20.01.2015 Views

Effect of axial load on the propagation of elastic waves in helical ...

Effect of axial load on the propagation of elastic waves in helical ...

Effect of axial load on the propagation of elastic waves in helical ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Author manuscript, published <strong>in</strong> "Wave Moti<strong>on</strong> 48, 1 (2011) pp 83-92"<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>axial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>elastic</strong> <strong>waves</strong> <strong>in</strong> <strong>helical</strong> beams<br />

Ahmed Frikha a , Fabien Treyssède ∗,a , Patrice Cartraud b<br />

a Laboratoire Central des P<strong>on</strong>ts et Chaussées, 44341 Bouguenais Cedex, BP 4129, France<br />

b GeM, UMR CNRS 6183, École Centrale de Nantes, 1 rue de la Noë, 44 321 Nantes Cédex 3, France<br />

hal-00611917, versi<strong>on</strong> 1 - 27 Jul 2011<br />

Abstract<br />

Helical structures are designed to support heavy <str<strong>on</strong>g>load</str<strong>on</strong>g>s, which can significantly affect <strong>the</strong> dynamic behaviour.<br />

This paper proposes a physical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>axial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>elastic</strong> <strong>waves</strong><br />

<strong>in</strong> <strong>helical</strong> beams. The model is based <strong>on</strong> <strong>the</strong> equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g>ed <strong>helical</strong> Timoshenko beams. An<br />

eigensystem is obta<strong>in</strong>ed through a Fourier transform al<strong>on</strong>g <strong>the</strong> axis. The equati<strong>on</strong>s are made dimensi<strong>on</strong>less<br />

for beams <str<strong>on</strong>g>of</str<strong>on</strong>g> circular cross-secti<strong>on</strong> and <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters govern<strong>in</strong>g <strong>the</strong> problem is reduced to four<br />

(helix angle, helix <strong>in</strong>dex, Poiss<strong>on</strong> coefficient, and <str<strong>on</strong>g>axial</str<strong>on</strong>g> stra<strong>in</strong>). A parametric study is c<strong>on</strong>ducted. The effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g><strong>in</strong>g is quantified <strong>in</strong> high, medium and low frequency ranges. Not<strong>in</strong>g that <strong>the</strong> effect is significant <strong>in</strong><br />

low frequencies, dispersi<strong>on</strong> curves <str<strong>on</strong>g>of</str<strong>on</strong>g> stretched and compressed <strong>helical</strong> beams are presented for different helix<br />

angles and radii. This effect is greater as <strong>the</strong> helix angle <strong>in</strong>creases. Both <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> stress and geometry<br />

deformati<strong>on</strong> are shown to be n<strong>on</strong>-negligible <strong>on</strong> <strong>elastic</strong> wave propagati<strong>on</strong>.<br />

Key words: <strong>helical</strong>, beam, <str<strong>on</strong>g>load</str<strong>on</strong>g>, deformati<strong>on</strong>, wave, propagati<strong>on</strong>.<br />

1. Introducti<strong>on</strong><br />

Helical structures are used <strong>in</strong> many eng<strong>in</strong>eer<strong>in</strong>g applicati<strong>on</strong>s. Typical examples are <strong>helical</strong> spr<strong>in</strong>gs,<br />

widely used <strong>in</strong> automotive and aer<strong>on</strong>autic <strong>in</strong>dustry, and steel multi-wire cables, largely encountered <strong>in</strong> civil<br />

eng<strong>in</strong>eer<strong>in</strong>g. These structures are usually subjected to large <str<strong>on</strong>g>load</str<strong>on</strong>g>s.<br />

For <strong>the</strong> design <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>helical</strong> spr<strong>in</strong>gs, several studies have been c<strong>on</strong>ducted to understand <strong>the</strong> dynamic behaviour<br />

and calculate <strong>the</strong> first vibrati<strong>on</strong> modes. First without c<strong>on</strong>sider<strong>in</strong>g <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> applied <str<strong>on</strong>g>load</str<strong>on</strong>g>s, <strong>the</strong><br />

computati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vibrati<strong>on</strong> modes <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>helical</strong> beams with circular cross-secti<strong>on</strong> has been performed based <strong>on</strong><br />

analytical but approximate soluti<strong>on</strong>s [1], <strong>the</strong> f<strong>in</strong>ite element methods [2] or <strong>the</strong> assumed mode method [3] for<br />

<strong>in</strong>stance. Ano<strong>the</strong>r approach is <strong>the</strong> transfer matrix method, employed <strong>in</strong> [4, 5]. An efficient numerical method<br />

for predict<strong>in</strong>g <strong>the</strong> natural frequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>helical</strong> spr<strong>in</strong>gs has been developed <strong>in</strong> [6]. The dynamic stiffness<br />

method has been used by Pears<strong>on</strong> and Wittrick [7] to f<strong>in</strong>d an exact soluti<strong>on</strong> for vibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>helical</strong> spr<strong>in</strong>gs<br />

with <strong>the</strong> Euler-Bernoulli model. Lee and Thomps<strong>on</strong> [8] used <strong>the</strong> same method, but with <strong>the</strong> Timoshenko<br />

beam model.<br />

However, <strong>the</strong> first vibrati<strong>on</strong> modes <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>helical</strong> spr<strong>in</strong>gs corresp<strong>on</strong>ds to low frequency moti<strong>on</strong>s, which are<br />

str<strong>on</strong>gly affected by <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> applied <str<strong>on</strong>g>axial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g>s. The vibrati<strong>on</strong> analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> spr<strong>in</strong>gs have hence been<br />

extended to account for <str<strong>on</strong>g>load</str<strong>on</strong>g> effects <strong>on</strong> <strong>the</strong> natural frequencies thanks to <strong>the</strong> f<strong>in</strong>ite element method [9], <strong>the</strong><br />

dynamic stiffness matrix [8] or <strong>the</strong> transfer matrix method, used <strong>in</strong> [10, 11]. However, as noticed <strong>in</strong> [12, 17],<br />

