19.01.2015 Views

James Beletic's presentation

James Beletic's presentation

James Beletic's presentation

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

High Performance Imaging Sensors<br />

for Astronomy & Civil Space<br />

18 March 2010<br />

<strong>James</strong> W. Beletic


Teledyne – NASA’s s and ESA’s s Partner in Astronomy<br />

HST WISE JWST<br />

J-MAPS<br />

NICMOS, WFC3, ACS Repair<br />

Bands 1 & 2<br />

NIRCam, NIRSpec, FGS<br />

1 st CMOS for astronomy<br />

Rosetta<br />

Mars<br />

Reconnaissance<br />

Orbiter<br />

Deep Impact<br />

& EPOXI<br />

New Horizons<br />

Lander (çiva) CRISM (Vis & IR) IR spectrograph IR spectrograph<br />

JDEM<br />

Joint Dark Energy Mission<br />

NASA and U.S. DOE<br />

(Department of Energy)


Hubble Space Telescope


Hubble Space Telescope<br />

Wide Field Camera 3<br />

H1-R<br />

Quantum Efficiency = 85-90%<br />

Dark current (145K) = 0.02 e-/pix/sec<br />

Readout noise = 25 e- (single CDS)<br />

GSFC DCL Measurement<br />

• 1024×1024 pixels, 18.5 micron pitch<br />

• Substrate-removed 1.7 μm HgCdTe arrays<br />

• Nearly 30x increase in HST discovery efficiency


<strong>James</strong> Webb Space Telescope (JWST)


