19.01.2015 Views

EE 448 Fall 2006 Lab Experiment No. 1 Single Phase AC Circuits

EE 448 Fall 2006 Lab Experiment No. 1 Single Phase AC Circuits

EE 448 Fall 2006 Lab Experiment No. 1 Single Phase AC Circuits

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>EE</strong> <strong>448</strong> <strong>Lab</strong>oratory <strong>Experiment</strong> 1<br />

<strong>Single</strong> <strong>Phase</strong> <strong>AC</strong> <strong>Circuits</strong><br />

<strong>EE</strong> <strong>448</strong><br />

<strong>Fall</strong> <strong>2006</strong><br />

<strong>Lab</strong> <strong>Experiment</strong> <strong>No</strong>. 1<br />

10/18/<strong>2006</strong><br />

<strong>Single</strong> <strong>Phase</strong> <strong>AC</strong> <strong>Circuits</strong><br />

1


<strong>EE</strong> <strong>448</strong> <strong>Lab</strong>oratory <strong>Experiment</strong> 1<br />

<strong>Single</strong> <strong>Phase</strong> <strong>AC</strong> <strong>Circuits</strong><br />

I. INTRODUCTION<br />

OBJECTIVES:<br />

• Study the phasor relationship between Voltage and Current in a<br />

single phase <strong>AC</strong> Circuit.<br />

• Study the concept of real power (P), reactive power (Q), apparent<br />

power(S) and power factor (cosΦ).<br />

• Identify a method to improve the line side power factor with the help<br />

of a capacitor bank.<br />

B<strong>AC</strong>KGROUND SUMMARY:<br />

<strong>AC</strong> circuit elements consist of resistors (R), inductors (L) and<br />

capacitors(C) which can be fed from either a 3 phase or 1 phase 60 Hz,<br />

120V source. Resistor and inductor combination connected to a single<br />

phase <strong>AC</strong> source results in a lagging current with respect to voltage. If R &<br />

L are connected in series, the phasor sum of the voltages across L and R<br />

equals the source voltage. In contrast if they are connected in parallel the<br />

phasor sum of the currents drawn by R & L equals the source current.<br />

Power factor of any load (source) is defined as the cosine of the angle<br />

between the load(source) current and corresponding load(source) voltage.<br />

By connecting a capacitor bank in parallel with such a RL circuit can<br />

improve the power factor which in turn reduces the current drawn from<br />

the source for a given power drawn by the resistor.<br />

Power relations in a single phase system<br />

Real power =V rms *I rms cosΦ in watts (where Φ is angle between V and I)<br />

Reactive power = V rms *I rms * sin(Φ) in VARs<br />

Apparent power = V rms *I rms in VA<br />

INSTRUMENTS and COMPONENTS:<br />

Power Supply Module EMS 8821<br />

<strong>AC</strong> Voltmeter Module EMS 8426<br />

<strong>AC</strong> Current Meter ModuleEM.S 8428<br />

Resistance Module EMS 8311<br />

Inductance Module EMS 8321<br />

Capacitance Module EMS 8421<br />

2


<strong>EE</strong> <strong>448</strong> <strong>Lab</strong>oratory <strong>Experiment</strong> 1<br />

<strong>Single</strong> <strong>Phase</strong> <strong>AC</strong> <strong>Circuits</strong><br />