Pears<strong>on</strong>’s equati<strong>on</strong>s [10] do not reduce to equati<strong>on</strong>s for simpler rods when <str<strong>on</strong>g>load</str<strong>on</strong>g> terms are <strong>in</strong>cluded. All <strong>the</strong>se<br />

studies show <strong>the</strong> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>sider<strong>in</strong>g <str<strong>on</strong>g>axial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g>s, compressive <strong>in</strong> <strong>the</strong> analyses, for <strong>the</strong> computati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

natural frequencies.<br />

As far as <strong>elastic</strong> wave propagati<strong>on</strong> is c<strong>on</strong>cerned, <strong>the</strong> literature <strong>on</strong> <strong>helical</strong> waveguides is ra<strong>the</strong>r scarce.<br />

An analytical beam model [13] as well as more general numerical approaches [14, 15] have been recently<br />

∗ Corresp<strong>on</strong>d<strong>in</strong>g author<br />

Email address: fabien.treyssede@lcpc.fr (Fabien Treyssède )<br />

Prepr<strong>in</strong>t submitted to Elsevier August 5, 2010


hal-00611917, versi<strong>on</strong> 1 - 27 Jul 2011<br />

proposed. In [16], a semi-analytical f<strong>in</strong>ite element method has also been proposed for <strong>the</strong> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> guided<br />

wave propagati<strong>on</strong> <strong>in</strong>side multi-wire <strong>helical</strong> waveguides, typically encountered <strong>in</strong> civil eng<strong>in</strong>eer<strong>in</strong>g. However,<br />

<strong>the</strong>se studies neglect <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> applied <str<strong>on</strong>g>load</str<strong>on</strong>g>s, whose effect rema<strong>in</strong>s unexplored <strong>on</strong> guided <strong>waves</strong>.<br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper is to <strong>in</strong>vestigate <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>axial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g>s <strong>on</strong> <strong>the</strong> propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> guided modes <strong>in</strong><br />

<strong>helical</strong> waveguides. For simplicity, multi-wire waveguides are not c<strong>on</strong>sidered and <strong>the</strong> model is based <strong>on</strong> <strong>the</strong><br />

equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Timoshenko <str<strong>on</strong>g>load</str<strong>on</strong>g>ed <strong>helical</strong> beams. Such a model is not valid at high frequencies,<br />

when high order modes become propagat<strong>in</strong>g, but c<strong>on</strong>stitutes a first step and can serve as a reference soluti<strong>on</strong><br />

before <strong>the</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> fully three-dimensi<strong>on</strong>al models, as d<strong>on</strong>e <strong>in</strong> [14, 15, 16] without <str<strong>on</strong>g>load</str<strong>on</strong>g>s. A space<br />

Fourier transform al<strong>on</strong>g <strong>the</strong> <strong>helical</strong> axis is performed, yield<strong>in</strong>g a wave propagati<strong>on</strong> eigensystem whose zero<br />

determ<strong>in</strong>ant corresp<strong>on</strong>ds to <strong>the</strong> dispersi<strong>on</strong> relati<strong>on</strong>ship. The equati<strong>on</strong>s are made dimensi<strong>on</strong>less for beams<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> circular cross-secti<strong>on</strong>s. The problem is <strong>the</strong>n governed by four parameters, which are <strong>the</strong> helix angle, <strong>the</strong><br />

dimensi<strong>on</strong>less radius (helix <strong>in</strong>dex), <strong>the</strong> dimensi<strong>on</strong>less <str<strong>on</strong>g>axial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> (<str<strong>on</strong>g>axial</str<strong>on</strong>g> stra<strong>in</strong>) and <strong>the</strong> Poiss<strong>on</strong> coefficient.<br />

The applied <str<strong>on</strong>g>load</str<strong>on</strong>g>s act <strong>on</strong> <strong>the</strong> dynamics through two effects : <strong>the</strong> deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> geometry and <strong>the</strong><br />

stress generated <strong>in</strong>side <strong>the</strong> structure. Both effects are <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> present analysis. The deformed helix<br />

parameters are calculated us<strong>in</strong>g a n<strong>on</strong>-l<strong>in</strong>ear model.<br />

A parametric study is c<strong>on</strong>ducted <strong>in</strong> order to highlight <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>axial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g>s, compressive or tensile, <strong>on</strong><br />

<strong>waves</strong> for various helix angles and radii. Three frequency ranges are dist<strong>in</strong>guished. A branch identificati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> dispersi<strong>on</strong> curves is given for a better physical understand<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> different modes exist<strong>in</strong>g <strong>in</strong> <strong>helical</strong><br />

waveguides. The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> stress and deformati<strong>on</strong> are also compared.<br />

2. Model<br />

2.1. Equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> for dynamics<br />

One c<strong>on</strong>siders a <strong>helical</strong> beam with a circular cross-secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> radius r. The helix centrel<strong>in</strong>e is def<strong>in</strong>ed by<br />

its pitch angle α 0 and radius R 0 <strong>in</strong> <strong>the</strong> un<str<strong>on</strong>g>load</str<strong>on</strong>g>ed state. In <strong>the</strong> <str<strong>on</strong>g>load</str<strong>on</strong>g>ed state, <strong>the</strong> spr<strong>in</strong>g is subjected to a<br />

static <str<strong>on</strong>g>axial</str<strong>on</strong>g> force P and <strong>the</strong> pitch angle and radius become α and R respectively (see Fig.1). The curvature<br />

κ and torsi<strong>on</strong> τ are given by κ = cos 2 α/R and τ = s<strong>in</strong> α cosα/R. The Serret-Frenet basis (e n ,e b ,e t )<br />

associated with <strong>the</strong> helix is shown <strong>in</strong> Fig.1, where e n , e b and e t respectively denote <strong>the</strong> normal, b<strong>in</strong>ormal<br />

and tangent unit vectors. In this coord<strong>in</strong>ate system, <strong>the</strong> static force is written as [0, P cosα, P s<strong>in</strong> α] and<br />

<strong>the</strong> static moment as [0, −PRs<strong>in</strong> α, PR cosα]. P is taken positive when tensile.<br />

Figure 1: Helical spr<strong>in</strong>g under <str<strong>on</strong>g>axial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g><br />

