16.01.2015 Views

Determining the Risk Window for Aster Yellows in Carrot: New ...

Determining the Risk Window for Aster Yellows in Carrot: New ...

Determining the Risk Window for Aster Yellows in Carrot: New ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Determ<strong>in</strong><strong>in</strong>g</strong> <strong>the</strong> <strong>Risk</strong> <strong>W<strong>in</strong>dow</strong> <strong>for</strong><br />

<strong>Aster</strong> <strong>Yellows</strong> <strong>in</strong> <strong>Carrot</strong>: <strong>New</strong><br />

Technologies <strong>for</strong> an Old Problem<br />

Great Lakes Fruit, Vegetable, and Farm Market Expo<br />

December 8, 2011<br />

Russell L. Groves 1 and Ken Frost 2<br />

Department of Entomology 1 and Plant Pathology 2<br />

University of Wiscons<strong>in</strong>-Madison


Factors Influenc<strong>in</strong>g Insect Pest Management<br />

‘Food Safety’<br />

– Major food retailers are sett<strong>in</strong>g acceptable residue levels<br />

below those set by government regulatory agencies.<br />

“No detectable residues” will be a competitive advantage<br />

<strong>for</strong> food retailers.<br />

– Older <strong>in</strong>secticides that do not meet<br />

<strong>the</strong>se requirements are not be<strong>in</strong>g<br />

re-registered, result<strong>in</strong>g <strong>in</strong> <strong>in</strong>creased<br />

use of novel <strong>in</strong>secticides<br />

“Reduced-risk or Bio-pesticides”


Factors Influenc<strong>in</strong>g Insect Pest Management<br />

‘Environmental Concerns’<br />

– With <strong>in</strong>creas<strong>in</strong>g affluence domestically and globally,<br />

<strong>the</strong>re are <strong>in</strong>creas<strong>in</strong>g concerns about pesticide usage and<br />

perceived environmental effects.<br />

– This has rapidly accelerated <strong>the</strong> shift to “softer”<br />

products and technologies – ‘susta<strong>in</strong>ability’.


Insecticides <strong>for</strong> Manag<strong>in</strong>g <strong>Carrot</strong> Pests<br />

Recently Labeled <strong>in</strong> Wiscons<strong>in</strong>:<br />

• Actara (thiamethoxam) – foliar<br />

• Plat<strong>in</strong>um (thiamethoxam) – <strong>in</strong>-furrow<br />

• Admire Pro, Alias, etc. (imidacloprid) – <strong>in</strong>-furrow / foliar<br />

• Gaucho (imidacloprid) – seed treatment<br />

• Sepresto 75 WS (imidacloprid, clothianad<strong>in</strong>) – seed treatment<br />

In <strong>the</strong> Pipel<strong>in</strong>e:<br />

• FarMore DI400&500 (sp<strong>in</strong>osad, thiamethoxam) – seed trt<br />

• Cruiser (thiamethoxam) – seed trt<br />

• Benevia, Verimark (cyantraniliprole) – <strong>in</strong>-furrow, foliar, seed<br />

• Entrust (sp<strong>in</strong>osad) – seed treatment<br />

• Avicta (abamect<strong>in</strong>, thiamethoxam) – seed treatment


Presentation Outl<strong>in</strong>e<br />

Goal - Susta<strong>in</strong>able <strong>Carrot</strong> IPM<br />

‣ Def<strong>in</strong>e <strong>Aster</strong> <strong>Yellows</strong> disease and <strong>the</strong><br />

<strong>in</strong>sect vector<br />

‣ Identify periods of ‘elevated risk’ <strong>for</strong><br />

disease transmission.<br />

‣ <strong>New</strong> approaches to achieve susta<strong>in</strong>able,<br />

reduced-risk, IPM <strong>in</strong> carrot.<br />

Seed Treatments


<strong>Aster</strong> <strong>Yellows</strong> Management<br />

Syn<strong>the</strong>tic Pyrethroid Insecticides<br />

The Challenge!<br />

Increas<strong>in</strong>g <strong>the</strong> efficiency and profitability of carrot<br />

production…<br />

<br />

Syn<strong>the</strong>tic pyrethroids represent <strong>the</strong> backbone of<br />

