19.01.2015 Views

A Stringy Mechanism for A Small Cosmological Constant

A Stringy Mechanism for A Small Cosmological Constant

A Stringy Mechanism for A Small Cosmological Constant

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

7/30/2012<br />

A <strong>Stringy</strong> <strong>Mechanism</strong><br />

<strong>for</strong> A <strong>Small</strong><br />

<strong>Cosmological</strong> <strong>Constant</strong><br />

• X. Chen, Shiu, Sumitomo, Tye,<br />

arxiv:1112.3338, JHEP 1204 (2012) 026<br />

• Sumitomo, Tye,<br />

arXiv:1204.5177<br />

• Sumitomo, Tye, in preparation<br />

1<br />

Yoske Sumitomo<br />

IAS, The Hong Kong University of<br />

Science and Technology


2<br />

7/30/2012<br />

Contents<br />

Motivation<br />

Moduli stabilization ~random approach~<br />

Moduli stabilization ~concrete models~<br />

Statistical approach<br />

More on product distribution<br />

Multi-moduli analyses<br />

Summary & Discussion


3<br />

7/30/2012<br />

Motivation


4<br />

Dark Energy<br />

Late time expansion<br />

Awarded Nobel Prize in 2011!<br />

What can be a source <strong>for</strong> this


5<br />

Acceleration<br />

The universe is accelerating if<br />

or pressure-density ratio:<br />

<strong>Cosmological</strong> scale<br />

EOM (Friedmann eq.)<br />

<strong>for</strong> flat background<br />

Observationally<br />

DE domination


Two possibilities<br />

6<br />

• For cosmological constant<br />

WMAP+BAO+SN suggests<br />

<strong>for</strong> a flat universe<br />

<strong>Cosmological</strong> constant<br />

• For time-varying DE<br />

WMAP+BAO+H0+DΔt+SN suggests<br />

Time varying DE<br />

e.g. <strong>Stringy</strong> Quintessence models<br />

[Kiwoon, 99], [Svrcek, 06], [Kaloper, Sorbo, 08],<br />

[Panda, YS, Trivedi, 10], [Cicoli, Pedro, Tasinato, 12]…


7<br />

7/30/2012<br />

dS<br />

Landscape<br />

dS<br />

Metastable vacua<br />

in moduli space<br />

• Inflation<br />

AdS<br />

rolling down<br />

(& tunneling)<br />

• dS vacua<br />

tunneling<br />

Low energy<br />

• AdS vacua<br />

We may stay here <strong>for</strong> a while.<br />

But how likely with tiny CC


8<br />

7/30/2012<br />

<strong>Stringy</strong> Landscape<br />

There are many types of vacua in string theory, as a result of<br />

a variety of (Calabi-Yau) compactification.<br />

ds 2 10 = ds 2 2<br />

4 + ds 6<br />

A class of Calabi-Yau gives Swiss-cheese type of volume.<br />

V 6 = γ 1 T 1 + T 1 − γ i T i + T i<br />

E.g. workable models:<br />

i=2<br />

,<br />

[Denef, Douglas, Florea, 04]<br />

4<br />

• P 1,1,1,6,9<br />

: h 1,1 = 2, h 2,1 = 272<br />

• F 11 : h 1,1 = 3, h 2,1 = 111<br />

• F 18 : h 1,1 = 5, h 2,1 = 89<br />

All can be stabilized<br />

(a la KKLT),<br />

but in various way.<br />

Any implication of multiple vacua


9<br />

7/30/2012<br />

Keys in this talk<br />

Product distribution<br />

Assuming products of random variables:<br />

z = y 1 y 2 y 3 ⋯<br />

Many terms<br />

Correlation<br />

through stabilization<br />

z = y 1 y 2 y 3 ⋯ f(y 1 , y 2 , y 3 , ⋯ )<br />

still peaked<br />

We apply this mechanism <strong>for</strong> cosmological constant (CC)


10<br />

7/30/2012<br />

Be<strong>for</strong>e proceeding…<br />

I have to say<br />

we don’t solve cosmological constant problem<br />

completely.<br />

But here,<br />

we introduce a tool to make cosmological<br />

constant smaller, maybe up to a certain value.<br />

“A <strong>Stringy</strong> <strong>Mechanism</strong> <strong>for</strong> A <strong>Small</strong> <strong>Cosmological</strong> <strong>Constant</strong>”


