 points<br />

Consider the figure<br />

+Q A −Q<br />

+ −<br />

y<br />

+ −<br />

+ −<br />

x<br />

+ −<br />

C D<br />

+ −<br />

+ −<br />

#1 B #2<br />

Of the following elements, identify all that<br />

correspond to an equipotential line or surface.<br />

1. line AB only correct<br />

2. line CD only<br />

3. both AB and CD<br />

4. neither AB nor CD<br />

Explanation:<br />

Consider the electric field<br />

+Q A −Q<br />

+ −<br />

y<br />

+ −<br />

+ −<br />

+<br />

C D<br />

−<br />

+ −<br />

+ −<br />

#1 B #2<br />

An equipotential line or surface (AB) is<br />

normal to the electric field lines.<br />

x<br />

038 (part 2 of 2) 10 points<br />

Consider the figure<br />

C<br />

− A<br />

−q<br />

B<br />

+<br />

+q<br />

D<br />

Of the following elements, identify all that<br />

correspond to an equipotential line or surface.<br />

1. line AB only<br />

2. line CD only correct<br />

3. both AB and CD<br />

4. neither AB nor CD<br />

Explanation:<br />

Consider the electric field:<br />

A<br />

−<br />

An equipotential line or surface (CD) is<br />

normal to the electric field lines.<br />

keywords:<br />

Starting a Car 03<br />

25:04, trigonometry, numeric, > 1 min, normal.<br />

039 (part 1 of 1) 10 points<br />

The gap between electrodes in a spark plug<br />

is 0.06 cm. To produce an electric spark<br />

in a gasoline-air mixture, an electric field of<br />

3 × 10 6 V/m must be achieved.<br />

On starting a car, what is the magnitude of<br />

the minimum voltage difference that must be<br />

C<br />

D<br />

B<br />

+


<strong>Version</strong> <strong>One</strong> – <strong>Homework</strong> 1 – <strong>Juyang</strong> <strong>Huang</strong> – <strong>24018</strong> – <strong>Jan</strong> <strong>16</strong>, 2008 18<br />

supplied by the ignition circuit<br />

Correct answer: 1800 V.<br />

Explanation:<br />

Let : E = 3 × 10 6 V/m and<br />

d = 0.06 cm = 0.0006 m .<br />

Assuming the electric field between the two<br />

electrodes is constant, then the potential difference<br />

between the electrodes is<br />

keywords:<br />

V = E d<br />

= ( 3 × 10 6 V/m ) (0.0006 m)<br />

= 1800 V .<br />

Accelerating an Electron<br />

25:05, trigonometry, numeric, > 1 min, normal.<br />

040 (part 1 of 1) 10 points<br />

Through what potential difference would an<br />

electron need to be accelerated for it to<br />

achieve a speed of 4 % of the speed of light<br />

(2.99792 × 10 8 m/s), starting from rest<br />

Correct answer: 408.799 V.<br />

Explanation:<br />

Let : s = 4% = 0.04 ,<br />

c = 2.99792 × 10 8 m/s ,<br />

m e = 9.10939 × 10 −31 kg ,<br />

q e = 1.60218 × 10 −19 C .<br />

The speed of the electron is<br />

v = 0.04 c<br />

= 0.04 ( 2.99792 × 10 8 m/s )<br />

= 1.19917 × 10 7 m/s ,<br />

By conservation of energy<br />

1<br />

2 m e v 2 = −(−q e ) ∆V<br />

and<br />

v 2<br />

∆V = m e<br />

2 q e<br />

= ( 9.10939 × 10 −31 kg )<br />

(<br />

1.19917 × 10 7 m/s ) 2<br />

×<br />

2 (1.60218 × 10 −19 C)<br />

= 408.799 V .<br />

keywords:<br />

Point Charge<br />

25:05, trigonometry, numeric, > 1 min, normal.<br />

041 (part 1 of 1) 10 points<br />

At distance r from a point charge q, the electric<br />

potential is 600 V and the magnitude of<br />

the electric field is 200 N/C.<br />

Determine the value of q.<br />

Correct answer: 2.00277 × 10 −7 C.<br />

Explanation:<br />

Let : k e = 8.98755 × 10 9 N · m 2 /C 2 ,<br />

V = 600 V , and<br />

e = 200 N/C .<br />

E = k e q<br />

r 2 and V = k e q<br />

r , so that V E = r.<br />

The potential is<br />

V = k e q<br />

r<br />

= k e q<br />

V<br />

E<br />

= k e q E<br />

V<br />

q = V 2<br />

k e E<br />

(600 V) 2<br />

=<br />

(8.98755 × 10 9 N · m 2 /C 2 ) (200 N/C)<br />

= 2.00277 × 10 −7 C .<br />

keywords:<br />

Conducting Spheres 02<br />

25:09, trigonometry, multiple choice, > 1 min,<br />

wording-variable.<br />

042 (part 1 of 4) 10 points<br />

Consider two “solid” conducting spheres with<br />

radii r 1 = 4 R and r 2 = 3 R ; i.e.,<br />

r 2<br />

r 1<br />

= 3 R<br />

4 R = 3 4 .


<strong>Version</strong> <strong>One</strong> – <strong>Homework</strong> 1 – <strong>Juyang</strong> <strong>Huang</strong> – <strong>24018</strong> – <strong>Jan</strong> <strong>16</strong>, 2008 19<br />

