18.01.2015 Views

Multiphase Hele-Shaw Flows: from Beaches to Dredgers - School of ...

Multiphase Hele-Shaw Flows: from Beaches to Dredgers - School of ...

Multiphase Hele-Shaw Flows: from Beaches to Dredgers - School of ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Hele</strong>-<strong>Shaw</strong><br />

<strong>Flows</strong><br />

Onno<br />

Bokhove<br />

Introduction<br />

<strong>Multiphase</strong> <strong>Hele</strong>-<strong>Shaw</strong> <strong>Flows</strong>:<br />

<strong>from</strong> <strong>Beaches</strong> <strong>to</strong> <strong>Dredgers</strong><br />

Design<br />

Wave<br />

Breaking<br />

Beach<br />

Morphology<br />

Challenges<br />

Onno Bokhove<br />

<strong>School</strong> <strong>of</strong> Mathematics, University <strong>of</strong> Leeds<br />

with Zweers, Van der Meer, Thorn<strong>to</strong>n, Van der Horn & Gagarina (Twente)<br />

Conclusions<br />

BP Institute, Cambridge 2013


<strong>Hele</strong>-<strong>Shaw</strong><br />

<strong>Flows</strong><br />

Onno<br />

Bokhove<br />

Introduction<br />

Design<br />

Wave<br />

Breaking<br />

Beach<br />

Morphology<br />

Challenges<br />

Conclusions<br />

1 Introduction<br />

2 Design<br />

3 Wave Breaking<br />

4 Beach Morphology<br />

5 Challenges<br />

6 Conclusions


1. Introduction<br />

<strong>Hele</strong>-<strong>Shaw</strong><br />

<strong>Flows</strong><br />

Onno<br />

Bokhove<br />

Introduction<br />

Design<br />

Wave<br />

Breaking<br />

Beach<br />

Morphology<br />

Challenges<br />

Conclusions<br />

<strong>Multiphase</strong> <strong>Hele</strong>-<strong>Shaw</strong> flows:<br />

Particles, water & air: beach dynamics by breaking waves.<br />

Particles & air: aeolean poppy seed dunes [movie].<br />

Particles, water & a pump: dredging [design].


<strong>Hele</strong>-<strong>Shaw</strong> Beach Dynamics<br />

<strong>Hele</strong>-<strong>Shaw</strong><br />

<strong>Flows</strong><br />

Onno<br />

Bokhove<br />

Introduction<br />

Design<br />

Wave<br />

Breaking<br />

Beach<br />

Morphology<br />

Challenges<br />

Conclusions<br />

Create manageable mathematical/labora<strong>to</strong>ry environment <strong>of</strong><br />

beach dynamics:<br />

Wave action, during s<strong>to</strong>rms, drives the evolution <strong>of</strong><br />

beaches.<br />

Beach evolution by breaking waves poorly unders<strong>to</strong>od.<br />

Equations water, air, particles available: DNS <strong>to</strong>o costly.<br />

Modeling environment should include hierarchy <strong>of</strong> models.


<strong>Hele</strong>-<strong>Shaw</strong> Beach Dynamics<br />

<strong>Hele</strong>-<strong>Shaw</strong><br />

<strong>Flows</strong><br />

Onno<br />

Bokhove<br />

Introduction<br />

Design<br />

Wave<br />

Breaking<br />

Beach<br />

Morphology<br />

Challenges<br />

Conclusions<br />

Design:<br />

Imagine you have a giant’s knife, make cuts <strong>to</strong> isolate a<br />

slice <strong>of</strong> beach . . . including sand & water, particle and<br />

wave motion.<br />

Place slice between glass plates & shrink <strong>to</strong> table-<strong>to</strong>p size.<br />

<strong>Beaches</strong>, berms & sand bars emerge in min/hr by waves<br />

with wave forcing T ≈ 1s.