ALH and AY management<br />

<br />

<strong>New</strong> registrations and delivery systems offer<br />

promis<strong>in</strong>g alternatives


<strong>Aster</strong> yellows: <strong>in</strong><br />

carrot<br />

Disease <strong>in</strong>cidence:<br />

1%-15% <strong>in</strong> <strong>in</strong>tensively<br />

managed carrot fields<br />

Likely 80-100% if not<br />

managed<br />

<strong>Carrot</strong><br />

<strong>Carrot</strong><br />

Lettuce<br />

Variable symptoms: Above ground – leaf<br />

yellow<strong>in</strong>g and redden<strong>in</strong>g, twist<strong>in</strong>g, witches'<br />

broom<strong>in</strong>g; Below ground – stunted and<br />

mal<strong>for</strong>med roots, adventitious root growth<br />

Celery<br />

O<strong>the</strong>r crops affected: Lettuce, celery, cilantro,<br />

canola, parsnip, potato


<strong>Aster</strong> yellows phytoplasma (AYp),<br />

Ca. phytoplasma asteris<br />

Small (0.4 μm diameter) , wall-less<br />

prokaryotic organism of <strong>the</strong><br />

provisional genus Candidatus<br />

Infects > 350 species <strong>in</strong> 38 plant<br />

families<br />

Phloem limited<br />

Has not been cultured<br />

Phytoplasma bodies <strong>in</strong> sieve elements<br />

of po<strong>in</strong>settia. I.M. Lee<br />

Obligately associated with host (<strong>in</strong>sect and<br />

plant) and not mechanically transmissible<br />

Small genome (~ 700 kb) possibly as a result<br />

of reductive evolution<br />

Division: Firmicutes<br />

Class: Mollicutes<br />

Order: Acholeplamatales<br />

Family: Acholeplasmataceae<br />

Genus: Candidatus<br />

'phytoplasma asteris'


Vector: <strong>Aster</strong> leafhopper (ALH)<br />

Adult<br />

Immature<br />

- Macrosteles quadril<strong>in</strong>eatus Forbes (Hemiptera: Cicadellidae)<br />

- Approximately 4 mm long and weigh 1 mg (0.8 mg M; 1.2 mg F)<br />

- Light greenish-yellow <strong>in</strong> color (seasonally variable)<br />

- Widely distributed <strong>in</strong> <strong>the</strong> U.S.


<strong>Aster</strong> leafhopper migratory behavior<br />

Chiykowski, L.N. and R.K. Chapman. 1965<br />

Early season migration of <strong>the</strong><br />

ALH from <strong>the</strong> Gulf-states to <strong>the</strong><br />

Upper Midwest<br />

Migratory behavior toge<strong>the</strong>r with<br />

<strong>the</strong> mode of transmission makes<br />

possible <strong>the</strong> movement of AYp<br />

over great distances...<br />

Probable <strong>Aster</strong> Leafhopper Spr<strong>in</strong>g<br />

Migration Routes


<strong>Aster</strong> yellows management<br />

WI AY management heavily <strong>in</strong>fluenced by R. K. Chapman<br />

Characterized ALH migratory behavior and recognized its<br />

importance <strong>for</strong> produc<strong>in</strong>g year-to-year variation <strong>in</strong> AY pressure<br />

Developed a strategy to account <strong>for</strong> that variation and manage AY<br />

Chapman, Wyman and o<strong>the</strong>rs sweep<strong>in</strong>g <strong>in</strong><br />

Arkansas (ca. 1985)


<strong>Aster</strong> yellows management:<br />

controll<strong>in</strong>g <strong>the</strong> ALH<br />

AYI calculated as:<br />

% leafhopper <strong>in</strong>fectivity * number / 100 sweeps<br />

AY control is achieved through repetitive applications of<br />

<strong>in</strong>secticide<br />

• - Syn<strong>the</strong>tic pyrethroids - currently <strong>the</strong> backbone of AY<br />

control programs ($2-4/ac)<br />

Do we have all <strong>the</strong> tools that we need to manage this<br />

disease<br />

Is <strong>the</strong>re room <strong>for</strong> improvement with <strong>the</strong> current<br />

management strategies


Research and project goal<br />

Advance our basic understand<strong>in</strong>g of <strong>the</strong><br />

epidemiology of aster yellows <strong>in</strong> Wiscons<strong>in</strong> towards<br />

<strong>the</strong> development and implementation of a<br />

comprehensive management plan<br />

What additional tools can be developed<br />

Can we “modernize” previously developed tools and<br />

research


Research update<br />

Part I) Identify trends <strong>in</strong> AY risk<br />

- Use historical data collections<br />

- Target control to high AY risk periods, offset high<br />

costs of new “softer” chemistries<br />

Part II) Advance predictive tools to address sporadic<br />

risks<br />

- Integrate previous research f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong>to current<br />

management<br />

- Allow advanced preparation <strong>for</strong> ALH <strong>in</strong>festations<br />

to mitigate yield loss


Part I: Research questions<br />

AYI = relative leafhopper abundance * % <strong>in</strong>fectivity<br />

Can we better understand <strong>the</strong> factors that are<br />

important <strong>for</strong> <strong>the</strong> variability <strong>in</strong> <strong>in</strong>sect<br />

abundance and <strong>in</strong>fectivity <strong>in</strong> carrot fields<br />