The two spheres are separated by a large<br />

distance so that the field and the potential at<br />

the surface of sphere #1 only depends on the<br />

charge on #1 and the corresponding quantities<br />

on #2 only depend on the charge on<br />

#2.<br />

Place an equal amount of charge on both<br />

spheres, q 1 = q 2 = Q .<br />

#1<br />

r 1<br />

q 1<br />

r 2<br />

q 2 #2<br />

After the electrostatic equilibrium on each<br />

sphere has been established, what is the ratio<br />

of the potentials V 2<br />

at the “centers” of the<br />

V 1<br />

two solid conducting spheres<br />

1. V 2<br />

V 1<br />

= 4 3 correct<br />

2. V 2<br />

V 1<br />

= 3 4<br />

3. V 2<br />

V 1<br />

= 3 2<br />

4. V 2<br />

V 1<br />

= 3 8<br />

5. V 2<br />

= <strong>16</strong> V 1 9<br />

6. V 2<br />

= 9<br />

V 1 <strong>16</strong><br />

7. V 2<br />

= 9 V 1 8<br />

8. V 2<br />

= 9<br />

V 1 32<br />

9. V 2<br />

V 1<br />

= 1<br />

Explanation:<br />

For a solid conducting sphere, the charge is<br />

uniformly distributed at the surface. From<br />

Gauss’ Law, the electric field outside the<br />

sphere is given by E(r) = k Q r 2 , where Q<br />

is the total charge on the sphere and r is the<br />

distance from the center of the sphere. By integration<br />

with respect to r, the potential can<br />

be expressed as V (r) = k Q , so the potential<br />

r<br />

at the surface of the sphere is<br />

V (r) = k Q r , (1)<br />

where R is radius of the sphere and r ≤ R .<br />

For the electrostatic case, the potential is<br />

constant throughout a conducting body, so<br />

the potential at the center is the same as<br />

anywhere on the conductor.<br />

Thus at two centers<br />

k q 2<br />

V 2 r<br />

= 2<br />

V 1 k q 1<br />

r 1<br />

= r 1<br />

r 2<br />

= 4 R<br />

3 R<br />

= 4 3 .<br />

043 (part 2 of 4) 10 points<br />

What is the ratio of the electric fields E 2<br />

E 1<br />

at<br />

the “surfaces” of the two spheres<br />

1. E 2<br />

E 1<br />

= <strong>16</strong> 9 correct<br />

2. E 2<br />

E 1<br />

= 9<br />

<strong>16</strong><br />

3. E 2<br />

= 9 E 1 8<br />

4. E 2<br />

= 9<br />

E 1 32<br />

5. E 2<br />

E 1<br />

= 4 3<br />

6. E 2<br />

E 1<br />

= 3 4<br />

7. E 2<br />

E 1<br />

= 3 2<br />

8. E 2<br />

E 1<br />

= 3 8<br />

9. E 2<br />

E 1<br />

= 1<br />

Explanation:


<strong>Version</strong> <strong>One</strong> – <strong>Homework</strong> 1 – <strong>Juyang</strong> <strong>Huang</strong> – <strong>24018</strong> – <strong>Jan</strong> <strong>16</strong>, 2008 20<br />

For a conducting sphere, the charge is uniformly<br />

distributed at the surface. Based on<br />

Gauss’ law, the electric field on the surface of<br />

a conducting sphere of radius R with charge<br />

Q is<br />

Q<br />

E(r) = k e , where r ≥ R . (2)<br />

r2 Thus on the surface r = R of the two<br />

spheres,<br />

E 2<br />

E 1<br />

=<br />

k q 2<br />

r 2 2<br />

k q 1<br />

(<br />

r1<br />

r 2 1<br />

) 2<br />

=<br />

r 2<br />

( 4 R<br />

=<br />

3 R<br />

( 2 4<br />

=<br />

3)<br />

= <strong>16</strong> 9 .<br />

) 2<br />

044 (part 3 of 4) 10 points<br />

Now “connect” the two spheres with a wire.<br />

r 1<br />

r 2<br />

5. E 2<br />

= <strong>16</strong> E 1 9<br />

6. E 2<br />

= 9<br />

E 1 <strong>16</strong><br />

7. E 2<br />

= 9 E 1 8<br />

8. E 2<br />

= 9<br />

E 1 32<br />

9. E 2<br />

E 1<br />

= 1<br />

Explanation:<br />

When the spheres are connected by a wire,<br />

charge will flow from one to the other until<br />

the potential on both spheres is the same.<br />

As noted, V 2<br />

V 1<br />

= 1, defines equilibrium.<br />

The spheres are connected by a wire and no<br />

current is flowing (at equilibrium), therefore<br />

the ends of the wire are at the same potential<br />

V 2 = V 1 . (3)<br />

For a conducting sphere, the charge is uniformly<br />

distributed at the surface. Based on<br />

Gauss’ law, on the surface of a conducting<br />

sphere of radius R with charge Q is<br />

Q<br />

E(r) = k e , where r ≥ R , and<br />

r2 V (r) = k Q r , where r ≤ R .<br />

#1<br />

q 1<br />

q 2 #2<br />

Thus on the surface r = R of the two<br />

spheres,<br />

There will be a flow of charge through the<br />

wire until equilibrium is established.<br />

What is the ratio of the electric fields E 2<br />

E 1<br />

at<br />

the “surfaces” of the two spheres<br />

1. E 2<br />

E 1<br />

= 4 3 correct<br />

2. E 2<br />

E 1<br />

= 3 4<br />

3. E 2<br />

E 1<br />

= 3 2<br />

4. E 2<br />

E 1<br />

= 3 8<br />

E 2<br />

E 1<br />

=<br />

=<br />

=<br />

= r 1<br />

r 2<br />

k q 2<br />

r2<br />

2<br />

k q 1<br />

r1<br />

2<br />

k q 2 1<br />

r 2 r 2<br />

k q 1 1<br />

r 1 r 1<br />

V 2<br />

1<br />

r 2<br />

V 1<br />

1<br />

r 1<br />

, since V 1 = V 2<br />

(4)


<strong>Version</strong> <strong>One</strong> – <strong>Homework</strong> 1 – <strong>Juyang</strong> <strong>Huang</strong> – <strong>24018</strong> – <strong>Jan</strong> <strong>16</strong>, 2008 21<br />