2


In <strong>the</strong> framework <str<strong>on</strong>g>of</str<strong>on</strong>g> Timoshenko beam <strong>the</strong>ory, <strong>the</strong> general equati<strong>on</strong>s govern<strong>in</strong>g <strong>the</strong> small perturbati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>helical</strong> beam subjected to a static <str<strong>on</strong>g>axial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> P are given by <strong>the</strong> follow<strong>in</strong>g set <str<strong>on</strong>g>of</str<strong>on</strong>g> 12 equati<strong>on</strong>s which<br />

relate <strong>the</strong> forces and moments to <strong>the</strong> displacements and rotati<strong>on</strong>s [11, 12, 17] :<br />

du n<br />

ds = τu b − κu t + φ b + Q n<br />

GA n<br />

, (1)<br />

du b<br />

ds = −τu n − φ n + Q b<br />

GA b<br />

, (2)<br />

du t<br />

ds = κu n + Q t<br />

EA t<br />

, (3)<br />

dφ n<br />

ds = τφ b − κφ t + M n<br />

EI n<br />

, (4)<br />

dφ b<br />

ds = −τφ n + M b<br />

EI b<br />

, (5)<br />

hal-00611917, versi<strong>on</strong> 1 - 27 Jul 2011<br />

and<br />

dφ t<br />

ds = κφ n + M t<br />

GI t<br />

, (6)<br />

dQ n<br />

ds = −ρA tω 2 u n − P s<strong>in</strong>α( dφ b<br />

ds + 1<br />

GA n<br />

dQ n<br />

ds + τφ n − τ Q b<br />

GA b<br />

)<br />

+P cosα( dφ t<br />

ds − κφ n + κ Q b<br />

GA b<br />

) + τQ b − κQ t ,<br />

dQ b<br />

ds = −ρA tω 2 u b + P s<strong>in</strong> α( dφ n<br />

ds − 1<br />

GA b<br />

dQ b<br />

ds − τφ b − τ Q n<br />

GA n<br />

+ κφ t ) − τQ n , (8)<br />

dQ t<br />

ds = −ρA tω 2 u t − P cosα( dφ n<br />

ds − 1<br />

GA b<br />

dQ b<br />

ds − τφ b − τ Q n<br />

GA n<br />

+ κφ t ) + κQ n , (9)<br />

dM n<br />

ds = −ρI nω 2 φ n + Q b − PR cosα( dφ b<br />

ds + 1<br />

GA n<br />

dQ n<br />

ds + τφ n − τ Q b<br />

GA b<br />

)<br />

−PR s<strong>in</strong>α( dφ t<br />

ds − κφ n + κ Q b<br />

GA b<br />

) + τM b − κM t ,<br />

dM b<br />

ds = −ρI bω 2 φ b − Q n + PR cosα( dφ n<br />

ds − 1<br />

GA b<br />

dQ b<br />

ds − τφ b − τ Q n<br />

GA n<br />

+ κφ t ) − τM n , (11)<br />

dM t<br />

ds = −ρI tω 2 φ t + PR s<strong>in</strong> α( dφ n<br />

ds − 1<br />

GA b<br />

dQ b<br />

ds − τφ b − τ Q n<br />

GA n<br />

+ κφ t ) + κM n . (12)<br />

where ω is <strong>the</strong> frequency, s is <strong>the</strong> curvil<strong>in</strong>ear coord<strong>in</strong>ate al<strong>on</strong>g <strong>the</strong> helix, [u n , u b , u t ] denotes <strong>the</strong> dynamic<br />

displacement vector. [φ n , φ b , φ t ] is <strong>the</strong> rotati<strong>on</strong> vector. [Q n , Q b , Q t ] and [M n , M b , M t ] are respectively <strong>the</strong><br />

dynamic <strong>in</strong>ternal force and moment vectors. I n , I b and I t def<strong>in</strong>e <strong>the</strong> sec<strong>on</strong>d moments <str<strong>on</strong>g>of</str<strong>on</strong>g> area <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> secti<strong>on</strong><br />

about <strong>the</strong> Serret-Frenet directi<strong>on</strong>s. For a circular cross-secti<strong>on</strong>, I n = I b = I t /2 = πr 4 /4. A n , A b and A t<br />

represent cross-secti<strong>on</strong>s def<strong>in</strong>ed by : A n = A b = γA t = γπr 2 , where γ = 6(1+ν)/(7+6ν) is <strong>the</strong> Timoshenko<br />

shear coefficient. The material characteristics are <strong>the</strong> material density ρ , <strong>the</strong> Young modulus E, <strong>the</strong> shear<br />

modulus G = E/2(1 + ν) and <strong>the</strong> Poiss<strong>on</strong> coefficient ν.<br />

Without <str<strong>on</strong>g>axial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> (P = 0), <strong>the</strong> above equati<strong>on</strong>s becomes identical to <strong>the</strong> equati<strong>on</strong>s presented by Wittrick<br />

[1]. As stated by this author, it is assumed that <strong>the</strong> c<strong>on</strong>diti<strong>on</strong> κ 2 I t /A t


2.2. Wave propagati<strong>on</strong> eigensystem<br />

In order to reduce <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters, <strong>the</strong> variables <str<strong>on</strong>g>of</str<strong>on</strong>g> Eqs. (1)–(12) are made dimensi<strong>on</strong>less.<br />

r is chosen as <strong>the</strong> characteristic length and r/c s as <strong>the</strong> characteristic time where c s is <strong>the</strong> shear bulk<br />

velocity def<strong>in</strong>ed by c 2 s = G/ρ. Stars will be used to denote dimensi<strong>on</strong>less variables. The dimensi<strong>on</strong>al and<br />

dimensi<strong>on</strong>less variables are related by :<br />

s ∗ = s r , u∗ j = u j<br />

r , φ∗ j = φ j , Q ∗ j =<br />

Q j<br />

πρr 2 c 2 s<br />

, Mj ∗ = M j<br />

πρr 3 c 2 , j = n, b, t. (13)<br />

s<br />

First, Eqs. (7)–(12) are used to replace <strong>the</strong> forces and moments <strong>in</strong> Eqs. (1) to (6). This enables to obta<strong>in</strong><br />

a system <str<strong>on</strong>g>of</str<strong>on</strong>g> six l<strong>in</strong>ear equati<strong>on</strong>s, written <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> displacements and rotati<strong>on</strong>s. Then, <strong>the</strong> equati<strong>on</strong>s are<br />

made dimensi<strong>on</strong>less thanks to Eq. (13). A Fourier transform al<strong>on</strong>g <strong>the</strong> s-axis allows to replace ∂/∂s ∗ with<br />

iK, where K = kr denotes <strong>the</strong> dimensi<strong>on</strong>less wavenumber al<strong>on</strong>g <strong>the</strong> s-axis. F<strong>in</strong>ally, <strong>on</strong>e gets <strong>the</strong> follow<strong>in</strong>g<br />