Can we discover and exploit temporal trends <strong>in</strong><br />

ei<strong>the</strong>r of <strong>the</strong> components of <strong>the</strong> AYI


Part I: Evaluat<strong>in</strong>g variability associated<br />

with ALH abundance and <strong>in</strong>fectivity<br />

Part I – Collect relevant historical<br />

pest scout<strong>in</strong>g data<br />

- Pest scout<strong>in</strong>g records (Pest Pros, Inc.)<br />

- Additional AY reports (UW-<br />

Entomology)<br />

Scout<strong>in</strong>g records<br />

Part II – Data exploration and<br />

analysis<br />

- Variance component analysis<br />

- Standardization and detection of<br />

seasonal trends


Part I: variance component analysis<br />

The objective of this analysis is to estimate variances not to<br />

detect differences<br />

Factors associated with leafhopper abundance and <strong>in</strong>fectivity<br />

were considered to be random effects (RE)<br />

RE were structured to deal with implicit nest<strong>in</strong>g (i.e. day is<br />

nested <strong>in</strong> year)<br />

Models were fit by maximum likelihood us<strong>in</strong>g lmer function <strong>in</strong><br />

<strong>the</strong> lme4 package of R<br />

Likelihood ratio tests (LRT) were used to compare mixed<br />

effects models


Part I Results: VCA<br />

Chapman was right!!! - Year describes 29% of variability of ALH<br />

<strong>in</strong>fectivity- but <strong>the</strong>re is room <strong>for</strong> improvement...<br />

•ALH Abundance (25%) - Day with<strong>in</strong> year<br />

•ALH <strong>in</strong>fectivity (26%) - Week with<strong>in</strong> year<br />

Can we expla<strong>in</strong> <strong>the</strong> variabilty with<strong>in</strong> years<br />

Does seasonality describe any more of this variability


Part I: detection of seasonal trends <strong>in</strong><br />

AY risk<br />

Methods were modified from Nault et. al. (2009). Environ.<br />

Entomology 38(5):1347-1359.<br />

Our methods:<br />

Sweep data were averaged <strong>for</strong> each year, field, and date<br />

comb<strong>in</strong>ation<br />

Data were standardized us<strong>in</strong>g ei<strong>the</strong>r random effects models or<br />

regression spl<strong>in</strong>es<br />

Cubic polynomials were fit to <strong>the</strong> result<strong>in</strong>g “conditional” or<br />

“deseasonalized” data (l<strong>in</strong>ear model)


Seasonal trends: ALH abundance<br />

Fit random effects model to data<br />

Extract <strong>the</strong> conditional expectation of <strong>the</strong> values <strong>for</strong><br />

Julian Date (i.e. BLUPs <strong>for</strong> Julian Date)<br />

Plot BLUPs vs. Julian date and fit cubic polynomial<br />

Solve <strong>for</strong> S = 0<br />

X 1<br />

: 155 (June 3)<br />

X 2<br />

: 216 (August 3)<br />

X 3<br />

: 265<br />

S(λ, df) vs. Julian day <strong>for</strong> all traps <strong>in</strong> all fields <strong>in</strong> all years<br />

Above average<br />

ALH catches<br />

between X1 and X2<br />

<strong>Risk</strong> “w<strong>in</strong>dow”


Seasonal trends: ALH <strong>in</strong>fectivity<br />

Us<strong>in</strong>g similar methodology to exam<strong>in</strong>e ALH<br />

<strong>in</strong>fectivity<br />

Above average<br />

ALH <strong>in</strong>fectivity<br />

X 1<br />

: 139 (May 18)<br />

X 2<br />

: 197 (July 15)<br />

X 3<br />

: 259<br />

<strong>Risk</strong> “w<strong>in</strong>dow”