= 4 R<br />

3 R<br />

= 4 3 .<br />

7<br />

4 q 1 = 2 Q<br />

q 1 = 8 7 Q .<br />

045 (part 4 of 4) 10 points<br />

Now, what is the charge q 1 on sphere #1<br />

1. q 1 = 8 7 Q correct<br />

2. q 1 = 6 7 Q<br />

3. q 1 = 7 8 Q<br />

4. q 1 = 7 6 Q<br />

5. q 1 = 4 7 Q<br />

6. q 1 = 3 7 Q<br />

7. q 1 = 7 4 Q<br />

8. q 1 = 7 3 Q<br />

9. q 1 = Q<br />

Explanation:<br />

When the spheres are connected by a wire,<br />

charge will flow from one to the other until<br />

the potential on both spheres is the same.<br />

In this case, this implies that<br />

k e<br />

q 1<br />

r 1<br />

= k e<br />

q 2<br />

r 2<br />

,<br />

q 2 = r 2<br />

r 1<br />

q 1<br />

= 3 R<br />

4 R q 1<br />

or<br />

= 3 4 q 1 . (5)<br />

The total charge of the system remains constant;<br />

i.e., from the initial condition q 1 =<br />

q 2 = Q, the total change on both spheres is<br />

q 1 + q 2 = 2 Q. Using q 2 from Eq. 5, we have<br />

q 1 + q 2 = 2 Q<br />

q 1 + 3 4 q 1 = 2 Q<br />

And the charge on sphere # 2 is q 2 = 6 7 Q ,<br />

since q 1 + q 2 = 8 7 Q + 6 7 Q = 2 Q .<br />

Check Eq. 4: On the surfaces of the two<br />

spheres,<br />

( ) ( ) 2<br />

E 2 q2 r1<br />

=<br />

E 1 q 1 r 2<br />

⎛ ⎞<br />

6<br />

⎜<br />

= ⎝<br />

7 Q ( ) 2<br />

⎟ 4 R<br />

8<br />

⎠<br />

7 Q 3 R<br />

( ) ( 2 3 4<br />

=<br />

4 3)<br />

= 4 3 .<br />

Third of eighteen versions.<br />

keywords:<br />

Change in Potential e2<br />

25:04, calculus, multiple choice, < 1 min, normal.<br />

046 (part 1 of 1) 10 points<br />

A uniform electric field of magnitude 250 V/m<br />

is directed in the positive x-direction. Suppose<br />

a 12 µC charge moves from the origin to<br />

point A at the coordinates, (20 cm, 50 cm).<br />

y<br />

250 V/m<br />

O<br />

(20 cm, 50 cm)<br />

A<br />

What is the absolute value of the change in<br />

potential from the origin to point A<br />

Correct answer: 50 V.<br />

Explanation:<br />

Let : x = 20 cm ,<br />

y = 50 cm ,<br />

‖ ⃗ E‖ = 250 V/m .<br />

and<br />

x


<strong>Version</strong> <strong>One</strong> – <strong>Homework</strong> 1 – <strong>Juyang</strong> <strong>Huang</strong> – <strong>24018</strong> – <strong>Jan</strong> <strong>16</strong>, 2008 22<br />

The potential difference from O to A is<br />

defined as<br />

∆V = V A − V O = −<br />

∫ A<br />

O<br />

⃗E · d⃗s .<br />

We know that E ⃗ = (250 V/m) î . We need<br />

to choose a path to integrate along. Because<br />

the electric force is conservative, it doesn’t<br />

matter which path we take; they all give the<br />

same answer. There are two choices of path<br />

for which the math is simple (see the figure<br />

below.)<br />

y<br />

E<br />

O<br />

Path I:<br />

II<br />

I<br />

(x, y)<br />

B<br />

A<br />

I<br />

x<br />

which is the same as the result for the other<br />

path.<br />

keywords:<br />

Potential Diagrams 02<br />

25:04, calculus, multiple choice, > 1 min,<br />

wording-variable.<br />

047 (part 1 of 4) 10 points<br />

Consider a sphere with radius R and charge<br />

Q<br />

Q<br />

V A − V O = (V A − V B ) + (V B − V O ),<br />

From O to B, ⃗ E and d⃗s are both along the<br />

x-axis, so ⃗ E · d⃗s = E dx. From B to A, ⃗ E and<br />

d⃗s are perpendicular, so ⃗ E · d⃗s = 0.<br />

and the following graphs:<br />

∝ 1 r<br />

∫ B<br />

V A − V O = −<br />

= −<br />

= −E<br />

O<br />

∫ x<br />

0∫ x<br />

O<br />

⃗E · d⃗s −<br />

E dx −<br />

∫ A<br />

B<br />

∫ y<br />

0<br />

0 dy<br />

dx = −E ∆x<br />

= −(250 V/m) (0.2 m)<br />

= −50 V .<br />

⃗E · d⃗s<br />

Q.<br />

G.<br />

0<br />

R<br />

∝ 1 r<br />

r<br />

The absolute value is<br />

|∆V | = 50 V .<br />

0<br />

R<br />

r<br />

Path II: In this case, E ⃗ · d⃗s = E cos θ ds .<br />

where cos θ = x ⇒ x = l cos θ .<br />

l<br />

∝ 1 r 2<br />

∫ l<br />

V A − V O = −E cos θ ds<br />

O<br />

= −E l cos θ<br />

= −E x .<br />

X .<br />

0<br />

R<br />

r


<strong>Version</strong> <strong>One</strong> – <strong>Homework</strong> 1 – <strong>Juyang</strong> <strong>Huang</strong> – <strong>24018</strong> – <strong>Jan</strong> <strong>16</strong>, 2008 23<br />