Sketch <strong>Hele</strong>-<strong>Shaw</strong> beach<br />

<strong>Hele</strong>-<strong>Shaw</strong><br />

<strong>Flows</strong><br />

Onno<br />

Bokhove<br />

Introduction<br />

z<br />

wave−maker<br />

g<br />

Design<br />

Wave<br />

Breaking<br />

Beach<br />

Morphology<br />

Challenges<br />

Conclusions<br />

l<br />

p<br />

θ w<br />

wedge<br />

0 x l<br />

L<br />

w w<br />

x<br />

Sketch <strong>Hele</strong>-<strong>Shaw</strong> cell: wedge, waterline, particles &<br />

wave-maker.<br />

B 0<br />

free surface<br />

H 0<br />

particles


(Dis)Advantages <strong>Hele</strong>-<strong>Shaw</strong> Beach<br />

<strong>Hele</strong>-<strong>Shaw</strong><br />

<strong>Flows</strong><br />

Onno<br />

Bokhove<br />

Introduction<br />

Design<br />

Wave<br />

Breaking<br />

Beach<br />

Morphology<br />

Challenges<br />

Conclusions<br />

Advantages and disadvantages:<br />

Set-up focusses on particle motion by breaking waves.<br />

Immense reduction <strong>of</strong> d<strong>of</strong>’s: quasi-2D.<br />

All dynamics clearly visible and measurable.<br />

<strong>Hele</strong>-<strong>Shaw</strong> cell simplifies the inherent complexity <strong>of</strong><br />

3-phase dynamics.<br />

Damping <strong>to</strong>o severe due <strong>to</strong> proximity <strong>of</strong> glass plates<br />

Determine minimal gap width for which dynamics inertial!


2. Design: Linear Momentum Damping<br />

<strong>Hele</strong>-<strong>Shaw</strong><br />

<strong>Flows</strong><br />

Onno<br />

Bokhove<br />

Introduction<br />

Design<br />

Wave<br />

Breaking<br />

Beach<br />

Morphology<br />

Challenges<br />

Conclusions


Maths <strong>of</strong> <strong>Hele</strong>-<strong>Shaw</strong> Beach<br />

<strong>Hele</strong>-<strong>Shaw</strong><br />

<strong>Flows</strong><br />

Onno<br />

Bokhove<br />

Introduction<br />

Design<br />

Wave<br />

Breaking<br />

Specifications quasi-2D dynamics in <strong>Hele</strong>-<strong>Shaw</strong> cell:<br />

2 vertical glass plates: 0.6 × 0.3 × 2l or 1 × 0.3 × 2lm 3<br />

filled with water & particles d ≤ 2lmm<br />

wave-maker: moving rod; f ∼ 1 Hz.<br />

What should half gap width l be<br />

Beach<br />

Morphology<br />

Challenges<br />

Conclusions


Asymp<strong>to</strong>tic Analysis: width averaging<br />

<strong>Hele</strong>-<strong>Shaw</strong><br />

<strong>Flows</strong><br />

Onno<br />

Bokhove<br />

Introduction<br />

Design<br />

Wave<br />

Breaking<br />

Beach<br />

Morphology<br />

Challenges<br />

Conclusions<br />

Determine minimum gap width for which broken wave travels<br />

<strong>from</strong> wave maker <strong>to</strong> beach<br />

1. Focus on hydrodynamics & scale:<br />

- 3D Navier-S<strong>to</strong>kes with anisotropic scales<br />

Simplify using parabolic pr<strong>of</strong>ile.<br />

Flow is partially inertial:<br />

3 ρ 0 ũ 2<br />

L|∇ xz p| = l 4 |∇ xz p|<br />

3 ρ 0 ν 2 L = l 4 g∆h<br />

3 ν 2 ∼ 0.1 <strong>to</strong> 10<br />

L2 for l = 0.75 <strong>to</strong> 2 mm.<br />

Pohlhausen (Rosenhead 1963) suggested Ansatz:<br />

u = 3 2ū (l 2 − y 2 )<br />

l 2 and w = 3 2 ¯w (l 2 − y 2 )<br />

l 2 (1)


<strong>Hele</strong>-<strong>Shaw</strong><br />

<strong>Flows</strong><br />

Onno<br />

Bokhove<br />

Introduction<br />

Design<br />

Wave<br />

Breaking<br />

Beach<br />

Morphology<br />

Challenges<br />

Conclusions<br />

2. Average across gap: obtain 2D “Navier-S<strong>to</strong>kes”<br />

equations<br />

∂ t ū + γū∂ x ū + γ ¯w∂ z ū = − 1 ρ 0<br />

∂ x P− 3νū<br />

l 2<br />

∂ t ¯w + γū∂ x ¯w + γ ¯w∂ z ¯w = − 1 ρ 0<br />

∂ z P − g−<br />

∂ x ū + ∂ z ¯w =0,<br />

3ν ¯w<br />

l 2<br />

(2a)<br />

(2b)<br />

(2c)<br />

with y–independent pressure P = P(x, z, t), width average<br />

ū = ∫ l<br />

−l<br />

u(x, y, z, t)dy/(2l) & γ = 6/5.