6 × 6 matrix system:<br />

hal-00611917, versi<strong>on</strong> 1 - 27 Jul 2011<br />

(A 1 − Ω 2 A 2 − iKB + K 2 C)U = 0. (14)<br />

where Ω = ωr/c s is <strong>the</strong> dimensi<strong>on</strong>less frequency and <strong>the</strong> eigenvectors U = { u ∗ n u ∗ b<br />

u ∗ t φ ∗ n φ ∗ b<br />

φ ∗ t<br />

c<strong>on</strong>ta<strong>in</strong>s displacement and rotati<strong>on</strong> comp<strong>on</strong>ents <strong>in</strong> <strong>the</strong> Serret-Frenet basis. The matrices A 1 , A 2 , B and C<br />

are given by :<br />

⎡<br />

C =<br />

⎢<br />

⎣<br />

A 2 = diag(1, 1, 1, 1/4, 1/4, 1/2), (15)<br />

γ + σs 0 0 0 0 0<br />

0 γ + σs 0 0 0 0<br />

0 −σc 2(1 + ν) 0 0 0<br />

σδc 0 0 (1 + ν)/2 0 0<br />

0 σδc 0 0 (1 + ν)/2 0<br />

0 σδs 0 0 0 1/2<br />

⎤<br />

} T<br />

, (16)<br />

⎥<br />

⎦<br />

A 1 = [ A 11 A 12<br />

]<br />

, (17)<br />

B = [ B 1 B 2<br />

]<br />

, (18)<br />

with <strong>the</strong> follow<strong>in</strong>g submatrices :<br />

⎡<br />

⎤<br />

c 2 (γs 2 + 2(1 + ν)c 2 + σs)/δ 2 0 0<br />

0 s 2 c 2 (γ + σs)/δ 2 −sc 3 (γ + σs)/δ 2<br />

A 11 =<br />

0 −sc 3 (γ + σs)/δ 2 c 4 (γ + σs)/δ 2<br />

⎢ γsc/δ 0 0<br />

, (19)<br />

⎥<br />

⎣ 0 sc(γ + σsc 2 )/δ −c 2 (γ + σsc 2 )/δ ⎦<br />

0 σs 3 c 2 /δ −σs 2 c 3 /δ<br />

⎡<br />

⎤<br />

γsc/δ 0 0<br />

0 γsc/δ σsc 2 /δ<br />

A 12 =<br />

0 −γc 2 /δ −σc 3 /δ<br />

⎢ γ + c 2 (1 + νs 2 )/2δ 2 0 0<br />

, (20)<br />

⎥<br />

⎣ 0 γ + (1 + ν)s 2 c 2 /2δ 2 −(1 + ν)sc 3 /2δ 2 + σc 3 ⎦<br />

0 −(1 + ν)sc 3 /2δ 2 c 2 ((1 + ν)c 2 /2δ 2 + σs)<br />

4


⎡<br />

B 1 =<br />

⎢<br />

⎣<br />

0 −c(2γs + σ(1 + s 2 ))/δ c 2 (γ + 2(1 + ν) + σs)/δ<br />

2sc(γ + σs)/δ 0 0<br />

−c 2 (γ + 2(1 + ν) + 2σs)/δ 0 0<br />

0 −(γ + σsc 2 ) σc 3<br />

γ + 2σsc 2 0 0<br />

2σs 2 c 0 0<br />

⎡<br />

B 2 =<br />

⎢<br />

⎣<br />

where <strong>the</strong> parameters s, c, δ and σ are given by :<br />

0 −γ −σc<br />

γ 0 0<br />

0 0 0<br />

0 −(1 + ν)sc/δ (2 + ν)c 2 /2δ + σδs<br />

(1 + ν)sc/δ 0 0<br />

−(2 + ν)c 2 /2δ 0 0<br />

⎤<br />

⎤<br />

, (21)<br />

⎥<br />

⎦<br />

, (22)<br />

⎥<br />

⎦<br />

hal-00611917, versi<strong>on</strong> 1 - 27 Jul 2011<br />

s = s<strong>in</strong> α, c = cosα, δ = R r , σ = P<br />

πρr 2 c 2 . (23)<br />

s<br />

The soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. (14) yields <strong>the</strong> propagati<strong>on</strong> modes. Eqs. (14)–(22) show that wave propagati<strong>on</strong> <strong>in</strong><br />

<str<strong>on</strong>g>axial</str<strong>on</strong>g>ly <str<strong>on</strong>g>load</str<strong>on</strong>g>ed <strong>helical</strong> beams is governed by α (<strong>the</strong> helix angle), δ (dimensi<strong>on</strong>less helix radius or helix <strong>in</strong>dex),<br />

σ (dimensi<strong>on</strong>less <str<strong>on</strong>g>axial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g>) and ν (Poiss<strong>on</strong> coefficient). Hence, dispersi<strong>on</strong> curves (K, Ω) <strong>on</strong>ly depends <strong>on</strong><br />

<strong>the</strong>ses 4 dimensi<strong>on</strong>less parameters.<br />

For a given Ω, <strong>the</strong> eigenproblem (14) is quadratic <strong>in</strong> K. This problem can be recast <strong>in</strong>to a generalised<br />

l<strong>in</strong>ear eigensystem written for [U T KU T ] T <strong>in</strong> order to be solved by standard numerical solvers (see Tisseur<br />

et al [18] for <strong>in</strong>stance). One gets 12 wavenumbers. Purely real and imag<strong>in</strong>ary wavenumbers corresp<strong>on</strong>d<strong>in</strong>g<br />

respectively to propagat<strong>in</strong>g and evanescent modes, appear <strong>in</strong> pairs <str<strong>on</strong>g>of</str<strong>on</strong>g> opposite signs. Fully complex<br />

wavenumbers corresp<strong>on</strong>d<strong>in</strong>g to <strong>in</strong>homogeneous modes, appear <strong>in</strong> quadruples <str<strong>on</strong>g>of</str<strong>on</strong>g> complex c<strong>on</strong>jugates and opposite<br />

signs. If <strong>in</strong>terest is restricted to propagat<strong>in</strong>g modes <strong>on</strong>ly, <strong>on</strong>e can set K (as a real wavenumber) and<br />

determ<strong>in</strong>e Ω. The eigenproblem (14) is <strong>the</strong>n l<strong>in</strong>ear for f<strong>in</strong>d<strong>in</strong>g Ω 2 and 6 positive eigenfrequencies are found<br />

for each real wavenumber K. As a side remark, note that <strong>the</strong> eigenvalue problem (14) degenerates to that<br />

presented <strong>in</strong> [14] (Appendix) <strong>in</strong> <strong>the</strong> un<str<strong>on</strong>g>load</str<strong>on</strong>g>ed case (σ = 0).<br />

