14.01.2015 Views

HEAT INTEGRATION Analysis 6. Data extraction - IqTMA-UVa

HEAT INTEGRATION Analysis 6. Data extraction - IqTMA-UVa

HEAT INTEGRATION Analysis 6. Data extraction - IqTMA-UVa

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>HEAT</strong> <strong>INTEGRATION</strong><br />

<strong>Analysis</strong><br />

<strong>6.</strong> <strong>Data</strong> <strong>extraction</strong><br />

Heat Integration – <strong>UVa</strong> | <strong>Analysis</strong> 0<strong>6.</strong> <strong>Data</strong> <strong>extraction</strong> 1


Outline<br />

<strong>Data</strong> <strong>extraction</strong><br />

Required data<br />

Rules and guides (1 to 5)<br />

Process modification<br />

Plus/minus principle<br />

Heat Integration – <strong>UVa</strong> | <strong>Analysis</strong> 0<strong>6.</strong> <strong>Data</strong> <strong>extraction</strong> 2


<strong>Data</strong> <strong>extraction</strong><br />

To pull out data from the PFD and include it into the problem<br />

General principles:<br />

it's about disconnecting the existing solution (in order to reconnect it)<br />

to extract only requirements<br />

don't extract mandatory features: leave it as they are<br />

extract heat (and cold) that can actually be used by other streams<br />

Poor data <strong>extraction</strong> can lead to two extremes:<br />

thinking that process is at its optimum (if maintaining excessive features)<br />

over-estimating the room for improvement (if extracting too much)<br />

Heat Integration – <strong>UVa</strong> | <strong>Analysis</strong> 0<strong>6.</strong> <strong>Data</strong> <strong>extraction</strong> 3


Required information/data<br />

As a minimum: Problem Table<br />

Supply and target temperatures<br />

Stream heating and cooling data: enthalpies and/or mCps<br />

Information on existing/planned utility system<br />

Information on costs:<br />

Energy (utilities)<br />

Equipment<br />

Heat exchangers material, pressures, type...<br />

Utility system devices<br />

General and background information on the process<br />

Heat Integration – <strong>UVa</strong> | <strong>Analysis</strong> 0<strong>6.</strong> <strong>Data</strong> <strong>extraction</strong> 4


Rules - Guides (1)<br />

Doesn't extract / doesn't include in the problem:<br />

Mandatory parts / parts that cant' be changed<br />

e.g.: Using quenching steam generation in a reactor<br />

This heat cannot be used in other way<br />

True utility streams<br />

(utility that can be replaced by other)<br />

Quenching (steam generation)<br />

Cold shots for reactor hot spots control<br />

Steam in a shift reactor (to enhance the shift process)<br />

Steam injection for steam distillation (different from direct steam<br />

to reboil the column - only heat transfer)<br />

Heat Integration – <strong>UVa</strong> | <strong>Analysis</strong> 0<strong>6.</strong> <strong>Data</strong> <strong>extraction</strong> 5


Rules - Guides (2)<br />

Doesn't extract / include in the problem:<br />

Linked or chained Energy flows<br />

Reaction (most cases)<br />

Compression / expansion ΔH can't be integrated<br />

Heat Integration – <strong>UVa</strong> | <strong>Analysis</strong> 0<strong>6.</strong> <strong>Data</strong> <strong>extraction</strong> 6


Rules - Guides (3)<br />

Don't maintain unnecessary / too detailed features<br />

Extend (conceptual) streams as much as possible (energy streams are not<br />

material streams)<br />

NO<br />

YES<br />

T1 T2 dH T1 T2 dH<br />

------------------- -------------------<br />

35.0 45.5 +191 35.0 130.0 +1720<br />

120.0 55.0 -191 120.0 55.0 -191<br />

45.5 91.5 +832 210.0 65.5 -832<br />

210.0 65.5 -832 -------------------<br />

91.5 130.0 +697<br />

-------------------<br />

Long no-linear streams can be linearized by segments for calculation<br />

purposes, but conceptual stream is one. Linearization is just a calculation trick<br />

Correct, if possible up-down-up temperatures (heating-cooling-heating)<br />

T1 T2 dH T1 T2 dH<br />

-------------------- -------------------<br />

35.0 150.0 +80 35.0 130.0 +6<strong>6.</strong>1<br />

150.0 180.0 +20.9 -------------------<br />

180.0 130.0 -34.8<br />

--------------------<br />

NO<br />

YES<br />

Heat Integration – <strong>UVa</strong> | <strong>Analysis</strong> 0<strong>6.</strong> <strong>Data</strong> <strong>extraction</strong> 7