11<br />

7/30/2012<br />

Moduli stabilization<br />

~random approach~


12<br />

7/30/2012<br />

Gaussian suppression on stability<br />

Various vacua in string landscape<br />

Mass matrix given randomly at extrema<br />

How likely stable minima exist<br />

Positivity of mass matrix<br />

Positivity of Hessian<br />

∂ φi ∂ φj V<br />

min<br />

Real/complex symmetric matrix<br />

• Gaussian Orthogonal Emsemble<br />

[Aazami, Easther, 05], [Dean, Majumdar, 08], [Borot, Eynard, Majumdar, Nadal, 10]<br />

Z =<br />

dM ij e −1 2 tr M2 , M = M T<br />

Gaussian term dominates even at lower N.<br />

ln 3<br />

4<br />

∼ 0.275,<br />

ln 2 3−3<br />

2<br />

∼ −0.384


13<br />

7/30/2012<br />

Hierarchical setup<br />

• Assuming hierarchy between diag. and off-diag. comp.<br />

Actual models are likely to have minima at AdS.<br />

+ uplifting term toward dS vacua.<br />

Hessian = A + B where A: diagonal positive definite with σ A<br />

B: GOE with σ B<br />

Still Gaussianly suppressed, but a chance <strong>for</strong> dS<br />

P = a e −bN2 −cN<br />

[X. Chen, Shiu, YS, Tye, 11]<br />

When applying a model in type IIA,<br />

quite tiny chance remains.<br />

Larger<br />

hierarchy<br />

• Assuming more randomness in SUGRA at SUSY AdS<br />

P = e −bN2<br />

[Bachlechner, Marsh, McAllister, Wrase, 12]


14<br />

7/30/2012<br />

Moduli stabilization<br />

~concrete models~


15<br />

7/30/2012<br />

Type IIB<br />

Sources: H 3 , F 1 , F 3 , F 5 , dilaton, localized sources<br />

Metric: ds 2 10 = e 2A ds 2 4 + e −2A ds 6 2<br />

Calabi-Yau<br />

Then EOM becomes<br />

[Giddings, Kachru, Polchinski, 02]<br />

∇ 2 e 4A − α = e2A<br />

6 Im τ iG 3 −∗ 6 G 3 2 + e −6A ∂ e 4A − α 2 + (local sources)<br />

LHS=0 when integrating out<br />

positive contributions<br />

e 4A = α, iG 3 =∗ 6 G 3 : imaginary self-dual condition<br />

where α is a function in F 5 , G 3 = F 3 − τ H 3 , τ = C 0 + i e −φ


16<br />

7/30/2012<br />

No-scale structure<br />

Take a scaling: g mn → λ g mn<br />

e 4A = α, iG 3 =∗ 6 G 3 : invariant<br />

The other equations are also unchanged.<br />

No-scale structure<br />

superpotential W 0 = ∫ G 3 ∧ Ω is independent of Kahler<br />

4D effective potential with K = −3 ln T + T , W 0 = const<br />

V = e K M P 2 K IJ D I W 0 D J W 0 − 3 M P<br />

2 W 2 = 0<br />

Kahler directions remain flat.


17<br />

7/30/2012<br />

A bonus in type IIB<br />

Hierarchical structure of mass matrix/potential helps to<br />

stabilize moduli at positive cosmological constant.<br />

Moduli stabilization with positive cosmological constant<br />

• Fluxes Complex structure & dilaton<br />

[X. Chen, Shiu, YS, Tye, 12]<br />

• Non-perturbative effect, α ′ -correction, localized branes<br />

Kahler<br />

[KKLT, 03], [Balasubramanian, Berglund, Conlon, Quevedo, 05],<br />

[Balasubramanian, Berglund, 04]…<br />

V = V Flux + V NP + V α′ + ⋯<br />

No scale structure<br />

Complex<br />

Kahler<br />

Hierarchy<br />

between Kahler and Complex


18<br />

7/30/2012<br />

KKLT<br />

Non-trivial potential <strong>for</strong> Kahler is generated by NP-corrections.<br />