Seasonal trends: AY Index<br />

Calculate historical average AY risk that accounted<br />

<strong>for</strong> annual variation and seasonal variation<br />

Calculate AYI:<br />

Average daily ALH<br />

abundance<br />

Average weekly ALH<br />

<strong>in</strong>fectivity <strong>for</strong> low, average<br />

and high years<br />

Add smooth<strong>in</strong>g function<br />

(Regression spl<strong>in</strong>e or<br />

mov<strong>in</strong>g average)<br />

High<br />

Ave.<br />

Low<br />

AYI treatment thresholds<br />

used to estimate crop risk


Concurrence of AY risk “w<strong>in</strong>dows”<br />

Open Close # Days<br />

Susceptible carrot May 25 Sept. 1 100<br />

<strong>Aster</strong> Leafhopper June 7 August 1 55<br />

ALH <strong>in</strong>fectivity May 18 July 15 58<br />

Overlap June 7 July 15 40<br />

<strong>Aster</strong> yellows <strong>in</strong>dex<br />

Resitant <strong>Carrot</strong><br />

(High <strong>in</strong>fectivity)<br />

Susceptible <strong>Carrot</strong><br />

(High <strong>in</strong>fectivity)<br />

June 18 July 8 20<br />

June 7 August 7 61<br />

Can we reduce <strong>the</strong> number of applications by target<strong>in</strong>g times of<br />

higher AY risk<br />

Can <strong>the</strong> higher cost of novel, reduced risk, and less broad spectrum<br />

<strong>in</strong>secticides be offset by us<strong>in</strong>g fewer applications


Part I: Future directions (2011):<br />

Us<strong>in</strong>g <strong>in</strong><strong>for</strong>mation about periods of elevated AY risk<br />

What tactics or comb<strong>in</strong>ations of tactics, can effectively<br />

provide plant protection dur<strong>in</strong>g high AY risk period (i.e.<br />

plant<strong>in</strong>g later, <strong>in</strong>secticide treated seed, and/or fewer<br />

applications of reduced risk <strong>in</strong>secticides)<br />

•- Compare reduced risk and less broad spectrum <strong>in</strong>secticides<br />

(neonicot<strong>in</strong>oid) to current AY management (seed treatments<br />

and foliar applications)<br />

•- Tim<strong>in</strong>g of foliar applications based on ALH <strong>in</strong>fectivity, AY<br />

risk phenology and degree day model <strong>for</strong>ecast<strong>in</strong>g <strong>the</strong><br />

emergence of local ALH


Research update<br />

Part I) Identify trends <strong>in</strong> AY risk<br />

- Use historical data collections<br />

- Target control to high AY risk periods, offset high<br />

costs of new “softer” chemistries<br />

Part II) Advance predictive tools to address sporadic<br />

risks<br />

- Integrate previous research f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong>to current<br />

management<br />

- Allow advanced preparation <strong>for</strong> ALH <strong>in</strong>festations<br />

to mitigate yield loss


Part II: ALH development model<br />

A - Predictions of ALH development <strong>for</strong> <strong>the</strong> Midwest<br />

Couple temperature data and an ALH degree-day model with<br />

geostatistical methods to predict ALH lifestage <strong>for</strong> gridded<br />

po<strong>in</strong>ts <strong>in</strong> <strong>the</strong> Midwest<br />

B – Large scale surface wea<strong>the</strong>r events<br />

C – Landscape quality<br />

D – Coupl<strong>in</strong>g <strong>the</strong>se parts toge<strong>the</strong>r......<br />

Considerations<br />

<strong>for</strong> this project<br />

<strong>in</strong> <strong>the</strong> future


Part II: Temperature and ALH<br />

development<br />

J. O. Jensen 1982, Ph.D. Thesis<br />

Chapman was headed <strong>in</strong> this<br />

direction<br />

The rate of ALH development is<br />

constant above ~ 50 F<br />

This type of data allows <strong>for</strong> <strong>the</strong><br />

trans<strong>for</strong>mation time to <strong>the</strong>rmal<br />

time (i.e. from days to degreedays)


<strong>Aster</strong> leafhopper lifecycle<br />

Susan Mahr (1991) Ph.D<br />

Thesis<br />

Insect<br />

Stage<br />

Time<br />

(days)<br />

Thermal<br />

time<br />

(Degreedays)<br />

Egg 6-23 143<br />

1 st Instar 2-7 39<br />

2 nd Instar 2-6 33<br />

3 rd Instar 2-6 34<br />

4 th Instar 3-7 41<br />

5 th Instar 4-10 62<br />

Total 19-60 351<br />

Now, <strong>in</strong>stead of time, we can use degree -days (DD)<br />

necessary <strong>for</strong> development of each life stage of ALH


Latitude<br />

Part II: Thermal time model <strong>for</strong> ALH<br />

development<br />

<strong>Aster</strong> leafhopper generational<br />

development driven by April<br />

2009 wea<strong>the</strong>r data<br />

•- Egg stage (white); 1 st - 5 th <strong>in</strong>stars<br />

(Brown, Drk. green, green, yellow,<br />

orange); Adult (Red)<br />

Longitude<br />

Is this type of model useful<br />

•- Research purposes – gives<br />

predictions to ground-truth<br />

•- Give growers advanced warn<strong>in</strong>g<br />

of seasonal pest development and<br />

potential <strong>for</strong> migration<br />

Will <strong>the</strong> model accurately predict ALH developmental stage


Latitude<br />

Part II: Thermal time model <strong>for</strong> ALH<br />

development<br />

X<br />

X<br />

2010 <strong>Aster</strong> leafhopper survey conducted by Huseth and Frost<br />