∝ 1 r<br />

1. Y correct<br />

2. S<br />

P.<br />

3. L<br />

0<br />

R<br />

r<br />

4. X<br />

Z.<br />

M.<br />

Y.<br />

S.<br />

L.<br />

0<br />

0<br />

0<br />

0<br />

0<br />

R<br />

∝ 1 r<br />

R<br />

R<br />

R<br />

R<br />

∝ 1 r<br />

∝ 1 r 2<br />

∝ 1 r 2<br />

∝ 1 r 2<br />

∝ 1 r 2<br />

Which diagram describes the electric field<br />

vs radial distance [E(r) function] for a conducting<br />

sphere<br />

r<br />

r<br />

r<br />

r<br />

r<br />

5. Z<br />

6. G<br />

7. Q<br />

8. P<br />

9. M<br />

Explanation:<br />

The electric field for R < r with<br />

the sphere conducting and/or uniformly<br />

non-conducting: Because the charge distribution<br />

is spherically symmetric, we select a<br />

spherical gaussian surface of radius R < r,<br />

concentric with the conducting sphere. The<br />

electric field due to the conducting sphere is<br />

directed radially outward by symmetry and is<br />

therefore normal to the surface at every point.<br />

Thus, E ⃗ is parallel to dA ⃗ at each point. Therefore<br />

E ⃗ · dA ⃗ = E dA and Gauss’s law, where E<br />

is constant everywhere on the surface, gives<br />

∮<br />

Φ E = ⃗E · dA<br />

⃗<br />

∮<br />

= E dA<br />

∮<br />

= E dA<br />

= E ( 4 π r 2) = q in<br />

,<br />

ɛ 0<br />

where we have used the fact that the surface<br />

area of a sphere A = 4 π r 2 . Now, we solve for<br />

the electric field<br />

E =<br />

q in<br />

4 π ɛ 0 r 2<br />

=<br />

Q<br />

, where R < r . (1)<br />

4 π ɛ 0 r2 This is the familiar electric field due to a point<br />

charge that was used to develop Coulomb’s<br />

law.


<strong>Version</strong> <strong>One</strong> – <strong>Homework</strong> 1 – <strong>Juyang</strong> <strong>Huang</strong> – <strong>24018</strong> – <strong>Jan</strong> <strong>16</strong>, 2008 24<br />

as in Part 1.<br />

The electric field for r < R with the<br />

E =<br />

Q<br />

4 π ɛ 0 r 2 , where R < r , (1) = k Q r ,<br />

R3 where R < r . (3)<br />

sphere conducting: In the region inside The electric field for r < R with the<br />

the conducting sphere, we select a spherical sphere uniformly non-conducting: In<br />

gaussian surface r < R, concentric with the this case we select a spherical gaussian surface<br />

conducting sphere. To apply Gauss’s law<br />

at a radius r where r < R, concentric<br />

in this situation, we realize that there is no with the uniformly charged non-conducting<br />

charge within the gaussian surface (q in = 0), sphere. Let us denote the volume of this<br />

which implies that<br />

sphere by V ′ . To apply Gauss’s law in this<br />

E = 0 , where r < R . (2)<br />

situation, it is important to recognize that the<br />

charge q in within the gaussian surface of the<br />

E ∝ 1 volume V ′ is less than Q. Using the volume<br />

r 2<br />

charge density ρ ≡ Q<br />

E<br />

V , we calculate q in :<br />

Y.<br />

q in = ρ V<br />

( ′<br />

) 4<br />

0 R<br />

r<br />

= ρ<br />

3 π r3 .<br />

048 (part 2 of 4) 10 points<br />

By symmetry, the magnitude of the electric<br />

Which diagram describes the electric field vs<br />

field is constant everywhere on the spherical<br />

radial distance [E(r) function] for a uniformly<br />

gaussian surface and is normal to the surface<br />

charged non-conducting sphere<br />

at each point. Therefore, Gauss’s law in the<br />

1. S correct<br />

2. L<br />

region r < R gives<br />

∮<br />

∮<br />

E dA = E dA<br />

3. X<br />

4. Z<br />

= E ( 4 π r 2) = q in<br />

.<br />

ɛ 0<br />

Solving for E gives<br />

5. G<br />

E =<br />

q in<br />

4 π ɛ 0 r 2<br />

6. Q<br />

ρ 4<br />

7. P<br />

= 3 π r3<br />

4 π ɛ 0 r 2<br />

8. Y<br />

= ρ r .<br />

3 ɛ 0<br />

9. M<br />

Because ρ =<br />

Q (by definition) and since<br />

Explanation:<br />

4<br />

The electric field for R < r with<br />

3 π R3<br />

the sphere conducting and/or uniformly k = 1 , this expression for E can be written<br />

as<br />

non-conducting: In the region outside the 4 π ɛ 0<br />

uniformly charged non-conducting sphere, we<br />

have the same conditions as for the conducting<br />

sphere when applying Gauss’s law, so<br />

E =<br />

Q r<br />

4 π ɛ 0 R 3


<strong>Version</strong> <strong>One</strong> – <strong>Homework</strong> 1 – <strong>Juyang</strong> <strong>Huang</strong> – <strong>24018</strong> – <strong>Jan</strong> <strong>16</strong>, 2008 25<br />