E.g.<br />

Gluino condensation on D7-branes<br />

D7-branes wrapping the four cycle: W NP = A e −a 8π2 g D7 = A e−a T<br />

Together with the superpotential from fluxes: W = W 0 + W NP<br />

Supersymmetric vacuum<br />

D T W = 0 existes.<br />

But exponentially small W 0 is<br />

required.<br />

|W 0 | ∼ A e −a T , naturally realized<br />

|W 0 | ∼ 10 −4


19<br />

7/30/2012<br />

Large Volume Scenario<br />

[Balasubramanian, Beglund, Conlon, Quevedo, 05]<br />

α ′ -corrections can break no-scale structure too.<br />

O α ′ 3 -correction in type II action [Becker, Becker, Haack, Louis, 02]<br />

K = −2 ln V + ξ 2 −i τ + τ 3 2<br />

− ln(−i τ + τ ) + ⋯<br />

4<br />

E.g. P 1,1,1,6,9<br />

scales differently<br />

model (assuming complex sector is stabilized)<br />

V = 1<br />

9 2 t 3 2 3<br />

1 − t 2 2 , W = W 0 + A 1 e −a 1T 1 + A 2 e −a 2T 2<br />

Solution: W 0 ∼ −20, A 1 ∼ 1, t 1 ∼ 10 6 , t 2 ∼ 3<br />

V min ∼ −10 −25 : AdS vacua<br />

|W 0 | ≫ |W NP |, V ≫ ξ: naturally realized


20<br />

7/30/2012<br />

Kahler uplifting<br />

Same setup as that of LVS<br />

[Balasubramanian, Berglund, 04],<br />

[Westphal, 06], [Rummel, Westphal, 11],<br />

[de Alwis, Givens, 11]<br />

K = −2 ln V + ξ 2 + ⋯ , V = γ 1 T 1 + T 1 − γ i T i + T i<br />

,<br />

i=2<br />

W = W 0 + A 1 e −a 1T 1 +<br />

A i e −a iT i<br />

i=2<br />

Interested in a region<br />

where this term plays a roll.<br />

less large volume than LVS, but still |W 0 | ≫ |W NP |, V ≫ ξ<br />

E.g. single modulus<br />

[Rummel, Westphal, 11]<br />

V ∼ − W 0a 1 3 A 1<br />

2 γ 1<br />

2<br />

2C<br />

9x 1<br />

9 2 − e−x 1<br />

x 1<br />

2<br />

, C = −27 W 0 ξ a 1<br />

3 2<br />

64 2γ 1 A 1<br />

, x 1 = a 1 t 1<br />

When W 0 A 1 < 0, the C ∝ ξ term contributes the uplifting.


21<br />

7/30/2012<br />

KKLT vs Kahler uplifting<br />

• KKLT<br />

Add an uplifting potential by hand<br />

V = V SUGRA + V D3−D3<br />

V D3−D3 = 2T 3 d 4 x −g 4<br />

Backreaction of D3<br />

Safe or not<br />

• Kahler uplifting<br />

V = V SUGRA<br />

A singularity exists, but finite action<br />

[DeWolfe, Kachru, Mulligan, 08], [McGuirk, Shiu, YS, 09],<br />

[Bena, Giecold, Grana, Halmagyi, Massai, 09-12], [Dymarsky, 11],…<br />

Owing to |W 0 | ≫ |W NP |<br />

SUGRA + α′-correction<br />

No fine-tuning <strong>for</strong> W 0


22<br />

7/30/2012<br />

Statistical approach


23<br />

7/30/2012<br />

Further approximation<br />

V<br />

4<br />

M = − W 0a 3 1 A 1 C<br />

P<br />

2 γ 1 9x<br />

9 2 − e−x 1<br />

2<br />

, C = −27W 3<br />

0ξa 1<br />

2<br />

1 x 1 64 2γ 2 , x 1 = a 1 t 1<br />

1 A 1<br />

Further focusing on smaller CC region: C ∼ 3.65<br />

[Rummel, Westphal, 11]<br />

The stability constraint with positive CC at stationery points:<br />

V ≥ 0 3.65 ≤ C < 3.89<br />

∂ 2 x V > 0<br />

V<br />

M P<br />

4 ∼ 1 9<br />

2<br />

5<br />

9<br />

2 −W 0 a 1 3 A 1<br />

γ 1<br />

2<br />

C − 3.65<br />

Neglecting the parameters a 1 , γ 1 , ξ, the model is simplified to be<br />

Λ = w 1 w 2 c − c 0 , c 0 ≤ c = w 1<br />

w 2<br />

< c 1<br />

(w 1 = −W 0 , w 2 = A 1 , c ∝ C)