Asymp<strong>to</strong>tic Analysis: depth averaging<br />

<strong>Hele</strong>-<strong>Shaw</strong><br />

<strong>Flows</strong><br />

Onno<br />

Bokhove<br />

Introduction<br />

Design<br />

Wave<br />

Breaking<br />

Beach<br />

Morphology<br />

Challenges<br />

Conclusions<br />

3. Kinematic conditions at bot<strong>to</strong>m & free surface:<br />

z = b(x, t) & z = b(x, t) + h(x, t); hydrostatic balance.<br />

Shallow water equations with damping:<br />

∂ t (hū) + ∂ x<br />

(<br />

hū 2 + gh 2 /2 )<br />

+ (γ − 1)hū∂ x ū = −gh∂ x b − 3νhū<br />

∂ t h + ∂ x (hū) = 0<br />

l 2<br />

(3a)<br />

(3b)<br />

and hū(x, t) = ∫ h+b<br />

b<br />

ū(x, z, t)dz.


. . . depth averaging<br />

<strong>Hele</strong>-<strong>Shaw</strong><br />

<strong>Flows</strong><br />

Onno<br />

Bokhove<br />

Introduction<br />

Design<br />

Wave<br />

Breaking<br />

Beach<br />

Morphology<br />

Breaking wave as shallow-water bore (γ = 1):<br />

discontinuity at x = x b (t); speed S = dx b /dt:<br />

[h(ū − S)] = 0 [h(ū − S) 2 + gh 2 /2] = 0. (4)<br />

For which gap width 2l can <strong>of</strong>fshore bore reach the shore<br />

Challenges<br />

Conclusions


. . . depth averaging<br />

<strong>Hele</strong>-<strong>Shaw</strong><br />

<strong>Flows</strong><br />

Onno<br />

Bokhove<br />

Introduction<br />

Answer: for a beach <strong>of</strong> length ∼ 0.5m and gap width<br />

2 l > 1.5mm generated bore reaches end <strong>of</strong> beach.<br />

Design<br />

Wave<br />

Breaking<br />

Beach<br />

Morphology<br />

Challenges<br />

Conclusions<br />

Given availability <strong>of</strong> zeolite particles with<br />

d = 1.80 ± 0.05mm: chose 2 l = 2mm<br />

Build 2 experimental set-ups (Zweers & B.).


Potential Flow Water Waves<br />

<strong>Hele</strong>-<strong>Shaw</strong><br />

<strong>Flows</strong><br />

Onno<br />

Bokhove<br />

Introduction<br />

Design<br />

Wave<br />

Breaking<br />

Beach<br />

Morphology<br />

Challenges<br />

Conclusions<br />

Substitution potential flow Ansatz (ū, ¯w) = (∂ x φ, ∂ z φ)<br />

in<strong>to</strong> 2D Navier-S<strong>to</strong>kes eqns gives damped water waves:<br />

0 = δ ∫ (<br />

T ∫ L<br />

(<br />

t 0 0 φs ∂ t h − 1 2 g(h − H 0) 2) dx<br />

− ∫ L ∫ γh 1<br />

0 0 2 |∇φ|2 dzdx<br />

)<br />

e 3νt/l2 dt (5)<br />

Use experiment <strong>to</strong> validate linear momentum damping.<br />

Tilt tank till at rest: then drop it <strong>to</strong> create a linear tilt <strong>of</strong><br />

the free surface“at rest”.