Note: This result for E differs from the one we<br />

obtained in the Part 3. It shows that E → 0<br />

as r → 0. Therefore, the result eliminates the<br />

problem that would exist at r = 0 if E varied<br />

as 1 inside the sphere as it does outside the<br />

r2 sphere. That is, if E ∝ 1 for r < R, the field<br />

r2 would be infinite at r = 0, which is physically<br />

impossible. Note: Also the expressions for<br />

Parts 1 and 2 match when r = R.<br />

S.<br />

E<br />

0<br />

R<br />

E ∝ 1 r 2<br />

049 (part 3 of 4) 10 points<br />

Which diagram describes the electric potential<br />

vs radial distance [V (r) function] for a<br />

conducting sphere<br />

1. Z correct<br />

2. G<br />

3. Q<br />

4. P<br />

5. Y<br />

6. S<br />

7. L<br />

8. X<br />

9. M<br />

Explanation:<br />

The electric potential for R < r with<br />

the sphere conducting and/or uniformly<br />

non-conducting: In the previous parts we<br />

found that the magnitude of the electric field<br />

outside a charged sphere of radius R is<br />

E = k Q r 2 , where R < r ,<br />

where the field is directed radially outward<br />

r<br />

when Q is positive.<br />

In this case, to obtain the electric potential<br />

at an exterior point, we use the definition for<br />

electric potential:<br />

V = −<br />

∫ r<br />

= −k Q<br />

= k Q r<br />

E dr<br />

∞<br />

∫ r<br />

∞<br />

dr<br />

r 2<br />

, where R < r . (4)<br />

Note: This result is identical to the expression<br />

for the electric potential due to a point charge.<br />

The electric potential for r < R with<br />

the sphere conducting: In the region inside<br />

the conducting sphere, the electric field E =<br />

0 . Therefore the electric potential everywhere<br />

inside the conducting sphere is constant; that<br />

is<br />

Z.<br />

V = V (R) = constant , where R < r .<br />

V<br />

0<br />

R<br />

V ∝ 1 r<br />

r<br />

(5)<br />

050 (part 4 of 4) 10 points<br />

Which diagram describes the electric potential<br />

vs radial distance [V (r) function] for a<br />

uniformly charged non-conducting sphere<br />

1. G correct<br />

2. Q<br />

3. P<br />

4. Y<br />

5. S<br />

6. L<br />

7. X


<strong>Version</strong> <strong>One</strong> – <strong>Homework</strong> 1 – <strong>Juyang</strong> <strong>Huang</strong> – <strong>24018</strong> – <strong>Jan</strong> <strong>16</strong>, 2008 26<br />

4. Cannot be determined<br />

V r = V R + ∆V<br />

= k Q ∫ r<br />

R − Explanation:<br />

E dr<br />

We know that the potential due to a collection<br />

of N point charges is given by<br />

R<br />

= k Q R − k Q ∫ r<br />

R 3 r dr , from Eq. 6<br />

R<br />

= k 2 Q<br />

2 R + k Q (<br />

R 2<br />

2 R 3 − r 2)<br />

V = 1 ∑<br />

N q i<br />

4 π ɛ 0 r<br />

i=1 i<br />

= k 3 Q<br />

2 R − k Q<br />

2 R 3 r2 = 1 ( q<br />

4 π ɛ 0 a + −q )<br />

= 0<br />

a<br />

8. Z<br />

= k Q (<br />

3 − r<br />

2 ) ,<br />

2 R<br />

where r < R .<br />

9. M<br />

Explanation:<br />

The electric potential for R < r with<br />

the sphere conducting and/or uniformly<br />

V<br />

V ∝ 1 r<br />

non-conducting: In the region outside the<br />

uniformly charged non-conducting sphere, we<br />

G.<br />

have the same conditions as for the conducting<br />

sphere when applying the definition for<br />

the electric potential; therefore,<br />

0 R<br />

r<br />

∫ r<br />

V = − E dr<br />

keywords:<br />

∞<br />

∫ r<br />

dr<br />

Finding Zero Potential<br />

= −k Q<br />

∞ r 2<br />

25:06, trigonometry, multiple choice, < 1 min,<br />

= k Q fixed.<br />

, where R < r . (4)<br />

051 (part 1 of 4) 10 points<br />

r<br />

All of the charges shown are of equal magnitude.<br />

The electric potential for r < R with<br />

the sphere uniformly non-conducting:<br />

Because the potential must be continuous at<br />

r = R , we can use this expression to obtain<br />

the potential at the surface of the sphere; i.e.,<br />

−q +q<br />

the potential at a point on the conducting<br />

sphere is V = k Q a a<br />

r<br />

From Part 2 we found that the electric field<br />

inside an uniformly charged non-conducting<br />

(a)<br />

sphere is<br />

What is the electric potential E at the origin<br />

Assume zero potential at infinity.<br />

E = k Q r , where r < R . (6)<br />

R3 We can use this result in the definition for<br />

the electric potential to evaluate the potential<br />

difference ∆V = V r − V R (where V R = k Q R as<br />

shown in Eq. 4) at some interior point of the<br />

1. zero correct<br />

2. positive<br />

3. negative<br />

sphere, so


<strong>Version</strong> <strong>One</strong> – <strong>Homework</strong> 1 – <strong>Juyang</strong> <strong>Huang</strong> – <strong>24018</strong> – <strong>Jan</strong> <strong>16</strong>, 2008 27<br />

052 (part 2 of 4) 10 points<br />

a<br />

a<br />

−q +q<br />

+q<br />

(b)<br />

2a<br />

What is the electric potential E at the origin<br />

1. zero<br />

2. positive correct<br />

3. negative<br />

4. Cannot be determined<br />

Explanation:<br />

V = 1 ( −q<br />

4 π ɛ 0 a + q a + q )<br />

> 0<br />

2 a<br />

053 (part 3 of 4) 10 points<br />

3. negative<br />

4. Cannot be determined<br />

Explanation:<br />

V = 1 ( −q<br />

4 π ɛ 0 2 a + −q<br />

2 a + q )<br />

= 0<br />

a<br />

054 (part 4 of 4) 10 points<br />

−q<br />

+q<br />

a<br />

+q<br />

(d)<br />

2a<br />

2a<br />

What is the electric potential E at the origin<br />

1. zero correct<br />

−q<br />

a<br />

+q<br />

−q<br />

2a<br />

2a<br />

2. positive<br />

3. negative<br />

4. Cannot be determined<br />

Explanation:<br />

V = 1 ( −q<br />

4 π ɛ 0 a + q<br />

2 a + q )<br />

= 0 .<br />

2 a<br />

(c)<br />

What is the electric potential E at the origin<br />

1. zero correct<br />

2. positive<br />

keywords:<br />

Charge on a Capacitor<br />

26:01, trigonometry, numeric, > 1 min, normal.<br />

055 (part 1 of 1) 10 points


<strong>Version</strong> <strong>One</strong> – <strong>Homework</strong> 1 – <strong>Juyang</strong> <strong>Huang</strong> – <strong>24018</strong> – <strong>Jan</strong> <strong>16</strong>, 2008 28<br />

