20.01.2015 Views

MEG source reconstruction with Brainstorm - Canada MEG ...

MEG source reconstruction with Brainstorm - Canada MEG ...

MEG source reconstruction with Brainstorm - Canada MEG ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>MEG</strong> and EEG analysis using<br />

François Tadel<br />

MNI – Montreal – 19.11.2011


Foretaste Graphical interface<br />

2


Foretaste Scripting environment<br />

• Rapid selection of files and processes to apply<br />

• Automatic generation of Matlab scripts (everything is<br />

scriptable)<br />

• Plug-in structure: easy to add custom processes<br />

3


<strong>Brainstorm</strong> is…<br />

• A free and open-<strong>source</strong> application<br />

(GPL)<br />

• Matlab & Java: Platform-independent<br />

• Designed for Matlab environment<br />

• Stand-alone version also available<br />

• Interface-based: click, drag, drop<br />

• No Matlab experience required<br />

• Daily updates of the software<br />

4


A bit of history<br />

• 10 years of research and development<br />

• Active collaboration between multiple<br />

groups<br />

(France, USA, and now <strong>Canada</strong>)<br />

• New interface released in 2009<br />

• Over 6000 user accounts<br />

• Hundreds of active users in 60<br />

countries<br />

5


Workflow<br />

Anatomy<br />

Sensors<br />

EEG/<strong>MEG</strong><br />

Coregistration<br />

Source<br />

estimation<br />

Analys<br />

is<br />

6


Database<br />

• Three levels:<br />

– Protocol<br />

– Subject<br />

– Condition<br />

• Popup menus<br />

• All files saved in<br />

Matlab .mat<br />

• Same architecture on the<br />

disk 7


Anatomy<br />

• T1-MRI volume<br />

• Surfaces extracted <strong>with</strong> a dedicated software:<br />

BrainVISA, FreeSurfer, BrainSuite<br />

8


Co-registration <strong>MEG</strong> / MRI (1)<br />

• Basic estimation based on three points<br />

(NAS,LPA,RPA)<br />

– MRI: Marked in the volume <strong>with</strong> the MRI<br />

Viewer<br />

– <strong>MEG</strong>: Obtained <strong>with</strong> a tracking system<br />

(Polhemus)<br />

9


Co-registration <strong>MEG</strong> / MRI (2)<br />

• Automatic adjustment based on head shape<br />

– Trying to fit the head points (digitized <strong>with</strong> the<br />

Polhemus) <strong>with</strong> the head surface (from the MRI)<br />

• Final registration must be checked manually<br />

10


Continuous recordings<br />

• Review continuous file<br />

• Supports most common EEG/<strong>MEG</strong> file formats<br />

• Edit markers, display 2D projections and <strong>source</strong>s<br />

11


Pre-processing Filtering<br />

• Frequency filtering<br />

Not filtered<br />

Low-pass<br />

40Hz<br />

12


Pre-processing Cleaning<br />

• Artifact detection and removal:<br />

– heartbeats, eye blinks, movements, …<br />

ECG<br />

EOG<br />

ECG<br />

EOG<br />

13


Pre-processing Cleaning<br />

• Two categories of artifacts:<br />

– Well defined, reproducible, short, frequent:<br />

• Heartbeats, eye blinks, stimulator<br />

• Unavoidable and frequent: we cannot just<br />

ignore them<br />

• Can be modeled and removed from the signal<br />

efficiently<br />

– All the other events that can alter the<br />

recordings:<br />

• Movements, building vibrations, metro<br />

nearby…<br />

• Too complex or not repeated enough to be<br />

modeled 14


Pre-processing Cleaning<br />

• Example of the cardiac artifact<br />

=> Computation of a Signal-Space Projection<br />

(SSP)<br />

Original<br />

SSP<br />

15


Pre-processing <br />

• Epoching: extraction of small blocks of<br />

recordings around an event of interest<br />

(stimulus, spike…)<br />

16


Pre-processing <br />

• Averaging all the trials: Reveals the features<br />

of the signals that are locked in time to a<br />

given event<br />

=> ERF: Evoked-response field (or “eventrelated”)<br />

=> ERP in EEG<br />

17


Source estimation<br />

• Forward model = head model<br />

Sources => Sensors<br />

• Inverse model: Minimum norm estimates<br />

Sensors => Sources<br />

• Source space: cortex surface (or full head<br />

volume)<br />

Forward<br />

Inverse<br />

18


Minmum Norm <br />

Noise covariance<br />

• Inverse model (minimum norm estimates)<br />

requires an estimation of the level of noise<br />

on the sensors<br />

• Computation of the noise covariance matrix<br />

= covariance of the segments of recordings<br />

that do not contain any “meaningful” data<br />

• Typically: empty room measures, pre-stim<br />

baseline<br />

19


Regions of interest<br />

• Regions of interest at cortical level (scouts)<br />

= Subset of a few dipoles in the brain<br />

= Group of vertices of the cortex surface<br />

20


Post-processing<br />

•Noise normalization (z-score)<br />

•Time-frequency analysis<br />

•Group analysis:<br />

– Anatomical registration and normalization<br />

– Statistical inference<br />

21


Time-frequency<br />

22


Group analysis <br />

<br />

• Registration of individual brains on a<br />

template<br />

Subject 1<br />

Subject 2<br />

G r o u p<br />

analysis<br />

Average<br />

Contrast<br />

…<br />

Individual<br />

anatomy<br />

Standard<br />

anatomy<br />

23


Group analysis <br />

• Contrasts between subjects or conditions<br />

• Statistical analysis: z-score, t-test<br />

• Quick extraction of measures from complex<br />

paradigms<br />

=> Export to: R, Excel, Statistica, SPSS,<br />

Matlab…<br />

24


Support<br />

• <strong>Brainstorm</strong> online tutorials and forum:<br />

• Visit us: Bi-weekly <strong>MEG</strong> / <strong>Brainstorm</strong> walk-in<br />

clinic<br />

=> Every other Friday at the Neuro<br />

25


Sample data <br />

• Median nerve stimulation<br />

– Random electric stimulation of both arms<br />

– ~ 100 trials per arm<br />

– Acquisition at 1200 Hz<br />

– <strong>MEG</strong> + EOG + ECG + STIM + … = 302<br />

channels<br />

– 6 minutes of recordings, 500 Mb<br />

26


Sample data Acquisition<br />

Polhemus<br />

Stim<br />

3D points<br />

Stimulation<br />

computer<br />

<strong>MEG</strong><br />

Acquisition<br />

computer<br />

27


Sample data To-<br />

• Create a protocol, <strong>with</strong> one subject<br />

• Anatomy<br />

– Import the MRI, define the fiducials<br />

– Import the surfaces<br />

– 3D display<br />

• Recordings:<br />

– Review the continuous file<br />

– Mark cardiac peaks + eye blinks<br />

– Remove the ocular artifacts (SSP)<br />

28


Sample data To-<br />

• Recordings:<br />

– Import trials: [-150, +400] ms around each<br />

stimulus<br />

– Average the trials (left and right)<br />

– Explore the average at the sensor level<br />

• Source estimation:<br />

– Computation of a head model<br />

– Computation of the noise covariance<br />

matrix<br />

– Computation of the <strong>source</strong>s time series<br />

– Review visually the results for left and right<br />

stim<br />

29

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!