Date Location DD Predicted Actual<br />

4-18 Fayetteville, AR 270 4 th <strong>in</strong>star<br />

4-18<br />

<strong>Aster</strong> leafhopper nymphs!<br />

In high abundance!<br />

KS/MO border<br />

85 mi. S or KS Cty<br />

170 1 st <strong>in</strong>star<br />

Longitude<br />

3 rd - 5 th <strong>in</strong>star (40%)<br />

Adult (60%)<br />

Instars (0%)<br />

Adult (100%)<br />

1.3/100 sweeps


Ongo<strong>in</strong>g and future research<br />

We have a functional prototype degree day model to predict ALH<br />

developmental stages over large geographical regions<br />

•I) Cont<strong>in</strong>ue spr<strong>in</strong>g surveys are needed to evaluate model<br />

predictions<br />

•II) Compare model predictions from historical temperature data<br />

to aster yellows report<br />

•III) Works <strong>for</strong> Wiscons<strong>in</strong> too!!<br />

Important contribution of degree day model:<br />

Predict <strong>the</strong> predom<strong>in</strong>ant ALH life-stage given temperature data and<br />

importantly, if that lifestage has w<strong>in</strong>gs!!!<br />

This contribution is important <strong>for</strong> where we might go <strong>in</strong> <strong>the</strong><br />

future...


Future considerations <strong>for</strong> model<br />

development<br />

...to <strong>in</strong>corporate large scale<br />

synoptic surface wea<strong>the</strong>r<br />

patterns<br />

Couple <strong>the</strong> layers toge<strong>the</strong>r<br />

Use this as a means to<br />

predict possible source and<br />

s<strong>in</strong>k regions<br />

From Sandstrom et. al. 2007. Proc. N. C. B.<br />

Ent. Soc. America


Overall summary: ref<strong>in</strong><strong>in</strong>g <strong>the</strong> AYI<br />

Advance our basic understand<strong>in</strong>g of <strong>the</strong> epidemiology of aster yellows <strong>in</strong><br />

Wiscons<strong>in</strong> towards <strong>the</strong> development and implementation of a<br />

comprehensive management plan<br />

Incorporate biological <strong>in</strong><strong>for</strong>mation about <strong>the</strong> AY disease system<br />

from multiple scales to improve on-farm AY management<br />

decisions<br />

Utilize available and emerg<strong>in</strong>g technologies <strong>in</strong> <strong>the</strong> context of<br />

management to:<br />

I) Ensure AYp detection is accurate and reflects biology – Reduce<br />

unwarranted sprays<br />

II) Identify trends <strong>in</strong> AY risk – Target control to high AY risk<br />

periods, offset high costs of new “softer” chemistries<br />

III) Advance predictive tools to address sporadic risks – allows<br />

advanced preparation <strong>for</strong> ALH <strong>in</strong>festations to mitigate yield loss


Acknowledgements<br />

Groves Lab: Carol Groves, Emily Mueller,<br />

Scott Chapman, Shahideh Nouri, Anders<br />

Huseth, David Lowenste<strong>in</strong>, Natalie<br />

Hernandez, Sarah Schramm, Matt<br />

Mockenhaupt<br />

Pest Pros, Inc.: Randy Van Haren, L<strong>in</strong>da<br />

Kotolski<br />

O<strong>the</strong>rs: Tom German, Jeff Wyman, Brian<br />

Flood, D. Kyle Willis, Amy Charkowski, Paul<br />

Esker, Jed Colquhoun,<br />

Dept. of Plant Pathology<br />

Dept. of Entomology<br />

Walnut Street Greenhouses<br />

<strong>Carrot</strong> growers:<br />

Gumz Muck Farms<br />

Shiprock Farms<br />

Miller Farms<br />

Patrykus Farms<br />

Guth Farms<br />

K<strong>in</strong>caid Farms<br />

Fund<strong>in</strong>g Sources:<br />

NCR-SARE<br />

Wiscons<strong>in</strong> Specialty Crops<br />

Block


QUESTIONS

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!