JWST - <strong>James</strong> Webb Space Telescope<br />

15 Teledyne 2K×2K infrared arrays on board (~63 million pixels)<br />

6.5m mirror<br />

Earth<br />

sunshield<br />

FGS<br />

(Fine Guidance Sensors)<br />

• International collaboration<br />

• 6.5 meter primary mirror and<br />

tennis court size sunshield<br />

• 2015 launch on Ariane 5 rocket<br />

• L2 orbit (1 million miles from Earth)<br />

JWST will find the “first light”<br />

objects after the Big Bang, and<br />

will study how galaxies, stars<br />

and planetary systems form<br />

NIRSpec<br />

(Near Infrared Spectrograph)<br />

SIDECAR ASIC<br />

Focal Plane Electronics<br />

15 ASICs will operate in JWST<br />

One ASIC per H2RG array<br />

NIRCam<br />

(Near Infrared Camera)<br />

3 individual MWIR 2Kx2K<br />

• Acquisition and guiding<br />

• Images guide stars for telescope<br />

stabilization<br />

• Canadian Space Agency<br />

1x2 mosaic of MWIR 2Kx2K<br />

• Spectrograph<br />

• Measures chemical composition,<br />

temperature and velocity<br />

• European Space Agency / NASA<br />

All Sensors Delivered<br />

ASIC deliveries to be completed in June 2010<br />

Two 2x2 mosaics<br />

of SWIR 2Kx2K<br />

Two individual<br />

MWIR 2Kx2K<br />

• Wide field imager<br />

• Studies morphology of objects<br />

and structure of the universe<br />

• U. Arizona / Lockheed Martin<br />

6


NASA’s s Partner for Earth Science<br />

LDCM<br />

TIRS<br />

NPOESS<br />

CrIS<br />

CHANDRAYAAN-1<br />

GOES-R<br />

ABI<br />

(LWIR)<br />

(SWIR)<br />

GLORY<br />

Moon Mineralogy Mapper<br />

(Vis-IR)<br />

EO-1<br />

AURA<br />

Tropospheric Emission Spectrometer<br />

IR FT Spectrometer<br />

OCO-R<br />

Orbiting Carbon<br />

Observatory<br />

(Vis & IR)<br />

Visible to 16.5 microns<br />

LEISA<br />

Atmospheric<br />

Corrector<br />

(IR arrays)<br />

Working on development for several future missions<br />

HyspIRI (Vis-SWIR and Thermal IR), ACE, OCO Re-flight, AVIRISng, PRISM, Himawari


Moon Mineralogy Mapper<br />

Discovers Water on the Moon<br />

Focal Plane Assembly<br />

Sensor Chip Assembly<br />

Instrument at JPL before<br />

shipment to India<br />

Completion of Chandrayaan-1 spacecraft integration<br />

Moon Mineralogy Mapper is white square at end of arrow<br />

Chandrayaan-1 in the<br />

Polar Satellite Launch Vehicle<br />

Launch from Satish<br />

Dhawan Space Centre<br />

Moon Mineralogy Mapper resolves visible and infrared<br />

to 10 nm spectral resolution, 70 m spatial resolution<br />

100 km altitude lunar orbit


Orbiting Carbon Observatory (OCO)<br />

Teledyne Focal Plane Arrays<br />

• Three flight FPAs:<br />

• O 2 A band at 0.758-0.772 µm<br />

• weak CO 2 band at 1.594 -1.619 µm<br />

• strong CO 2 band at 2.042-2.082 µm<br />

• Hawaii-1RG readout is used for both HyViSI and SWIR<br />

FPAs with same mechanical and nearly same electrical<br />

interface for all three OCO spectrometers.<br />

• Re-Flight may use substrate-removed HgCdTe for all<br />

three bands<br />

9


Leading Supplier of Infrared Arrays To Ground-based Astronomy<br />

• Shipped over 45 science grade 2048×2048 pixel infrared arrays for<br />

facility class instruments to the major ground based observatories<br />

• Eight 2 x2 mosaics of H2 / H2RGs at ground based telescopes<br />

Magellan Telescopes, OCIW - Chile<br />

Calar Alto Observatory – Spain<br />

ESO VLT 8.2-m telescope<br />

ESO Very Large Telescope (VLT) Facility - Chile<br />

10


The Technologies of High Performance Imagers<br />

11


An electron-volt<br />

(eV)<br />

is extremely small<br />

15 H2RG<br />

2K×2K arrays<br />

63 million pixels<br />

1 eV = 1.6 • 10 -19 J (J = joule)<br />

1 J = N • m = kg • m • sec -2 •m<br />

1 kg raised 1 meter = 9.8 J = 6.1 • 10 19 eV<br />

• The energy of a photon is VERY small<br />

– Energy of SWIR (2.5 μm) photon is 0.5 eV<br />

• In 5 years, JWST will take ~1 million images<br />

– 1000 sec exp., 15 H2RGs, 90% duty cycle<br />

– Photons / H2RG image ≈ 3.6 × 10 10 photons<br />

• 5% pixels at at 85% full well<br />

• 10% " at at 40% full well<br />

• 10% " at at 10% full well<br />

• 75% " at at 1% full well<br />

Full well<br />

85,000 e-<br />

– Total # SWIR photons detected ≈ 3.6 × 10 16<br />

– Total energy detected ≈ 1.8 × 10 16 eV<br />

• Drop peanut M&M ® candy (~2g) from<br />

height of 15 cm (~6 inches)<br />

– Potential energy ≈ 1.8 x 10 16 eV<br />

15 cm peanut M&M ® drop is<br />

equal to the energy detected<br />

during 5 year operation of the<br />

<strong>James</strong> Webb Space Telescope!