Rules - Guides (4)<br />

Look at hidden (direct) heat exchange<br />

Mixing streams<br />

Injecting streams (e.g.: process water)<br />

Heating/cooling opportunities are lost<br />

Heat exchange is been condemned to this configuration (no mandatory)<br />

Can involve heat transfer across the pinch<br />

Calculating targets with/without mixing assess <strong>extraction</strong> or not<br />

Heat Integration – <strong>UVa</strong> | <strong>Analysis</strong> 0<strong>6.</strong> <strong>Data</strong> <strong>extraction</strong> 8


Mixing calculation (1)<br />

[Approximations: constant mCp, no mixing effects, no phase change]<br />

From mCp :<br />

mC P1 T 3 −T 1 =−mC P2 T 3 −T 2 <br />

T 3 = mC P1T 1 mC P2 T 2<br />

= 428,6 K<br />

mC P1 mC P2<br />

Duty 1 = mC P1 T 3 −T 1 =−10286 kW<br />

Duty 2 = mC P2 T 3 −T 2 = 10286 kW<br />

mC P1 = mC P3 −mC P2 = 90 kW K<br />

Duty 2 = mC P2 T 3 −T 2 = 12000 kW =−Duty 1<br />

T 1 = T 3 − Duty 1<br />

mC P1<br />

= 31<strong>6.</strong>7 K<br />

Duty 1 = mC P1 T 3 −T 1 = −12000 kW<br />

Valid for absolute or relative (ºC or ºF) temperature<br />

Heat Integration – <strong>UVa</strong> | <strong>Analysis</strong> 0<strong>6.</strong> <strong>Data</strong> <strong>extraction</strong> 9


Mixing calculation (2)<br />

[Approximations: constant mCp, no mixing effects, no phase change]<br />

From enthalpies:<br />

T REF = T 2 H 1,rel = H 1 −H 2 = 1400 kJ<br />

kg , H 2,rel = 0 kJ<br />

kg<br />

C P1 =<br />

H 1,rel 1400 kJ /kg<br />

= = 4.667 kJ<br />

T 1 −T 2 300 K<br />

kg K<br />

mC P1 = m˙<br />

1 ∗C P1 = 1 kg s 4.667 kJ<br />

kg K = 4.667 kW K<br />

Duty 1 = mC P1 T 3 −T 1 = 4.667 kW 400 K −600 K = −933.3 kW<br />

K<br />

Duty 2 = −Duty 1 = 933.3 kW<br />

Just a rough approximation<br />

Heat Integration – <strong>UVa</strong> | <strong>Analysis</strong> 0<strong>6.</strong> <strong>Data</strong> <strong>extraction</strong> 10


Rules - Guides (5)<br />

Extract/approximate non-linear streams the safe side<br />

SAFE<br />

DANGEROUS<br />

DANGEROUS<br />

SAFE<br />

Hot streams hotter / Cold streams colder than approximations<br />

Heat Integration – <strong>UVa</strong> | <strong>Analysis</strong> 0<strong>6.</strong> <strong>Data</strong> <strong>extraction</strong> 11


Process modification<br />

Changing the material and energy balances to reduce<br />

requirements in utility / equipment<br />

Hard and soft / flexible and rigid constraints.<br />

P/T vaporization/condensation<br />

T of streams to storage<br />

Column reboiler/condenser P/T<br />

Process modification possibilities<br />

Distillation column operating pressure<br />

Feed vaporization pressure<br />

Pump-around flow rates<br />

Reactor conversion / recycle<br />

Heat Integration – <strong>UVa</strong> | <strong>Analysis</strong> 0<strong>6.</strong> <strong>Data</strong> <strong>extraction</strong> 12


Plus-minus principle 1<br />

Identify/characterize changes in PFD<br />

(operation conditions) that improve energy<br />

performance<br />

Good modifications:<br />

Those that decreases hot utility:<br />

Increasing hot stream duty above the pinch<br />

Decreasing cold stream duty above the pinch<br />

Those that decreases cold utility:<br />

Decreasing hot stream duty below the pinch<br />

Increasing cold stream duty bellow the pinch<br />

Heat Integration – <strong>UVa</strong> | <strong>Analysis</strong> 0<strong>6.</strong> <strong>Data</strong> <strong>extraction</strong> 13


Plus-minus principle 2<br />

Also changing Ts<br />

Changes of T confined to one side of the pinch<br />

have no effects on energy targets<br />

Changes of T across the pinch can have effects<br />

on energy targets (if shift duty across to)<br />

Shift hot stream duty from below to above the<br />

pinch / Shift cold stream duty from below to<br />

below the pinch<br />

As a general rule: made hot streams hotter and<br />

cold streams colder<br />

Can shift duty the right way<br />

Widen ΔT between curves/improve driving forces<br />

Heat Integration – <strong>UVa</strong> | <strong>Analysis</strong> 0<strong>6.</strong> <strong>Data</strong> <strong>extraction</strong> 14

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!