14.01.2015 Views

LES of shock wave / turbulent boundary layer interaction

LES of shock wave / turbulent boundary layer interaction

LES of shock wave / turbulent boundary layer interaction

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Nomenclature<br />

Roman symbols<br />

a<br />

C f =<br />

h<br />

E<br />

F E ,F S<br />

G<br />

G T<br />

G E ,G S<br />

H E ,H S<br />

J<br />

k<br />

M = U a<br />

p<br />

Pr<br />

q x ,q y ,q z<br />

Q N<br />

Re<br />

τ w<br />

1<br />

2 ρ ∞U 2 ∞<br />

Re δ = ρ∗ ∞U ∗ ∞δ ∗<br />

µ ∗ ∞<br />

speed <strong>of</strong> sound<br />

skin-friction coefficient<br />

compression-decompression corner height<br />

total energy<br />

convective and diffusive fluxes in streamwise direction<br />

filter kernel, Görtler number<br />

Görtler number for <strong>turbulent</strong> flow<br />

convective and diffusive fluxes in spanwise direction<br />

convective and diffusive fluxes in wall-normal direction<br />

determinant <strong>of</strong> Jacobian matrix<br />

specific-heats ratio<br />

Mach number<br />

static pressure<br />

Prandtl number<br />

heat fluxes in respective direction<br />

deconvolution operator<br />

Reynolds number<br />

Reynolds number based on <strong>boundary</strong> <strong>layer</strong> thickness<br />

Re δ1 = ρ∗ ∞U ∗ ∞δ ∗ 1<br />

µ ∗ ∞<br />

Reynolds number based on displacement thickness<br />

Re θ = ρ∗ ∞U ∗ ∞δ ∗ 2<br />

µ ∗ ∞<br />

Re δ2 = ρ∗ ∞U ∗ ∞δ ∗ 2<br />

µ ∗ w<br />

t<br />

Reynolds number based on momentum thickness<br />

Reynolds number based on momentum thickness and<br />

wall viscosity<br />

time

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!