2.3. Deformed <strong>helical</strong> geometry<br />

The eigenvalue problem (14) is written <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> α and δ, which are <strong>the</strong> helix pitch angle and <strong>in</strong>dex<br />

<strong>in</strong> <strong>the</strong> <str<strong>on</strong>g>load</str<strong>on</strong>g>ed state. Both are unknown and should be calculated provided <strong>the</strong> <str<strong>on</strong>g>load</str<strong>on</strong>g>, <strong>the</strong> <strong>in</strong>itial angle α 0<br />

and <strong>in</strong>dex δ 0 <strong>in</strong> <strong>the</strong> un<str<strong>on</strong>g>load</str<strong>on</strong>g>ed state. One c<strong>on</strong>siders a <strong>helical</strong> waveguide subjected to a given <str<strong>on</strong>g>axial</str<strong>on</strong>g> stra<strong>in</strong>,<br />

denoted ǫ. One has ǫ = (l s<strong>in</strong> α − l 0 s<strong>in</strong> α 0 )/l 0 s<strong>in</strong> α 0 , where l 0 and l are <strong>the</strong> curvil<strong>in</strong>ear length <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e helix<br />

step al<strong>on</strong>g <strong>the</strong> s-axis <strong>in</strong> <strong>the</strong> un<str<strong>on</strong>g>load</str<strong>on</strong>g>ed state and <str<strong>on</strong>g>load</str<strong>on</strong>g>ed state respectively. We follow <strong>the</strong> same approach<br />

as <strong>the</strong> <strong>on</strong>e proposed <strong>in</strong> Chapter 20 <str<strong>on</strong>g>of</str<strong>on</strong>g> [19], which proposes a n<strong>on</strong>-l<strong>in</strong>ear soluti<strong>on</strong> for large deflecti<strong>on</strong> under<br />

simplify<strong>in</strong>g assumpti<strong>on</strong>s limited to sufficiently large <strong>in</strong>dex δ 0 (typically, δ 0 ≥ 5) and small pitch angle (which<br />

will be supposed for <strong>the</strong> results <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper) 1 . Shear<strong>in</strong>g stra<strong>in</strong>s are neglected. The stretch<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> helix<br />

centrel<strong>in</strong>e is neglected so that l ≃ l 0 [19, 20]. Therefore, ǫ ≃ s<strong>in</strong>α/ s<strong>in</strong> α 0 − 1 and <strong>the</strong> angle α is simply<br />

obta<strong>in</strong>ed from :<br />

α = arcs<strong>in</strong>((1 + ǫ)s<strong>in</strong> α 0 ). (24)<br />

Then follow<strong>in</strong>g [19], <strong>the</strong> bend<strong>in</strong>g and torsi<strong>on</strong>al moments are respectively balanced by <strong>the</strong> change <strong>in</strong><br />

curvature and torsi<strong>on</strong> times <strong>the</strong> corresp<strong>on</strong>d<strong>in</strong>g rigidities :<br />

1 Note that such a soluti<strong>on</strong> is well suited for spr<strong>in</strong>gs but would not be applicable for <strong>helical</strong> wires c<strong>on</strong>stitut<strong>in</strong>g civil eng<strong>in</strong>eer<strong>in</strong>g<br />

cables (usually <str<strong>on</strong>g>of</str<strong>on</strong>g> small <strong>in</strong>dex and large angle).<br />

5


PR s<strong>in</strong>α = −EI b △ κ, (25)<br />

PR cosα = GI t △ τ (26)<br />

where ∆κ = cos 2 α/R − cos 2 α 0 /R 0 and ∆τ = s<strong>in</strong> α cosα/R − s<strong>in</strong> α 0 cosα 0 /R 0 .<br />

Elim<strong>in</strong>at<strong>in</strong>g P from <strong>the</strong>se two equati<strong>on</strong>s, <strong>on</strong>e obta<strong>in</strong>s <strong>the</strong> follow<strong>in</strong>g dimensi<strong>on</strong>less expressi<strong>on</strong>s for δ, written<br />

<strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> α :<br />

δ =<br />

From Eq. (25), <strong>the</strong> dimensi<strong>on</strong>less <str<strong>on</strong>g>load</str<strong>on</strong>g> σ is f<strong>in</strong>ally given by :<br />

(1 + ν)cos 2 α + s<strong>in</strong> 2 α<br />

(1 + ν)cos 2 α 0 + s<strong>in</strong> α 0 cosα 0 tan α δ 0. (27)<br />

hal-00611917, versi<strong>on</strong> 1 - 27 Jul 2011<br />

σ =<br />

(1 + ν)<br />

2δ s<strong>in</strong> α (cos2 α 0<br />

δ 0<br />

− cos2 α<br />

). (28)<br />

δ<br />

In this paper, note that <strong>the</strong> parametric study given <strong>in</strong> <strong>the</strong> next secti<strong>on</strong> is c<strong>on</strong>ducted <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> ǫ <strong>in</strong>stead<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> σ.<br />