24<br />

7/30/2012<br />

<strong>Stringy</strong> Random Landscape<br />

Starting with the simplified potential:<br />

[YS, Tye, 12]<br />

Λ = w 1 w 2 c − c 0 , c 0 ≤ c = w 1<br />

w 2<br />

< c 1<br />

Since W 0 , A 1 are given model by model (various ways of<br />

stabilizing complex moduli), here we impose reasonable<br />

randomness on parameters.<br />

w 1 , w 2 ∈ [0, 1], uni<strong>for</strong>m distribution (<strong>for</strong> simplicity)<br />

Probability distribution function<br />

P Λ = N 0 dc dw 1 dw 2 δ w 1 w 2 c − c 0 − Λ δ w 1<br />

w 2<br />

− c<br />

N 0 : normalization constant


25<br />

7/30/2012<br />

Divergence in product distribution<br />

When z = w 1 w 2 ,<br />

P z = dw 1 dw 2 δ w 1 w 2 − z = 1 2 ln 1 z<br />

log divergence at z = 0<br />

With constraint Λ = w 1 w 2 c − c 0 , c 0 ≤ c = w 1<br />

< c<br />

w 1<br />

2<br />

P Λ = c 1<br />

ln c positivity stability<br />

1 − c 0<br />

c 1 − c 0 c 1 Λ still diverging!!<br />

Comparison to the full-potential (randomizing W 0 , A 1 without approx.)<br />

Good agreement<br />

at smaller Λ


26<br />

7/30/2012<br />

Zero-ness of parameters<br />

We assumed the parameters W 0 , A 1 passing through zero value,<br />

but is it true<br />

• E.g. T 6 model: W 0 = c 1 + d i U i − c 2 + e i U i S<br />

SUSY condition<br />

W 0 = 2 c 1 + c 2 s<br />

easy to be zero<br />

i<br />

k<br />

d i + e i s<br />

d k − e k s<br />

(d j − e j s)<br />

j≠i<br />

s = Re(S)<br />

• Brane position dependence of A 1<br />

[Baumann, Dymarsky, Klebanov,<br />

Maldacena, McAllister, Murugan, 06]<br />

A 1 = A 1 U i f X i<br />

1/n<br />

, f Xi = X i<br />

p i<br />

− μ q<br />

f X i<br />

= 0 when D3-brane hits D7-brane (divisor, at μ)<br />

known as Ganor zero


31<br />

7/30/2012<br />

Comments on sum distribution<br />

Sum distribution smooths out the divergence and moves the peak.<br />

E.g. z = x 1<br />

n 1<br />

+ x 2<br />

n 2<br />

+ ⋯ + x p<br />

n p<br />

• Each has divergent peak: P w i = x i<br />

n i ∝ wi<br />

−1+ 1 n i<br />

• Independent of each other, no correlations.<br />

But uncorrelated summation gives P z ∝ z −1+ 1<br />

n i .<br />

When all n i = 2, and x i ∈ normal distribution,<br />

P z = e−p 2 z −1+p 2<br />

2 p 2 Γ(p 2)<br />

p = 1<br />

p =2<br />

known as Chi-squared distribution<br />

p =3


32<br />

7/30/2012<br />

Bousso-Polchinski<br />

4-<strong>for</strong>m quantization<br />

S = d 4 x −g 1 M P<br />

2 R − Λ bare − Z<br />

2 × 4! F 4 2<br />

Λ = Λ bare + 1 2<br />

n i 2 q i<br />

2<br />

Assume randomness in Bousso-Polchinski;<br />

J<br />

n i : random integer, 0 ≤ q i ≤ 1: uni<strong>for</strong>m,<br />

−100 ≤ Λ bare ≤ 0: uni<strong>for</strong>m<br />

Λ = 0<br />

But…<br />

Moduli fields couple each term<br />

Λ ∼ −W 0 A 1<br />

C<br />

9x<br />

9 2 − e−x 1<br />

2<br />

1 x 1<br />

correlation generated via stabilization