Damped Water Waves: Model vs. Experiment<br />

<strong>Hele</strong>-<strong>Shaw</strong><br />

<strong>Flows</strong><br />

Onno<br />

Bokhove<br />

Introduction<br />

Design<br />

Initial conditions: model & experiment.<br />

Wave<br />

Breaking<br />

Beach<br />

Morphology<br />

Challenges<br />

Conclusions


Damped Water Waves: Model vs. Data<br />

<strong>Hele</strong>-<strong>Shaw</strong><br />

<strong>Flows</strong><br />

Onno<br />

Bokhove<br />

Introduction<br />

Measure free surface & calculate potential energy P(t):<br />

Design<br />

Wave<br />

Breaking<br />

Beach<br />

Morphology<br />

Challenges<br />

Conclusions


Damped Water Waves: Model vs. Data<br />

<strong>Hele</strong>-<strong>Shaw</strong><br />

<strong>Flows</strong><br />

Onno<br />

Bokhove<br />

Introduction<br />

Simulations vs. measurements:<br />

Design<br />

Wave<br />

Breaking<br />

Beach<br />

Morphology<br />

Challenges<br />

Conclusions


3. Wave Breaking<br />

<strong>Hele</strong>-<strong>Shaw</strong><br />

<strong>Flows</strong><br />

Onno<br />

Bokhove<br />

Introduction<br />

Design<br />

Quasi-2D dynamics in <strong>Hele</strong>-<strong>Shaw</strong> cell:<br />

2 glass plates: 0.6 × 0.3 × 0.002 or 1 × 0.3 × 0.002m 3<br />

filled with water & heavier particles d = 1.8mm<br />

wavemaker: moving welding rod 1.5mm thin; f ∼ 1 Hz<br />

Wave<br />

Breaking<br />

Beach<br />

Morphology<br />

Challenges<br />

Conclusions


Wave Types<br />

<strong>Hele</strong>-<strong>Shaw</strong><br />

<strong>Flows</strong><br />

Onno<br />

Bokhove<br />

Introduction<br />

Design<br />

Wave<br />

Breaking<br />

Beach<br />

Morphology<br />

Challenges<br />

Conclusions<br />

Breaker wave types (Peregrine 1983 ARFM) observed:<br />

Spilling: white water at wave crest spills down front face<br />

sometimes with projection <strong>of</strong> small jet<br />

Plunging: wave’s front face overturns, prominent jet at<br />

base wave, causing large splash<br />

Collapsing: lower portion front face overturns, behaves like<br />

truncated plunging breaker<br />

Surging: significant disturbance smooth pr<strong>of</strong>ile occurs only<br />

near moving shoreline<br />

. . . Shore break: whole face <strong>from</strong> trough <strong>to</strong> crest vertical<br />

with little/no water in front.<br />

63, 115, 133, 8s


Spilling & Plunging Waves<br />

<strong>Hele</strong>-<strong>Shaw</strong><br />

<strong>Flows</strong><br />

Onno<br />

Bokhove<br />

Introduction<br />

Design<br />

Wave<br />

Breaking<br />

Beach<br />

Morphology<br />

Challenges<br />

Conclusions


Collapsing & Surging Waves<br />

<strong>Hele</strong>-<strong>Shaw</strong><br />

<strong>Flows</strong><br />

Onno<br />

Bokhove<br />

Introduction<br />

Design<br />

Wave<br />

Breaking<br />

Beach<br />

Morphology<br />

Challenges<br />

Conclusions


4. Quasi-Steady Beach Morphology<br />

<strong>Hele</strong>-<strong>Shaw</strong><br />

<strong>Flows</strong><br />

Onno<br />

Bokhove<br />

Introduction<br />

Design<br />

Wave<br />

Breaking<br />

Restrict search <strong>of</strong> parameter space <strong>to</strong> variation <strong>of</strong>:<br />

initial water depth H 0 − B 0 above the (flat) bed <strong>of</strong> particles<br />

initial depth <strong>of</strong> particle bed B 0 above bot<strong>to</strong>m &<br />

monochromatic wave frequency f wm .<br />

Beach<br />

Morphology<br />

Challenges<br />

Conclusions


Quasi-Steady Beach Morphology<br />

<strong>Hele</strong>-<strong>Shaw</strong><br />

<strong>Flows</strong><br />

Onno<br />

Bokhove<br />

Introduction<br />

Design<br />

Wave<br />

Breaking<br />

Beach<br />

Morphology<br />

Challenges<br />

Conclusions<br />

Berm/dune or dune-beach: dry interior maximum<br />

Sand bars: wet interior maximum<br />

Beach: dry or wet boundary maximum<br />

Quasi-static: < 10cm 2 displaced area<br />

Suction: particle disappear across wedge.