As a side remark, <strong>the</strong> geometric parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> un<str<strong>on</strong>g>load</str<strong>on</strong>g>ed and <str<strong>on</strong>g>load</str<strong>on</strong>g>ed <strong>helical</strong> beam must satisfy <strong>the</strong><br />

geometric c<strong>on</strong>diti<strong>on</strong>s πδ 0 s<strong>in</strong> α 0 > 1 and πδ s<strong>in</strong> α > 1, respectively (mean<strong>in</strong>g that adjacent turns do not<br />

overlap each o<strong>the</strong>r).<br />

3. Results<br />

In this secti<strong>on</strong>, <strong>the</strong> un<str<strong>on</strong>g>load</str<strong>on</strong>g>ed case is first c<strong>on</strong>sidered <strong>in</strong> order to clearly identify branch modes <strong>in</strong>side a<br />

typical spr<strong>in</strong>g. Three frequency ranges can be dist<strong>in</strong>guished. Focus<strong>in</strong>g <strong>on</strong> propagat<strong>in</strong>g modes, <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>load</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> wave propagati<strong>on</strong> is studied <strong>in</strong> each frequency range. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> dimensi<strong>on</strong>less radius δ 0<br />

and angle α 0 <strong>on</strong> <strong>the</strong> wave propagati<strong>on</strong> <strong>in</strong> a <str<strong>on</strong>g>load</str<strong>on</strong>g>ed <strong>helical</strong> spr<strong>in</strong>g is f<strong>in</strong>ally exam<strong>in</strong>ed. Numerical results are<br />

obta<strong>in</strong>ed with a Poiss<strong>on</strong> coefficient ν <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.3.<br />

3.1. Branch identificati<strong>on</strong><br />

In this secti<strong>on</strong>, results are given for a <strong>helical</strong> beam with dimensi<strong>on</strong>less radius δ 0 <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 and angle α 0 <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 ◦ .<br />

Fig.2(a),(c),(d) show <strong>the</strong> dispersi<strong>on</strong> curves (ωr/c s vs. kr) <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> un<str<strong>on</strong>g>load</str<strong>on</strong>g>ed <strong>helical</strong> beam for three frequency<br />

ranges : [0; 2], [0; 0.25] and [0; 0.005]. These three ranges corresp<strong>on</strong>ds to three frequency regimes, typical<br />

for <strong>helical</strong> beams, as already identified <strong>in</strong> [13]. The eigensystem (14) is solved by fix<strong>in</strong>g <strong>the</strong> dimensi<strong>on</strong>less<br />

frequency <strong>in</strong> order to obta<strong>in</strong> propagat<strong>in</strong>g as well as n<strong>on</strong>-propagat<strong>in</strong>g modes, mak<strong>in</strong>g easier <strong>the</strong> branch<br />

identificati<strong>on</strong>. At each frequency, <strong>the</strong>re are six wavenumbers hav<strong>in</strong>g a positive real part.<br />

In order to determ<strong>in</strong>e <strong>the</strong>ir physical behaviour, a representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> modeshapes 1 and 2 is sketched <strong>in</strong><br />

Fig.2(b) for ωr/cs = 1. It comes that both modes 1 and 2 have a flexural wave behaviour. Mode 1 ma<strong>in</strong>ly<br />

oscillates <strong>in</strong> <strong>the</strong> b<strong>in</strong>ormal directi<strong>on</strong> while <strong>the</strong> moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mode 2 is ma<strong>in</strong>ly <strong>in</strong> <strong>the</strong> normal directi<strong>on</strong>. The modes<br />

3 and 4 have not been sketched <strong>in</strong> <strong>the</strong> figure because <strong>the</strong>ir behaviour could be hardly identified with such<br />

a representati<strong>on</strong>, which can <strong>on</strong>ly show displacement comp<strong>on</strong>ents normal to <strong>the</strong> beam neutral axis. Instead,<br />

<strong>the</strong> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se modes has been identified by <strong>in</strong>spect<strong>in</strong>g <strong>the</strong> dom<strong>in</strong>ant comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> eigenvectors.<br />

The dom<strong>in</strong>ant comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> modes 3 and 4 was found to be φ ∗ t and u ∗ t respectively, <strong>in</strong>dicat<strong>in</strong>g that mode 3<br />

has a torsi<strong>on</strong>al behaviour while mode 4 is <str<strong>on</strong>g>of</str<strong>on</strong>g> compressi<strong>on</strong>al type. Similarly to <strong>the</strong> cyl<strong>in</strong>der dispersi<strong>on</strong> curves,<br />

modes 5 and 6 have a flexural wave behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> higher order (<str<strong>on</strong>g>of</str<strong>on</strong>g> no <strong>in</strong>terest <strong>in</strong> this paper).<br />

For a dimensi<strong>on</strong>less frequency exceed<strong>in</strong>g 1.88, all <strong>the</strong> six modes are propagat<strong>in</strong>g (see Fig.2a). Under<br />

1.88, modes 5 and 6 become <strong>in</strong>homogeneous (complex wavenumbers). As shown <strong>in</strong> Fig.2(c) and 2(d),<br />

<strong>the</strong> compressi<strong>on</strong>al mode (mode 4) is cut-<str<strong>on</strong>g>of</str<strong>on</strong>g>f for frequencies between 0.002 and 0.15 (Im(kr) > 0), while<br />

<strong>the</strong> torsi<strong>on</strong>al mode (mode 3) is cut-<str<strong>on</strong>g>of</str<strong>on</strong>g>f between 0.002 and 0.106. Note that between 0.002 and 0.08, <strong>the</strong><br />

wavenumbers <str<strong>on</strong>g>of</str<strong>on</strong>g> modes 3 and 4 are grouped toge<strong>the</strong>r. Then below 0.002, modes 3 and 4 divide <strong>in</strong>to two<br />

propagat<strong>in</strong>g modes, for which it becomes difficult to dist<strong>in</strong>guish compressi<strong>on</strong>al from torsi<strong>on</strong>al behaviour.<br />

6


This difficulty was also menti<strong>on</strong>ned <strong>in</strong> [13, 14]. It can be noticed that <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se two modes has a curve<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> negative slope, <strong>in</strong>dicat<strong>in</strong>g a backward propagati<strong>on</strong> (positive wavenumber with negative group velocity<br />