Hybrid CMOS Infrared Imaging Sensors<br />

Three Key Technologies<br />

1. Growth and processing of the<br />

HgCdTe detector layer<br />

2. Design and fabrication of the<br />

CMOS readout integrated circuit<br />

(ROIC)<br />

3. Hybridization of the detector layer<br />

to the CMOS ROIC<br />

15


6 Steps of CMOS-based Optical / IR Photon Detection<br />

Anti-reflection coating<br />

Substrate removal<br />

Detector Materials<br />

HgCdTe, Si<br />

1. Light into detector<br />

2. Charge Generation<br />

Quantum<br />

Efficiency<br />

Electric Fields in detector<br />

collect electrical charge<br />

p-n junction<br />

Source follower<br />

3. Charge Collection<br />

4. Charge-to-Voltage<br />

Conversion<br />

Point<br />

Spread<br />

Function<br />

Sensitvity<br />

HYBRID SENSOR<br />

CHIP ASSEMBLY (SCA)<br />

Random access<br />

or full frame read<br />

5. Signal Transfer<br />

SIDECAR<br />

ASIC<br />

6. Digitization<br />

16


Crystals are excellent detectors of light<br />

• Simple model of atom<br />

– Protons (+) and neutrons in the nucleus<br />

with electrons orbiting<br />

Silicon crystal lattice<br />

• Electrons are trapped in the crystal lattice<br />

– by electric field of protons<br />

• Light energy can free an electron from the<br />

grip of the protons, allowing the electron to<br />

roam about the crystal<br />

– creates an “electron-hole” pair.<br />

• The photocharge can be collected and<br />

amplified, so that light is detected<br />

• The light energy required to free an electron<br />

depends on the material.


II III IV V VI<br />

Detector Families<br />

Si - IV semiconductor<br />

HgCdTe - II-VI semiconductor<br />

InGaAs & InSb - III-V semiconductors


Tunable Wavelength: Unique property of HgCdTe<br />

Hg 1-x Cd x Te Modify ratio of Mercury and Cadmium to “tune” the bandgap energy<br />

2<br />

( 1−<br />

x)<br />

E g = −0.302<br />

+ 1.93x<br />

− 0.81x<br />

+ 0.832 x + 5.35 × 10 T 2<br />

G. L. Hansen, J. L. Schmidt, T. N. Casselman, J. Appl. Phys. 53(10), 1982, p. 7099<br />

3<br />

−4<br />

20


Absorption Depth of Photons in HgCdTe<br />

Rule of Thumb<br />

Thickness of HgCdTe layer<br />

needs to be about equal<br />

to the cutoff wavelength<br />

Absorption Depth<br />

Thickness of detector material that absorbs 63.2% of the radiation<br />

1/e of the energy is absorbed<br />

1 absorption depth(s) 63.2% of light absorbed<br />

2 86.5%<br />

3 95.0%<br />

4 98.2%<br />

For high QE, thickness of detector material should be ≥ 3 absorption depths<br />