A 15 pF capacitor is connected across a 75 V<br />

source.<br />

What charge is stored on it<br />

Correct answer: 1.125 × 10 −9 C.<br />

Explanation:<br />

Let : C = 15 pF = 1.5 × 10 −11 F and<br />

V = 75 V .<br />

The capacitance is<br />

keywords:<br />

C = q V<br />

q = C V<br />

= (1.5 × 10 −11 F) (75 V)<br />

= 1.125 × 10 −9 C<br />

Capacitance Comparison 02<br />

26:02, trigonometry, multiple choice, > 1 min,<br />

fixed.<br />

056 (part 1 of 1) 10 points<br />

A parallel plate capacitor is connected to a<br />

battery.<br />

5. None of these.<br />

Explanation:<br />

The capacitance of a parallel plate capacitor<br />

is<br />

C = ɛ 0<br />

A<br />

d .<br />

Hence doubling d halves the capacitance,<br />

and Q = C V is also halved<br />

keywords:<br />

(<br />

C ′ = ɛ 0<br />

A<br />

2 d = 1 2 ɛ 0<br />

A<br />

d = 1 )<br />

2 C .<br />

Plate Separation<br />

26:02, trigonometry, numeric, > 1 min, normal.<br />

057 (part 1 of 1) 10 points<br />

A parallel-plate capacitor has a plate area of<br />

12 cm 2 and a capacitance of 7 pF.<br />

The permittivity of a vacuum is 8.85419 ×<br />

10 −12 C 2 /N · m 2 .<br />

What is the plate separation<br />

Correct answer: 0.00151786 m.<br />

Explanation:<br />

+Q −Q<br />

Let : A = 12 cm 2 = 0.0012 m 2 ,<br />

C = 7 pF = 7 × 10 −12 F , and<br />

ɛ 0 = 8.85419 × 10 −12 C 2 /N · m 2 .<br />

¢ £<br />

d<br />

¤ ¥<br />

2 d<br />

If we double the plate separation,<br />

1. the capacitance is doubled.<br />

2. the electric field is doubled.<br />

3. the potential difference is halved.<br />

4. the charge on each plate is halved. correct<br />

C = ɛ 0 A<br />

d<br />

d = ɛ 0 A<br />

( C<br />

8.85419 × 10 −12 C 2 /N · m 2)<br />

=<br />

keywords:<br />

7 × 10 −12 F<br />

× ( 0.0012 m 2)<br />

= 0.00151786 m .<br />

AP B 1993 MC 15 <strong>16</strong>


<strong>Version</strong> <strong>One</strong> – <strong>Homework</strong> 1 – <strong>Juyang</strong> <strong>Huang</strong> – <strong>24018</strong> – <strong>Jan</strong> <strong>16</strong>, 2008 29<br />

26:03, trigonometry, multiple choice, > 1 min,<br />

C<br />

fixed.<br />

123 = C 12 C 3<br />

C 3 + C 12<br />

1<br />

= 1 + 1 = C 3 + C 12<br />

C 123 C 12 C 3 C 12 C 3<br />

058 (part 1 of 2) 10 points<br />

(6 µF) (3 µF)<br />

Consider the circuit<br />

=<br />

6 µF + 3 µF<br />

2 µF<br />

= 2 µF .<br />

3 µF<br />

c<br />

a<br />

b<br />

C 123 and C 4 are parallel, so<br />

5 µF<br />

C = C 4 + C 123<br />

4 µF<br />

= 7 µF .<br />

100 V<br />

What is the equivalent capacitance for this<br />

network<br />

1. C equivalent = 10 7 µF<br />

2. C equivalent = 3 2 µF<br />

3. C equivalent = 7 3 µF<br />

4. C equivalent = 7 µF correct<br />

5. C equivalent = 14 µF<br />

Explanation:<br />

C 1<br />

c<br />

a<br />

C 4<br />

C 2<br />

E B<br />

1. Q 1 = 360 µC<br />

2. Q 1 = 500 µC correct<br />

3. Q 1 = 710 µC<br />

4. Q 1 = 1, 100 µC<br />

5. Q 1 = 1, 800 µC<br />

Explanation:<br />

Let : C 4 = 5 µF<br />

E B = 100<br />

C 3<br />

and<br />

b<br />

V .<br />

Q 4 = C 4 V<br />

= (5 µF) (100 V)<br />

Let : C 1 = 2 µF ,<br />

C 2 = 4 µF ,<br />

C 3 = 3 µF ,<br />

= 500 µC .<br />

C 4 = 5 µF , and<br />

E B = 100 V .<br />

keywords:<br />

The equivalent capacitance of capacitors C 1<br />

and C 2 (parallel) is C 12 = C 1 + C 2 = 6 µF .<br />

C 12 and C 3 are in series, so<br />

059 (part 2 of 2) 10 points<br />

What is the charge stored in the 5-µF lowerright<br />

capacitor<br />

The charge stored in a capacitor is given by<br />

Q = C V , so,<br />

Capacitor Circuit 02<br />

26:03, trigonometry, numeric, > 1 min, normal.<br />

060 (part 1 of 2) 10 points<br />

A capacitor network is shown below.