II.<br />

Pre-<strong>Lab</strong> Test Questions and Calculations<br />

1. The machines we will be working with in this lab have these<br />

resistances: R 1 = 300Ω, R 2 = 600Ω and R 3 = 1200Ω. Identify the<br />

parallel combinations of two of the resistors at a time to get equivalent<br />

resistances of 200Ω, 240Ω and 400Ω. This will make using the lab<br />

equipment easier.<br />

2. If R 1 = 300Ω is connected in series with an inductive reactance of X 1 =<br />

j300Ω, what will be the impedance angle of this series combination<br />

3. In Fig. 2, If R 1 and X 1 are connected in parallel across a single phase<br />

source. What capacitance C value should be connected in parallel to<br />

get unity p.f. Assume the frequency of supply is 60Hz.<br />

4. Draw the phasor diagrams for the voltages in figure 1. Take voltage<br />

across the resistor (V r ) as the reference vector.<br />

120Vrms<br />

60Hz<br />

V1<br />

300<br />

1<br />

j300<br />

2<br />

Figure 1<br />

5. For the circuit in Fig.2, draw the phasor diagram for the three currents<br />

I s , I r and I 1 and prove that I s = √2(I r ).<br />

120Vrms<br />

60Hz<br />

V1<br />

Is<br />

Ir<br />

300<br />

1<br />

Il<br />

j300<br />

2<br />

Figure 2<br />

3


6. For the circuit in Fig. 3 find<br />

<strong>EE</strong> <strong>448</strong> <strong>Lab</strong>oratory <strong>Experiment</strong> 1<br />

<strong>Single</strong> <strong>Phase</strong> <strong>AC</strong> <strong>Circuits</strong><br />

a) All the currents<br />

b) Real power supplied by the source<br />

c) Reactive power supplied by the source<br />

d) Apparent power supplied by the source<br />

e) Power dissipated in the resistor<br />

f) Real and reactive power in the inductor<br />

g) Real and reactive power in the capacitor<br />

h) Power factor as seen by the source<br />

Assume the source voltage as reference ׃ 120∟o°<br />

Is<br />

2<br />

Il<br />

Ir<br />

Ic<br />

120Vrms<br />

60 Hz<br />

V1<br />

j300<br />

300<br />

-j200<br />

1<br />

Figure 3<br />

III.<br />

PROCEDURE<br />

NOTE:<br />

Whenever an ammeter is used to measure current in a circuit, one should<br />

try to get the most accurate reading. To get a more accurate measurement<br />

the DMM(Digital Multi-Meter) should be used. However the DMM is only<br />

rated for 3 AMPS MAX! The <strong>Lab</strong>-Volt ammeters are rated for 8 amps. In<br />

most of our circuits the current is below 3 amps, but be sure to check your<br />

calculations of the circuit to determine whether to use the DMM or <strong>Lab</strong>-<br />

Volt ammeter for your measurements.<br />

1. Connect the circuit as shown in Figure 4. The transformer is necessary<br />

to isolate the scope ground from the line voltage.<br />

4


<strong>EE</strong> <strong>448</strong> <strong>Lab</strong>oratory <strong>Experiment</strong> 1<br />

<strong>Single</strong> <strong>Phase</strong> <strong>AC</strong> <strong>Circuits</strong><br />

2. Observe the voltage waveforms of V s and V r on the oscilloscope and<br />

identify the phase difference between these two voltages.<br />

3. Disconnect only the inductor and measure the phase difference between<br />

V s and V r .<br />

4. <strong>No</strong>w reconnect the inductor, remove the resistor and measure the phase<br />

difference between V s and V 1 . Does the data from the previous steps<br />

match your calculations for step 4 of part II<br />

5. Connect the circuit as shown in Figure 5.<br />

6. Measure the currents A s , A r and A 1 .<br />

a. Does the data from steps e and f match your calculations from<br />

step 5 of part II<br />

7. Calculate the power delivered to the circuit.<br />

8. Calculate the p.f. of the load.<br />

9. Make the circuit connections as shown in Figure 6. Connect R, L & C in<br />

parallel according to the table given below. First three readings are for<br />

R&L combinations. Last two readings are for R, L & C combinations.<br />

NOTE:<br />

The toggle switches on the inductance, resistance, and capacitive boxes<br />

work as follows. A toggle switch in the down position means that item is<br />

not in the circuit between the two banana plugs. When switched to the<br />

up position, the item is part of the circuit. When two or more toggle<br />

switches are up, those two or more items will be in the circuit connected<br />

in parallel. Depending on whether it’s a resistor, inductor, or capacitor<br />

box will determine the value of the parallel connection.<br />

10. Record your measurements in the table below.<br />

Use V = 120V<br />

I S P R Xi Xc p.f. Q=sin φ<br />

300 j300 -<br />

600 j300 -<br />

1200 j300 -<br />

600 j300 -j300<br />

600 j600 -j300<br />

5


-<br />

<strong>EE</strong> <strong>448</strong> <strong>Lab</strong>oratory <strong>Experiment</strong> 1<br />