21


Molecular Beam Epitaxy (MBE) Growth of HgCdTe<br />

RIBER 3-in MBE Systems<br />

3 inch diameter platen<br />

allows growth on one<br />

6x6 cm substrate<br />

RIBER 10-in MBE 49 System<br />

10 inch diameter<br />

platen allows<br />

simultaneous growth<br />

on four 6x6 cm<br />

substrates<br />

More than 7500 HgCdTe<br />

wafers grown to date<br />

22


HgCdTe Cutoff Wavelength<br />

Atmospheric Transmission<br />

Wavelength (microns)<br />

“Standard” Ground-based astronomy<br />

cutoff wavelengths<br />

Near infrared (NIR)<br />

1.75 µm J,H<br />

Short-wave infrared (SWIR) 2.5 µm J,H,K<br />

Mid-wave infrared (MWIR) 5.3 µm J,H,K,L,M<br />

23


6 Steps of CMOS-based Optical / IR Photon Detection<br />

Anti-reflection coating<br />

Substrate removal<br />

Detector Materials<br />

HgCdTe, Si<br />

1. Light into detector<br />

2. Charge Generation<br />

Quantum<br />

Efficiency<br />

HYBRID SENSOR<br />

CHIP ASSEMBLY (SCA)<br />

Electric Fields in detector<br />

collect electrical charge<br />

p-n junction<br />

Source follower<br />

3. Charge Collection<br />

4. Charge-to-Voltage<br />

Conversion<br />

Point<br />

Spread<br />

Function<br />

Sensitvity<br />

Random access<br />

or full frame read<br />

5. Signal Transfer<br />

SIDECAR ASIC<br />

SIDECAR ASIC<br />

6. Digitization<br />

24


HgCdTe hybrid FPA cross-section (substrate removed)<br />

Incident<br />

Photons<br />

Bulk n-type HgCdTe<br />

Anti-reflection<br />

coating<br />

implanted p-type HgCdTe<br />

(collect holes)<br />

indium bump<br />

silicon multiplexer<br />

epoxy<br />

MOSFET input<br />

Output<br />

Signal<br />

25


Hybrid Imager Architecture<br />

HgCdTe light<br />

detecting material<br />

ROIC<br />

junction<br />

Indium<br />

bump<br />

V dd<br />

amp drain voltage<br />

Reset<br />

junction<br />

Indium<br />

bump<br />

junction<br />

Indium<br />

bump<br />

V reset<br />

reset voltage<br />

Column<br />

bus<br />

enable<br />

Bus to read out amplifier signal<br />

MOSFET = metal oxide semiconductor field effect transistor<br />

H4RG-10<br />

4096x4096 pixels<br />

10 micron pixel pitch<br />

HyViSI silicon PIN<br />

Mature interconnect technique:<br />

• Over 16,000,000 indium<br />

bumps per Sensor Chip<br />

Assembly (SCA)<br />

demonstrated<br />

• >99.9% interconnect yield<br />

Example of indium bumps<br />

Human Hair


Cosmic Rays and Substrate Removal<br />

• Cosmic ray events produce clouds of detected signal due to particle-induced flashes<br />

of infrared light in the CdZnTe substrate; removal of the substrate eliminates the effect<br />

2.5um cutoff, substrate on 1.7um cutoff, substrate on 1.7um cutoff, substrate off<br />

Substrate Removal Positive Attributes<br />

1. Higher QE in the near infrared<br />

2. Visible light response<br />

3. Eliminates cosmic ray fluorescence<br />

4. Eliminates CTE mismatch with silicon ROIC<br />

Images courtesy of Roger Smith<br />

27


Quantum Efficiency of substrate-removed HgCdTe<br />

Quantum Efficiency of 2.3 micron HgCdTe<br />

28


Example Anti-reflection coatings for HgCdTe<br />

100%<br />

Transmission into the HgCdTe Layer (%)<br />

Transmission (%)<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

Single Layer (WFC3)<br />

Double Layer<br />

Three Layer (NIRCAM SWIR)<br />

0%<br />

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600<br />

Wavelength (nm)<br />

29


Dark Current<br />

Undesirable byproduct of light detecting materials<br />

Colder Temp<br />

Fraction of lattice<br />

Warmer<br />

Temp<br />

E g<br />

These vibrations have<br />

enough energy to pop<br />

electron out of the valence<br />

band of the crystal lattice<br />

Energy of vibration<br />

• The vibration of particles (includes crystal lattice phonons, electrons and holes) has<br />

energies described by the Maxwell-Boltzmann distribution. Above absolute zero, some<br />

vibration energies may be larger than the bandgap energy, and will cause electron<br />

transitions from valence to conduction band.<br />

• Need to cool detectors to limit the flow of electrons due to temperature, i.e. the dark<br />

current that exists in the absence of light.<br />

• The smaller the bandgap, the colder the required temperature to limit dark current<br />

below other noise sources (e.g. readout noise)