QSBM: Dunes<br />

<strong>Hele</strong>-<strong>Shaw</strong><br />

<strong>Flows</strong><br />

Onno<br />

Bokhove<br />

Introduction<br />

Design<br />

Wave<br />

Breaking<br />

Beach<br />

Morphology<br />

Challenges<br />

Conclusions


QSBM: Sand Bars<br />

<strong>Hele</strong>-<strong>Shaw</strong><br />

<strong>Flows</strong><br />

Onno<br />

Bokhove<br />

Introduction<br />

Design<br />

Wave<br />

Breaking<br />

Beach<br />

Morphology<br />

Challenges<br />

Conclusions


QSBM: <strong>Beaches</strong><br />

<strong>Hele</strong>-<strong>Shaw</strong><br />

<strong>Flows</strong><br />

Onno<br />

Bokhove<br />

Introduction<br />

Design<br />

Wave<br />

Breaking<br />

Beach<br />

Morphology<br />

Challenges<br />

Conclusions


QSBM: Quasi-Static & Suction<br />

<strong>Hele</strong>-<strong>Shaw</strong><br />

<strong>Flows</strong><br />

Onno<br />

Bokhove<br />

Introduction<br />

Design<br />

Wave<br />

Breaking<br />

Beach<br />

Morphology<br />

Challenges<br />

Conclusions


2D Phase Diagram<br />

<strong>Hele</strong>-<strong>Shaw</strong><br />

<strong>Flows</strong><br />

Onno<br />

Bokhove<br />

B 0 = 80mm (old):<br />

Introduction<br />

Design<br />

Wave<br />

Breaking<br />

Beach<br />

Morphology<br />

Challenges<br />

Conclusions<br />

H 0<br />

−B 0<br />

(cm)<br />

8<br />

6<br />

4<br />

dry beach<br />

wet beach<br />

dune<br />

large hump<br />

small hump<br />

nothing<br />

2<br />

0<br />

0.5 1 1.5<br />

f wm<br />

(Hz)


3D Phase Diagram<br />

<strong>Hele</strong>-<strong>Shaw</strong><br />

<strong>Flows</strong><br />

Onno<br />

Bokhove<br />

(new)<br />

Introduction<br />

Design<br />

Wave<br />

Breaking<br />

Beach<br />

Morphology<br />

Challenges<br />

Conclusions


Analysis<br />

<strong>Hele</strong>-<strong>Shaw</strong><br />

<strong>Flows</strong><br />

Onno<br />

Bokhove<br />

Bed transport, net moved area & mean sand replacement.<br />

Introduction<br />

Design<br />

Wave<br />

Breaking<br />

Beach<br />

Morphology<br />

Challenges<br />

Conclusions


Remarks<br />

<strong>Hele</strong>-<strong>Shaw</strong><br />

<strong>Flows</strong><br />

Onno<br />

Bokhove<br />

Introduction<br />

Design<br />

Wave<br />

Breaking<br />

Details <strong>of</strong> bed morphology are sensitive <strong>to</strong>:<br />

Wave-maker motion and its location, but . . .<br />

Initial compaction <strong>of</strong> bed particles, but . . .<br />

MSc Bram van der Horn (2012).<br />

Beach<br />

Morphology<br />

Challenges<br />

Conclusions


Many Alternatives<br />

<strong>Hele</strong>-<strong>Shaw</strong><br />

<strong>Flows</strong><br />

Onno<br />

Bokhove<br />

Introduction<br />

Design<br />

Wave<br />

Breaking<br />

Alternating between f = 0.6 & 0.9Hz: dune creation,<br />

hysteretic effects.<br />

Monochromatic f = 1.0Hz dune (Van der Horn)<br />

Beach<br />

Morphology<br />

Challenges<br />

Conclusions


5. Challenges & Extensions<br />

<strong>Hele</strong>-<strong>Shaw</strong><br />

<strong>Flows</strong><br />

Onno<br />

Bokhove<br />

Introduction<br />

Design<br />

Wave<br />

Breaking<br />

Beach<br />

Morphology<br />

Challenges<br />

Conclusions<br />

Given design calculations & experimental results, goal becomes:<br />

<strong>to</strong> predict the dynamics in the <strong>Hele</strong>-<strong>Shaw</strong> cell,<br />

with models that can be extended <strong>to</strong> yield feasible<br />

3D-predictions.<br />

Consider d<strong>of</strong>’s:<br />

DNS simulations: ≥ 10 3 /particle; tank<br />

250 × 40 × 1 d 3 = 10 4 d 3 .<br />

Leading <strong>to</strong> 10 7 − 10 8 d<strong>of</strong>’s for Navier-S<strong>to</strong>kes and DPMs!<br />

Perhaps feasible in quasi-2D but not in 3D.<br />

A hierarchy <strong>of</strong> reduced & multi-phase models required.