33<br />

7/30/2012<br />

Multi-moduli analyses


34<br />

7/30/2012<br />

Multi-moduli stabilization<br />

Again, we work in the region: |W 0 | ≫ |W NP |, V ≫ ξ.<br />

Assuming stabilization of complex structure moduli and dilaton<br />

at higher energy scale,<br />

V<br />

4<br />

M = − A 3<br />

1W 0 a 1 2C<br />

P<br />

2 γ 1 9V 3 − x 1e −x 1<br />

V 2<br />

3<br />

V = x 2 3 2<br />

1 − δ i x i<br />

,<br />

i=2<br />

−<br />

i=2<br />

• Now we have N K × N K mass matrix.<br />

B i x i e −x i<br />

V 2<br />

• Stability at positive CC requires B i > 0.<br />

x i = a i t i , C = −27W 3 2<br />

0ξa 1<br />

, B i = A i<br />

, δ<br />

64 2γ 1 A 1<br />

A i = γ 3 2<br />

ia i<br />

3 2<br />

1 γ 1 a 1<br />

N K extremal equations + N K stability constraints<br />

Uplifting is controlled by the first term.<br />

[Sumitomo, Tye, in preparation]<br />

All upper-left sub-determinants are positive (Sylvester’s criteria).<br />

,


37<br />

7/30/2012<br />

Multi-Kahler statistics<br />

Still complicated system<br />

V<br />

4<br />

M = − A 3<br />

1W 0 a 1 2C<br />

P<br />

2 γ 1 9V 3 − x 1e −x 1<br />

V 2 −<br />

i=2<br />

B i x i e −x i<br />

We just randomize W 0 , A i obeying uni<strong>for</strong>m distribution,<br />

while keeping other parameters fixed.<br />

Solve <strong>for</strong> t i (or x i ) −15 ≤ W 0 ≤ 0, 0 ≤ A i ≤ 1<br />

V 2<br />

N K = 1: blue<br />

N K = 3: red<br />

(neglecting N K =1)<br />

More moduli bring shaper peak.<br />

(though mild suppression)<br />

Λ ∼ 1.1 × 10 −3 N K 0.23 e −0.027 N KM P<br />

4


38<br />

7/30/2012<br />

<strong>Cosmological</strong> moduli problem<br />

Reheating <strong>for</strong> BBN: T r ≥ O 10 MeV T r ∼ M P Γ φ , Γ φ ∼ m φ 3<br />

m φ ≥ O 10 TeV ∼ 10 −15 M P<br />

What happens in lightest (physical) moduli mass<br />

M P<br />

(neglecting N K =1)<br />

2<br />

m min<br />

= 0.031 N K 1.0 e −0.10 N KM P<br />

2<br />

: also suppressed<br />

Suppression of mass is relatively faster than Λ.<br />

2<br />

m min<br />

∼ 10 −30 M P<br />

2<br />

is likely met earlier than Λ ∼ 10 −122 M P<br />

4


39<br />

7/30/2012<br />

More peaked parameters<br />

So far we assumed uni<strong>for</strong>m distribution <strong>for</strong> W 0 , A i . But realistic<br />

models have a number of complex moduli and others.<br />

Different distributions <strong>for</strong> W 0 , A i<br />

Consider the effect of multiple independent parameters.<br />

W 0 = −w 1 w 2 ⋯ w n ,<br />

A i = y 1 i y 2<br />

i<br />

⋯ y n<br />

i<br />

0 ≤ w i ≤ 15 1 n , 0 ≤ yj<br />

i<br />

≤ 1, all obey uni<strong>for</strong>m distribution.<br />

Now,<br />

P W0 =<br />

P A i =<br />

1<br />

15 n − 1 !<br />

1<br />

n − 1 !<br />

ln 15<br />

ln 1 A i<br />

W 0<br />

n−1<br />

n−1<br />

,<br />

n=3<br />

n=2<br />

n=1<br />

See how CC is affected by “n”