Dark Current of MBE HgCdTe<br />

Dark<br />

Current<br />

10 8<br />

10 7<br />

10 6<br />

10 5<br />

10 4<br />

Typical InSb<br />

Dark Current<br />

~9<br />

~5 ~2.5<br />

Electrons<br />

per pixel<br />

per sec<br />

10 3<br />

10 2<br />

10<br />

18 micron<br />

square<br />

1<br />

pixel 10 -1<br />

~1.7<br />

10 -2<br />

10 -3<br />

10 -4 30 50 70 90 110 130 150 170 190 210 230<br />

Temperature (K)<br />

HgCdTe cutoff wavelength (microns)<br />

31


6 Steps of CMOS-based Optical / IR Photon Detection<br />

Anti-reflection coating<br />

Substrate removal<br />

Detector Materials<br />

HgCdTe, Si<br />

1. Light into detector<br />

2. Charge Generation<br />

Quantum<br />

Efficiency<br />

HYBRID SENSOR<br />

CHIP ASSEMBLY (SCA)<br />

Electric Fields in detector<br />

collect electrical charge<br />

p-n junction<br />

Source follower<br />

3. Charge Collection<br />

4. Charge-to-Voltage<br />

Conversion<br />

Point<br />

Spread<br />

Function<br />

Sensitvity<br />

Random access<br />

or full frame read<br />

5. Signal Transfer<br />

SIDECAR ASIC<br />

SIDECAR ASIC<br />

6. Digitization<br />

32


MOSFET Principles<br />

MOSFET = metal oxide semiconductor field effect transistor<br />

Turn on the MOSFET and<br />

current flows from source to<br />

drain<br />

Top view<br />

Source<br />

Gate<br />

Drain<br />

Add charge to gate & the<br />

current flow changes since the<br />

effect of the field of the charge<br />

will reduce the current<br />

Side view<br />

Source<br />

Gate<br />

current<br />

Drain<br />

Metal<br />

Oxide<br />

Semiconductor<br />

Fluctuations in current flow produce “readout noise”<br />

Fluctuations in reset level on gate produces “reset noise”


IR multiplexer pixel architecture<br />

V dd<br />

amp drain voltage<br />

Photovoltaic<br />

Detector<br />

Detector<br />

Substrate<br />

Output


IR multiplexer pixel architecture<br />

Reset<br />

V reset<br />

reset voltage<br />

V dd<br />

amp drain voltage<br />

“Clock” (green)<br />

“Bias voltage” (purple)<br />

Photovoltaic<br />

Detector<br />

Detector<br />

Substrate<br />

Output


IR multiplexer pixel architecture<br />

V dd<br />

amp drain voltage<br />

V reset<br />

reset voltage<br />

Enable<br />

“Clock” (green)<br />

Reset<br />

“Bias voltage” (purple)<br />

Photovoltaic<br />

Detector<br />

Detector<br />

Substrate<br />

Output


General Architecture of CMOS-Based Image Sensors<br />

Control<br />

&<br />

Timing<br />

Logic<br />

(optional)<br />

Vertical Scanner<br />

for Row Selection<br />

Pixel Array<br />

Bias<br />

Generation<br />

& DACs<br />

(optional)<br />

A/D conversion<br />

(optional)<br />

Digital<br />

Output<br />

Horizontal Scanner<br />

/ Column Buffers<br />

Analog<br />

Amplification<br />

Analog<br />

Output


Reduction of noise from multiple samples<br />

Non-destructive readout enables reduction of noise from multiple samples<br />

H2RG array<br />

2.5 micron cutoff<br />

Temperature = 77K<br />

Measured<br />

Simple Theory (no 1/f noise)<br />

CDS = correlated double sample<br />

38


Pixel Amplifier Options<br />

39


High Performance Hybrid CMOS Arrays<br />

High Quality MBE HgCdTe + High Performance CMOS Design + Large Area Hybridization<br />