V g = ∂ω/∂k).<br />

(a)<br />

2<br />

6<br />

5<br />

ωr/c s<br />

1.5<br />

1<br />

5,6<br />

4<br />

3<br />

2<br />

1<br />

0.5<br />

0<br />

−1 −0.5 0 0.5 1 1.5 2<br />

Im(kr)<br />

Re(kr)<br />

hal-00611917, versi<strong>on</strong> 1 - 27 Jul 2011<br />

(c)<br />

ωr/c s<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

5,6<br />

3,4<br />

4<br />

3<br />

0<br />

−0.6 −0.4 −0.2 0 0.2 0.1 0.6<br />

Im(kr)<br />

Re(kr)<br />

4<br />

5,6<br />

3<br />

2<br />

1<br />

(d)<br />

ωr/c s<br />

5 x 10−3<br />

4<br />

3<br />

2<br />

1<br />

3,4<br />

5,6<br />

3,4<br />

0<br />

0.05 0 0.05 0.1 0.15<br />

Im(kr)<br />

Re(kr)<br />

Figure 2: Un<str<strong>on</strong>g>load</str<strong>on</strong>g>ed <strong>helical</strong> waveguide with δ 0 = 10 and α 0 = 15 ◦ . (a), (c), (d): dispersi<strong>on</strong> curves (grey l<strong>in</strong>es: n<strong>on</strong>-propagat<strong>in</strong>g<br />

modes, black l<strong>in</strong>es: propagat<strong>in</strong>g modes). (b): modeshapes <str<strong>on</strong>g>of</str<strong>on</strong>g> modes 1 and 2 at ωr/cs = 1 (grey l<strong>in</strong>es: undeformed, black l<strong>in</strong>es:<br />

deformed helix centrel<strong>in</strong>e)<br />

Now, a tensile deformati<strong>on</strong> ǫ = 0.4 is applied. One focuses <strong>on</strong> propagat<strong>in</strong>g modes <strong>on</strong>ly (we set kr and<br />

look for ωr/cs). Fig.3 shows <strong>the</strong> dispersi<strong>on</strong> curves <str<strong>on</strong>g>of</str<strong>on</strong>g> propagat<strong>in</strong>g modes <strong>in</strong> <strong>the</strong> un<str<strong>on</strong>g>load</str<strong>on</strong>g>ed and <str<strong>on</strong>g>load</str<strong>on</strong>g>ed cases<br />

for <strong>the</strong> first two frequency ranges. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g><strong>in</strong>g is negligible for high frequencies (above 0.25).<br />

For medium frequencies (below 0.25), <strong>the</strong>re is small differences (few percents) between <strong>the</strong> un<str<strong>on</strong>g>load</str<strong>on</strong>g>ed and<br />

<str<strong>on</strong>g>load</str<strong>on</strong>g>ed curves. These differences are localised near <strong>the</strong> cut-<str<strong>on</strong>g>of</str<strong>on</strong>g>f frequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> torsi<strong>on</strong>al and compressi<strong>on</strong>al<br />

modes (modes 3 and 4 respectively), both <strong>in</strong>creas<strong>in</strong>g under tensile <str<strong>on</strong>g>load</str<strong>on</strong>g>s. Note that <strong>the</strong>se cut-<str<strong>on</strong>g>of</str<strong>on</strong>g>f frequencies<br />

shift higher as <strong>the</strong> helix angle <strong>in</strong>creases and would decrease under compressive <str<strong>on</strong>g>load</str<strong>on</strong>g>s (results not shown for<br />

c<strong>on</strong>ciseness). Despite <strong>the</strong> significant value <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>axial</str<strong>on</strong>g> deformati<strong>on</strong> <strong>on</strong> <strong>the</strong> <strong>helical</strong> beam, <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g><strong>in</strong>g<br />

becomes significant <strong>on</strong>ly <strong>in</strong> <strong>the</strong> low-frequency range, as shown <strong>in</strong> <strong>the</strong> next subsecti<strong>on</strong>.<br />

3,4<br />

2<br />

5,6<br />

1<br />

3.2. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g><strong>in</strong>g <strong>in</strong> <strong>the</strong> low-frequency range<br />

A parametric study is c<strong>on</strong>ducted <strong>in</strong> order to analyse <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g><strong>in</strong>g for low frequencies (below<br />

0.005). Fig.4 shows <strong>the</strong> superpositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersi<strong>on</strong> curves <str<strong>on</strong>g>of</str<strong>on</strong>g> unstretched (ǫ = 0) and stretched <strong>helical</strong><br />

beams (ǫ = 0.4). The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g><strong>in</strong>g has been studied for six different <strong>helical</strong> beams, hav<strong>in</strong>g dimensi<strong>on</strong>less<br />

radii δ 0 <str<strong>on</strong>g>of</str<strong>on</strong>g> 10, 15 and angles α 0 <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 ◦ , 10 ◦ , 15 ◦ . The tensile <str<strong>on</strong>g>load</str<strong>on</strong>g> has an effect <strong>on</strong> <strong>the</strong> four propagat<strong>in</strong>g modes.<br />

For clarity, Fig. 4(e) shows <strong>the</strong> mode labels as previously identified. The <str<strong>on</strong>g>load</str<strong>on</strong>g> effect is found to be <strong>the</strong><br />

most important for mode 2 (flexural mode oscillat<strong>in</strong>g <strong>in</strong> <strong>the</strong> normal directi<strong>on</strong>), its dispersi<strong>on</strong> curve shift<strong>in</strong>g<br />

to higher frequencies. The o<strong>the</strong>r flexural mode (mode 1) is less sensitive to <strong>the</strong> <str<strong>on</strong>g>load</str<strong>on</strong>g>, with a shift to lower<br />

frequencies (except near <strong>the</strong> rigid body po<strong>in</strong>t, corresp<strong>on</strong>d<strong>in</strong>g to a zero-frequency). As far as <strong>the</strong> l<strong>on</strong>gitud<strong>in</strong>al<br />

7


Figure 3: Dispersi<strong>on</strong> curves <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> un<str<strong>on</strong>g>load</str<strong>on</strong>g>ed (grey l<strong>in</strong>es) and <str<strong>on</strong>g>load</str<strong>on</strong>g>ed ǫ = 0.4 (black l<strong>in</strong>es) <strong>helical</strong> beam for δ 0 = 10, α 0 = 15 ◦ .<br />

hal-00611917, versi<strong>on</strong> 1 - 27 Jul 2011<br />

and torsi<strong>on</strong>al modes are c<strong>on</strong>cerned (modes 3 and 4), <strong>the</strong>ir frequency slightly <strong>in</strong>crease under tensile <str<strong>on</strong>g>load</str<strong>on</strong>g>. As<br />

can be observed <strong>in</strong> Fig. 4, <strong>the</strong> applied <str<strong>on</strong>g>load</str<strong>on</strong>g> has a greater effect as <strong>the</strong> helix angle <strong>in</strong>creases.<br />