40<br />

7/30/2012<br />

<strong>Cosmological</strong> constant<br />

We cannot simply consider effect of the coefficient.<br />

V<br />

4<br />

M = − A 3<br />

1W 0 a 1 2C<br />

P<br />

2 γ 1 9V 3 − x 1e −x 1<br />

V 2<br />

−<br />

i=2<br />

B i x i e −x i<br />

V 2<br />

Dynamics also affects.<br />

The result:<br />

Λ NK =1 = 4.7 × 10 −3 n 0.080 e−1.40 n<br />

Red: N K = 1<br />

Blue: N K = 2<br />

Green: N K = 3<br />

Λ NK =2 = 3.7 × 10 −3 n 0.97 e−1.49 n<br />

Λ NK =3 = 3.4 × 10 −3 n 1.5 e−1.55 n<br />

More than the effect of<br />

the coefficient!<br />

A 1 W 0<br />

∼ 15 e−1.39 n


41<br />

7/30/2012<br />

Moduli mass<br />

We worry about the cosmological moduli problem.<br />

Red: N K = 1<br />

Blue: N K = 2<br />

Green: N K = 3<br />

2<br />

m min<br />

2<br />

m min<br />

2<br />

m min<br />

= 0.18 N K =1 n0.14 −1.40 n<br />

e<br />

= 0.061 N K =2 n0.73 −1.56 n<br />

e<br />

= 0.039 N K =3 n1.2 −1.66 n<br />

e<br />

Compare with CC<br />

Λ ∝ e −1.40 n , e −1.49 n , e−1.55 n<br />

Suppression in mass is getting<br />

larger as increasing N K .<br />

also suggests


42<br />

7/30/2012<br />

Estimation<br />

Using the estimated functions, we get<br />

N K (= h 1,1 ) 1 2 3<br />

Λ ∼ 10 −122 4<br />

M P n ∼ 197 n ∼ 188 n ∼ 182<br />

m 2 ∼ 10 −30 2<br />

M P n ∼ 48 n ∼ 44 n ∼ 42<br />

n: number of<br />

product in W 0 , A i<br />

Rather considerable number, e.g.<br />

4<br />

• P 1,1,1,6,9<br />

: h 1,1 = 2, h 2,1 = 272<br />

• F 11 : h 1,1 = 3, h 2,1 = 111<br />

and the other moduli (e.g. brane position, open string) come<br />

in a complicated way, like<br />

• A 1 = A 1 U i f X i<br />

1/n<br />

, f Xi = X i<br />

p i<br />

− μ q<br />

While, without help of product distribution in W 0 , A i<br />

N K ∼ 10100 <strong>for</strong> Λ ∼ 10 −122 M P 4 , N K ∼ 1350 <strong>for</strong> m 2 ∼ 10 −30 M P<br />

2


43<br />

7/30/2012<br />

Mass matrix<br />

Physical mass matrix is a linear combination of ∂ xi ∂ xj V| min .<br />

Assuming uni<strong>for</strong>mly distributed −15 ≤ W 0 ≤ 0, 0 ≤ A i ≤ 1,<br />

∂ xi ∂ xj V min<br />

∼ 10 −3 ×<br />

x 1 x 2 ⋯ x NK<br />

7 4 ⋯ ⋯ 4<br />

4 60 1 ⋯ 1<br />

⋮ 1 ⋱ ⋯ ⋮<br />

⋮ ⋮ ⋮ ⋱ 1<br />

4 1 ⋯ 1 60<br />

some<br />

hierarchical<br />

structures<br />

Though off-diagonal comp. are relatively suppressed,<br />

eigenvalue repulsion gets more serious when increasing N K .<br />

e.g. 2 × 2 matrix: a<br />

b<br />

b<br />

c<br />

λ ± = 1 2 a + c ± a − c 2 + 4b 2<br />

The lowest mass eigenvalue is generically suppressed<br />

more than CC.


44<br />

7/30/2012<br />

Summary & Discussion


45<br />

7/30/2012<br />

Summary & Discussion<br />

• <strong>Stringy</strong> Random Landscape<br />

We may expect that stringy motivated models have the<br />

following properties:<br />

• Product of parameters<br />

• Correlation of each term by dynamics<br />

Both works <strong>for</strong> smaller CC.<br />

• A number of Kahler moduli<br />

Correlation makes CC smaller. But the effect is modest.<br />

• A number of complex moduli and other moduli<br />

Those are likely to produce more peakiness in parameters<br />

Interesting to see detailed effect in concrete models


46<br />

7/30/2012<br />

Summary & Discussion<br />

• A potential problem<br />

Lightest moduli mass is suppressed simultaneously.<br />

cosmological moduli problem<br />

be<strong>for</strong>e reaching Λ ∼ 10 −122 M P 4 .<br />

Other than “product” and “correlation” effect,<br />

“eigenvalue repulsion” also makes the value smaller.<br />

This is presumably a generic problem<br />

when taking statistical approach without fine-tuning.<br />

Once finding a way out, the stringy mechanism<br />

naturally explain why CC is so small.<br />

Thermal inflation, coupling suppression to SM,<br />

or some other corrections may help

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!