Aeolean <strong>Hele</strong>-<strong>Shaw</strong> Cell<br />

<strong>Hele</strong>-<strong>Shaw</strong><br />

<strong>Flows</strong><br />

Onno<br />

Bokhove<br />

Introduction<br />

Design<br />

Wave<br />

Breaking<br />

Beach<br />

Morphology<br />

Challenges<br />

Pro<strong>to</strong>type (Zweers, Tunuguntla & B.):<br />

Wind driven particle dynamics –poppy seeds.<br />

Dunes in uniform & varying winds.<br />

Conclusions


Dredging a <strong>Hele</strong>-<strong>Shaw</strong> cell<br />

<strong>Hele</strong>-<strong>Shaw</strong><br />

<strong>Flows</strong><br />

Onno<br />

Bokhove<br />

Introduction<br />

Design<br />

Wave<br />

Breaking<br />

Beach<br />

Morphology<br />

Challenges<br />

Conclusions<br />

Design (March 2013):<br />

Use <strong>Hele</strong>-<strong>Shaw</strong> cell <strong>to</strong> investigate pump failure by particle<br />

overloading in slurries.<br />

Narrow cell (2d, 3d): bridging; wider cells: 3D effects.<br />

Mathematical modelling using water-particle mixture<br />

theory.<br />

z<br />

free surface<br />

pump<br />

g<br />

B 0<br />

particles<br />

0 L<br />

x


6. Conclusions<br />

<strong>Hele</strong>-<strong>Shaw</strong><br />

<strong>Flows</strong><br />

Onno<br />

Bokhove<br />

Introduction<br />

Design<br />

Wave<br />

Breaking<br />

Beach<br />

Morphology<br />

Challenges<br />

Conclusions<br />

Designed <strong>Hele</strong>-<strong>Shaw</strong> beach dynamics based on maths.<br />

It works: breaking waves & dune formation.<br />

It is a great quasi-2D modeling environment.<br />

Test bed for wave-resolving and wave-averaged models <strong>of</strong><br />

wave-beach interactions (GLM/HMM).<br />

Explore multi-phase models using mixture theory.<br />

Aeolean and pumping <strong>Hele</strong>-<strong>Shaw</strong> cells: in progress.


References<br />

<strong>Hele</strong>-<strong>Shaw</strong><br />

<strong>Flows</strong><br />

Onno<br />

Bokhove<br />

Introduction<br />

Design<br />

Wave<br />

Breaking<br />

Beach<br />

Morphology<br />

Challenges<br />

www: presentation, movies & eprints.<br />

B., Van der Horn, Van der Meer, Gagarina, Zweers &<br />

Thorn<strong>to</strong>n 2013: Revisiting <strong>Hele</strong>-<strong>Shaw</strong> dynamics <strong>to</strong> better<br />

understand beach evolution. For GRL.<br />

Thorn<strong>to</strong>n, Van der Horn, Van der Meer, Zweers, B. 2013:<br />

<strong>Hele</strong>-<strong>Shaw</strong> beach creation by breaking waves. Subm. J.<br />

Envir. Fluid Dyn.<br />

Conclusions<br />

Stichting Free Flow Foundation


<strong>Multiphase</strong> GFD Models<br />

<strong>Hele</strong>-<strong>Shaw</strong><br />

<strong>Flows</strong><br />

Onno<br />

Bokhove<br />

Introduction<br />

Design<br />

Wave<br />

Breaking<br />

Beach<br />

Morphology<br />

Challenges<br />

Conclusions<br />

Overview:<br />

Baer-Nunzia<strong>to</strong> model & simplification by Dumbser (2011).<br />

GFD mixture theory models granular debris flows (B. &<br />

Thorn<strong>to</strong>n 2012).<br />

Clash between conservative & compatible wave modelling<br />

and CFD/engineering multiphase modelling.<br />

<strong>Hele</strong>-<strong>Shaw</strong> beach dynamics: closures grain-water, air-water<br />

& air-water-grains in dispersed/continuum models.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!