<strong>Version</strong> <strong>One</strong> – <strong>Homework</strong> 1 – <strong>Juyang</strong> <strong>Huang</strong> – <strong>24018</strong> – <strong>Jan</strong> <strong>16</strong>, 2008 30<br />

100 V<br />

9 µF<br />

y<br />

15 µF<br />

15 µF<br />

15 µF<br />

15 µF<br />

z<br />

15 µF 15 µF<br />

What is the equivalent capacitance between<br />

points y and z of the entire capacitor network<br />

Correct answer: 14.4545 µF.<br />

Explanation:<br />

Let : C a = C = 15 µF ,<br />

C b = C = 15 µF ,<br />

C c = C = 15 µF ,<br />

C d = C = 15 µF ,<br />

C e = C = 15 µF ,<br />

C f = C = 15 µF ,<br />

ER<br />

C x = 9 µF = 9 × 10 −6 F<br />

E B = V = 100 V .<br />

Cx<br />

C a<br />

Ce<br />

C f<br />

For capacitors in series,<br />

y<br />

z<br />

C b<br />

Cc<br />

C d<br />

and<br />

The capacitors C b , C c , and C d are in series,<br />

so<br />

1<br />

C bcd<br />

= 1 C + 1 C + 1 C = 3 C<br />

C bcd = 1 3 C .<br />

This reduces the circuit to<br />

ER<br />

Cx<br />

y<br />

z<br />

C a<br />

Ce<br />

C f<br />

Cbcd<br />

The capacitors C e and C bcd are parallel, so<br />

C bcde = C + C bcd = C + 1 3 C = 4 3 C .<br />

This reduces the circuit to<br />

ER<br />

Cx<br />

y<br />

z<br />

C a<br />

C f<br />

Cbcde<br />

The capacitors C a , C bcde and C f are in series,<br />

so<br />

1<br />

= 1 C abcdef C + 3<br />

4 C + 1 C = 11<br />

4 C<br />

C abcdef = 4<br />

11 C .<br />

This reduces the circuit to<br />

y<br />

1<br />

C series<br />

= ∑ 1<br />

C i<br />

V series = ∑ V i ,<br />

and the individual charges are the same.<br />

For parallel capacitors,<br />

C parallel = ∑ C i<br />

Q parallel = ∑ Q i ,<br />

and the individual voltages are the same.<br />

ER<br />

Cx<br />

Cabcdef<br />

z<br />

These capacitors are parallel, so<br />

C yz = C x + C abcdef<br />

= C x + 4<br />

11 C<br />

= 9 µF + 4 (15 µF)<br />

11<br />

= 14.4545 µF .


<strong>Version</strong> <strong>One</strong> – <strong>Homework</strong> 1 – <strong>Juyang</strong> <strong>Huang</strong> – <strong>24018</strong> – <strong>Jan</strong> <strong>16</strong>, 2008 31<br />

061 (part 2 of 2) 10 points<br />

Case Two<br />

What is the charge on the 9 µF capacitor<br />

C 1 C ′ 2<br />

centered on the left directly between points y<br />

and z<br />

Correct answer: 0.0009 C.<br />

κ<br />

Explanation:<br />

C ≡ q V<br />

V<br />

q = C x V<br />

= (9 × 10 −6 F) (100 V)<br />

= 0.0009 C .<br />

1. None of these.<br />

2. C′ 12<br />

= 2<br />

C 12 1 + κ .<br />

3. C′ 12<br />

= κ .<br />

C 12<br />

4. C′ 12<br />

= 1 + κ<br />

C 12 2 κ .<br />

keywords:<br />

5. C′ 12<br />

= 1 + κ .<br />

C 12 2<br />

Capacitors in Series<br />

6. C′ 12<br />

=<br />

2 κ<br />

26:05, trigonometry, multiple choice, > 1 min, C 12 1 + κ . correct<br />

fixed.<br />

Explanation:<br />

062 (part 1 of 3) 10 points<br />

Consider the two cases shown below. In Case<br />

<strong>One</strong> two identical capacitors are connected to<br />

a battery with emf V . In Case Two, a dielectric<br />

slab with dielectric constant κ fills the<br />

gap of capacitor C 2 . Let C be the resultant<br />

capacitance for Case <strong>One</strong> and C ′ the resultant<br />

capacitance for Case Two.<br />

Case <strong>One</strong><br />

C 12 = C 1 C 2<br />

.<br />

C<br />

C 1 C 1 + C 2<br />

2<br />

The ratio C′ 12<br />

C 12<br />

of the resultant capacitances is<br />

Let : C 1 = C 2 = C and<br />

C ′ 2 = κ C 2 = κ C ,<br />

where κ is dielectric constant.<br />

V = constant. C 1 and C 2 are in series, so<br />

For Case <strong>One</strong>,<br />

For Case Two,<br />

1<br />

C 12<br />

= 1 C 1<br />

+ 1 C 2<br />

= C 2 + C 1<br />

C 1 C 2<br />

C 12 = C 1 C 2<br />

C 1 + C 2<br />

= C2<br />

2 C = C 2 .<br />

V<br />

C ′ 12 = C 1 C ′ 2<br />

C 1 + C ′ 2<br />

= κ C2<br />

(1 + κ) C = κ C<br />

1 + κ .