High Quality<br />

Detectors<br />

High Quantum Efficiency<br />

High Performance Amplifiers<br />

Low Dark Current<br />

Imaging System on Chip Architecture<br />

High Performance Readout Circuits


HyViSI TM – Hybrid Visible Silicon Imager<br />

Focal plane array performance independently verified by:<br />

• Rochester Institute of Technology<br />

• European Southern Observatory<br />

• US Naval Observatory & Goddard Space Flight Center<br />

Readout noise, at 100 kHz pixel rate<br />

• 7 e- single CDS, with reduction by multiple sampling<br />

Pixel operability > 99.99%<br />

41


HyViSI Array Formats<br />

Ground-based Astronomy (Rochester Institute of Technology)<br />

Mars Reconnaissance<br />

Orbiter (MRO)<br />

Crab Nebula (M1)<br />

NGC2683 Spiral Galaxy<br />

Hercules Cluster (M13)<br />

TCM 6604A<br />

640×480 pixels<br />

27 µm pitch<br />

CTIA<br />

1K×1K H1RG-18<br />

2K×2K H2RG-18<br />

4K×4K H4RG-10<br />

J-MAPS<br />

Astrometry<br />

Mission<br />

4K×4K<br />

H4RG-10<br />

Mosaic of 4 arrays<br />

TEC Package by Judson<br />

42


HAWAII-2RG 2048×2048 pixels<br />

HAWAII-2RG (H2RG)<br />

• 2048×2048 pixels, 18 micron pitch<br />

• 1, 2, 4, 32 ports<br />

• “R” = reference pixels (4 rows/cols at edge)<br />

• “G” = guide window<br />

• Low power:


The SIDECAR ASIC – Focal Plane Electronics on a Chip<br />

Replace this<br />

with this!<br />

1% volume<br />

1% power<br />

1% hassle<br />

SIDECAR: System for Image Digitization, Enhancement, Control And Retrieval<br />

44


SIDECAR ASIC – Focal Plane Electronics on a Chip<br />

SIDECAR ASIC<br />

Ground-based package<br />

Hubble Space Telescope<br />

SIDECAR ASIC package<br />

(for ACS Repair*)<br />

SIDECAR ASIC<br />

• 36 analog input channels<br />

• 36 16-bit ADCs: up to 500 kHz<br />

• 36 12-bit ADCs: up to 10 MHz<br />

• 20 output bias channels<br />

• 32 digital I/O channels<br />

• Microcontroller (low power)<br />

• LVDS or CMOS interface<br />

• Low power:<br />


Hubble Space Telescope<br />

Advanced Camera for Surveys Repair<br />

• SIDECAR ASIC used to operate the CCD<br />

sensors<br />

• New package developed<br />

46


Spaceflight packaging: JWST Fine Guidance Sensor<br />

• Package for H2RG 2048x2048<br />

pixel array<br />

• TRL-6 spaceflight qualified<br />

• Interfaces directly to the<br />

SIDECAR ASIC<br />

• Robust, versatile package<br />

• Thermally isolated FPA<br />

can be stabilized to 1 mK<br />

when cold finger<br />

fluctuates several deg K<br />

47


SIDECAR ASIC & large mosaic focal plane arrays<br />

2×2 5×7<br />

H2RG 2K×2K<br />

Mechanical Prototype<br />

4×4<br />

H2RG<br />

4x4 Mosaic<br />

for Space Mission<br />

48


Teledyne – Your Imaging Partner for Astronomy & Civil Space<br />

State-of-the-art & high TRL<br />

• CMOS Design<br />

• Detector Materials<br />

• Packaging<br />

• Electronics<br />

• Systems Engineering<br />

Chart 49<br />

Packaging<br />

Electronics<br />

Soft x-ray UV Vis Infrared<br />

0.4 0.7 0.9 16<br />

10 -4 10 -2<br />

HgCdTe<br />

μm<br />

Substrate-removed<br />

Silicon 1.1<br />

CMOS Design Expertise<br />

• Pixel amplifiers – lowest noise to highest flux<br />

• High level of pixel functionality (LADAR, event driven)<br />

• Large 2-D arrays, pushbroom, redundant pixel design<br />

• Hybrids made with HgCdTe, Si, or InGaAs<br />

• Monolithic CMOS<br />

• Analog-to-digital converters<br />

• Imaging system on a chip<br />

• Specialized ASICs<br />

• Radiation hard<br />

• Very low power


Teledyne<br />

Enabling humankind to understand the Universe and our place in it

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!