<strong>Single</strong> <strong>Phase</strong> <strong>AC</strong> <strong>Circuits</strong><br />

-<br />

11. From looking at the table, which set of values will produce a unity power<br />

factor<br />

12. Study your data and determine the capacitance value that gave you the<br />

best power factor (closest to unity). Does this value match what you<br />

predicted in step 3 of part II Why or why not<br />

13. Again study your data and determine why it might be an important goal<br />

to achieve a power factor that is as close to unity as possible.<br />

14. Present the lab results using a spreadsheet computer program and attach<br />

it with your lab report.<br />

1 2<br />

1 2<br />

3<br />

5<br />

3<br />

5<br />

Transformer<br />

8341<br />

4<br />

6<br />

4<br />

6<br />

+<br />

1<br />

+<br />

1<br />

1<br />

+<br />

1<br />

+<br />

Digital<br />

Ammeter<br />

120 V<br />

<strong>AC</strong> Source<br />

8821<br />

2<br />

3<br />

N<br />

2<br />

3<br />

4<br />

Voltmeter<br />

-<br />

2<br />

-<br />

Vr<br />

R1<br />

+<br />

-<br />

Vl<br />

L1<br />

1 2<br />

+<br />

-<br />

2<br />

300<br />

j300<br />

1 2<br />

A<br />

B<br />

Oscilloscope<br />

3 4<br />

Gnd 1 Gnd 2<br />

Resistor Module – 8311<br />

Inductor Module – 8321<br />

Transformer – 8341<br />

<strong>AC</strong> Source – 8821<br />

Figure 4<br />

6


<strong>EE</strong> <strong>448</strong> <strong>Lab</strong>oratory <strong>Experiment</strong> 1<br />

<strong>Single</strong> <strong>Phase</strong> <strong>AC</strong> <strong>Circuits</strong><br />

+<br />

Ammeter<br />

1 2<br />

+ -<br />

-<br />

-<br />

R1<br />

300<br />

-<br />

1<br />

2<br />

L1<br />

j300<br />

-<br />

-<br />

+<br />

As<br />

1<br />

1<br />

+<br />

1<br />

120 V<br />

<strong>AC</strong> Source<br />

8821<br />

2<br />

3<br />

2<br />

3<br />

Voltmeter<br />

1<br />

+<br />

+<br />

1<br />

+<br />

+<br />

N<br />

4<br />

2<br />

-<br />

Ammeter<br />

Ar<br />

Digital<br />

Ammeter<br />

Al<br />

2<br />

-<br />

2<br />

-<br />

Resistor Module – 8311<br />

Inductor Module – 8321<br />

<strong>AC</strong> Source – 8821 (Power Supply)<br />

Figure 5<br />

+<br />

Digital<br />

Ammeter<br />

1 2<br />

+ -<br />

-<br />

1<br />

1<br />

Wattmeter<br />

3<br />

3<br />

2<br />

2<br />

4<br />

4<br />

1<br />

+<br />

+<br />

1<br />

1<br />

120 V<br />

<strong>AC</strong> Source<br />

8821<br />

2<br />

3<br />

N<br />

2<br />

3<br />

4<br />

Voltmeter<br />

R1<br />

300<br />

2<br />

L1<br />

j300<br />

C1<br />

-j300<br />

2<br />

-<br />

1<br />

Resistor Module – 8311<br />

Inductor Module – 8321<br />

Capacitor Module – 8331<br />

<strong>AC</strong> Source – 8821<br />

Figure 6<br />

7

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!