Therefore<br />

<strong>Version</strong> <strong>One</strong> – <strong>Homework</strong> 1 – <strong>Juyang</strong> <strong>Huang</strong> – <strong>24018</strong> – <strong>Jan</strong> <strong>16</strong>, 2008 32<br />

C 12<br />

′ =<br />

2 κ<br />

C 12 1 + κ .<br />

4. U ′<br />

063 (part 2 of 3) 10 points<br />

of potential differences across<br />

V 2<br />

6. U ′<br />

2 κ<br />

1 + κ .<br />

V 2 = Q 2<br />

= V C 12<br />

= V C 2 C 2 2 .<br />

V 2 ′ = Q′ 2<br />

C 2<br />

′ = V C′ 12<br />

C 2<br />

′<br />

= V 1+κ<br />

κ C<br />

κ C = V<br />

1 + κ .<br />

V 2<br />

′<br />

= 2<br />

V 2 1 + κ .<br />

064 (part 3 of 3) 10 points<br />

of total energy stored in the<br />

U<br />

U = κ .<br />

The ratio V ′<br />

2<br />

capacitor C 2 for the two cases is<br />

1. V ′<br />

2<br />

V 2<br />

=<br />

2. V ′<br />

2<br />

V 2<br />

= κ .<br />

3. V ′<br />

2<br />

V 2<br />

= 2<br />

1 + κ . correct<br />

4. V ′<br />

2<br />

V 2<br />

= 1 + κ<br />

2 κ .<br />

5. V 2<br />

′<br />

= 1 + κ .<br />

V 2 2<br />

6. None of these.<br />

Explanation:<br />

For Case <strong>One</strong>,<br />

For Case Two,<br />

Therefore<br />

The ratio U ′<br />

capacitors for the two cases is<br />

1. None of these<br />

2. U ′<br />

U = 2<br />

1 + κ .<br />

3. U ′<br />

U = 1 + κ<br />

2 κ .<br />

5. U ′<br />

U = 1 + κ<br />

2<br />

U =<br />

Explanation:<br />

For Case <strong>One</strong>,<br />

For Case Two,<br />

Therefore<br />

keywords:<br />

.<br />

2 κ<br />

1 + κ . correct<br />

U = 1 2 C 12 V 2 .<br />

U ′ = 1 2 C′ 12 V 2 .<br />

U ′<br />

U = C′ 12<br />

C 12<br />

=<br />

2 κ<br />

1 + κ .<br />

Dielectric in a Capacitor 01<br />

26:05, trigonometry, multiple choice, > 1 min,<br />

wording-variable.<br />

065 (part 1 of 1) 10 points<br />

a) An isolated capacitor has a dielectric slab κ<br />

between its plates.<br />

b) The capacitor is charged by a battery.<br />

c) After the capacitor is charged, the battery<br />

is removed.<br />

d) The dielectric slab is then moved half way<br />

out of the capacitor.<br />

e) Finally, the dielectric is released and is set<br />

free to move on its own.<br />

κ<br />

The dielectric will<br />

1. be pulled back into the capacitor. correct<br />

2. remain in place.<br />

κ


<strong>Version</strong> <strong>One</strong> – <strong>Homework</strong> 1 – <strong>Juyang</strong> <strong>Huang</strong> – <strong>24018</strong> – <strong>Jan</strong> <strong>16</strong>, 2008 33<br />

3. be pushed out of the capacitor.<br />

Explanation:<br />

The capacitance of a capacitor with a dielectric<br />

slab is<br />

C in = κ C out , where κ > 1 .<br />

NOTE<br />

When the battery is removed, the charge<br />

on the plates of the capacitor will remain<br />

constant. Charge is neither created nor destroyed.<br />

U out = 1 2<br />

U in = 1 2<br />

= 1 2<br />

Q 2<br />

C out<br />

,<br />

Q 2<br />

C in<br />

Q 2<br />

κ C out<br />

= 1 κ U out , so<br />

U in < U out ,<br />

and<br />

where U out is with an air-filled gap and U in<br />

is with a dielectric-filled gap. A system will<br />

move to a position of lower potential energy.<br />

After the dielectric is moved half way out<br />

of the capacitor, the potential energy stored<br />

in the capacitor will be larger than it would<br />

have been with the dielectric left in place.<br />

Therefore, the dielectric will be pulled back<br />

into the capacitor.<br />

keywords:<br />

Dipole in an External Field 0<br />

26:08, calculus, multiple choice, > 1 min,<br />

fixed.<br />

066 (part 1 of 1) 10 points<br />

A dipole (electrically neutral) is placed in an<br />

external field.<br />

(a)<br />

− +<br />

(b)<br />

−<br />

+<br />

− +<br />

(c)<br />

−<br />

+<br />

(d)<br />

For which situation(s) shown above is the<br />

net force on the dipole equal to zero<br />

1. (a) only<br />

2. (c) only<br />

3. (c) and (d) correct<br />

4. (a) and (c)<br />

5. (b) and (d)<br />

6. (a) and (d)<br />

7. (a), (b), and (c)<br />

8. (b), (c), and (d)<br />

9. Another combination<br />

10. None of these<br />

Explanation:<br />

Basic Concepts: Field patterns of point<br />

charge and parallel plates of infinite extent.<br />

The force on a charge in the electric field is<br />

given by<br />

⃗F = q E ⃗<br />

and the torque is defined as<br />

⃗T = ⃗r × ⃗ F<br />

∆E ⃗ = k ∆q<br />

r 2 ˆr<br />

⃗E = ∑ ∆ ⃗ E i .<br />

Symmetry of the configuration will cause<br />

some component of the electric field to be<br />

zero.


<strong>Version</strong> <strong>One</strong> – <strong>Homework</strong> 1 – <strong>Juyang</strong> <strong>Huang</strong> – <strong>24018</strong> – <strong>Jan</strong> <strong>16</strong>, 2008 34<br />

Gauss’ law states<br />

∮<br />

Φ S =<br />

⃗E · d ⃗ A = Q ɛ 0<br />

.<br />

Solutions: The electric dipole consists of<br />

two equal and opposite charges separated by<br />

a distance. In either situation (c) or (d), the<br />

electric field is uniform and parallel everywhere.<br />

Thus, the electric force on one charge<br />

is equal but opposite to that on another so<br />

that the net force on the whole dipole is zero.<br />

By contrast, electric fields are nonuniform for<br />

situations both (a) and (b).<br />

keywords:

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!