Fig. 5 shows <strong>the</strong> same results as Fig. 4 for <strong>the</strong> compressive case ǫ = −0.4. One observes <strong>the</strong> same trend<br />

as before but <strong>in</strong> <strong>the</strong> opposite directi<strong>on</strong>. For <strong>in</strong>stance, modes 2, 3 and 4 shift to lower frequencies. When<br />

<strong>the</strong> <str<strong>on</strong>g>load</str<strong>on</strong>g> is compressive, <strong>the</strong>re exists an <strong>in</strong>terval <str<strong>on</strong>g>of</str<strong>on</strong>g> wavenumbers corresp<strong>on</strong>d<strong>in</strong>g to l<strong>on</strong>g <strong>waves</strong> for which<br />

Re(ω) = 0. In this <strong>in</strong>terval, <strong>the</strong> corresp<strong>on</strong>d<strong>in</strong>g frequencies are not strictly zero but have a small imag<strong>in</strong>ary<br />

part. This <strong>in</strong>dicates that compressed <strong>helical</strong> beams are <strong>in</strong>capable <str<strong>on</strong>g>of</str<strong>on</strong>g> transmitt<strong>in</strong>g <strong>the</strong>se <strong>waves</strong>. Note that<br />

<strong>the</strong> same phenomen<strong>on</strong> was found <strong>in</strong> compressed arches [21]. For <strong>helical</strong> beams, this <strong>in</strong>terval is greater as <strong>the</strong><br />

helix angle or <strong>the</strong> <str<strong>on</strong>g>load</str<strong>on</strong>g> <strong>in</strong>crease and as <strong>the</strong> <strong>in</strong>dex decreases.<br />

In practice, it can be <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>terest to evaluate how significant are <strong>the</strong> stress levels <strong>in</strong>side <strong>the</strong> beam. Quantitatively,<br />

<strong>the</strong> maximum shear<strong>in</strong>g stress at <strong>the</strong> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> beam can be approximated as 2PR/πr 3 (see<br />

Chapters 19 and 20 <str<strong>on</strong>g>of</str<strong>on</strong>g> Ref. [19]). From Eq. (23), this stress is equal to 2δσE/2(1 + nu), where δ and σ<br />

are obta<strong>in</strong>ed from Eqs. (27)– (28). Let us choose E=2.0e11Pa (typical value for steel). Then <strong>in</strong> Figs. 4<br />

and 5, apply<strong>in</strong>g |ǫ|=0.4 would yield a maximum shear<strong>in</strong>g stress vary<strong>in</strong>g between 180MPa (corresp<strong>on</strong>d<strong>in</strong>g to<br />

<strong>the</strong> case δ 0 =15, α 0 =5 ◦ ) and 830MPa (for δ 0 =10, α 0 =15 ◦ ). Note that <strong>the</strong> stress <strong>in</strong>side <strong>the</strong> beam must not<br />

exceed <strong>the</strong> <strong>elastic</strong> limit (which depends <strong>on</strong> <strong>the</strong> material c<strong>on</strong>sidered), o<strong>the</strong>rwise <strong>the</strong> <strong>the</strong>ory used <strong>in</strong> this paper<br />

would be no l<strong>on</strong>ger applicable.<br />

3.3. Note <strong>on</strong> <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> stress versus deformati<strong>on</strong><br />

The <strong>the</strong>ory presented <strong>in</strong> Sec. 2 shows that <strong>the</strong> <str<strong>on</strong>g>axial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> acts up<strong>on</strong> <strong>the</strong> dynamic equilibrium equati<strong>on</strong>s<br />

through two comb<strong>in</strong>ed effects: <strong>the</strong> deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> geometry (from (δ 0 , α 0 ) to (δ, α)) and <strong>the</strong> generati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> stress (σ ≠ 0). In Sec. 3.2, both effects were taken <strong>in</strong>to account. In <strong>the</strong> present secti<strong>on</strong>, we are <strong>in</strong>terested<br />

<strong>in</strong> evaluat<strong>in</strong>g <strong>the</strong> <strong>in</strong>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> stress compared to <strong>the</strong> deformati<strong>on</strong>. As an example, Fig. 6 compares <strong>the</strong><br />

<str<strong>on</strong>g>load</str<strong>on</strong>g>ed dispersi<strong>on</strong> curves <str<strong>on</strong>g>of</str<strong>on</strong>g> Fig. 4 (e) with <strong>the</strong> curves obta<strong>in</strong>ed by neglect<strong>in</strong>g stress, i.e. arbitrarily sett<strong>in</strong>g<br />

σ to zero (<strong>the</strong> deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> geometry is still taken <strong>in</strong>to account).<br />

The stress σ has an effect that can not be neglected. Compar<strong>in</strong>g Fig. 6 (a) with Fig. 4 (e), this effect<br />

is opposed to, but lower than, <strong>the</strong> effect caused by <strong>the</strong> geometry deformati<strong>on</strong>. With <strong>the</strong> same applied<br />

deformati<strong>on</strong> and dimensi<strong>on</strong>less radius, <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> stress is more important with <strong>the</strong> <strong>in</strong>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> helix<br />

angle. This phenomen<strong>on</strong> can be observed by compar<strong>in</strong>g Fig. 6 (a) to (b).<br />

It can be c<strong>on</strong>cluded that both effects <str<strong>on</strong>g>of</str<strong>on</strong>g> stress and geometry deformati<strong>on</strong> should be c<strong>on</strong>sidered to study<br />

<strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>elastic</strong> <strong>waves</strong> <strong>in</strong> <strong>helical</strong> beams.<br />

4. C<strong>on</strong>clusi<strong>on</strong>s<br />

Elastic wave propagati<strong>on</strong> <strong>in</strong> a <strong>helical</strong> beam subjected to a compressive or tensile <str<strong>on</strong>g>axial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> has been<br />

analysed. The deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> geometry under <strong>the</strong> applied <str<strong>on</strong>g>axial</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> has been taken <strong>in</strong>to account <strong>in</strong><br />

8


5 x 10−3 kr<br />

(a)<br />

4<br />

(b)<br />

4<br />

ωr/c s<br />

3<br />

2<br />

ωr/c s<br />

5 x 10−3 3<br />

2<br />

kr<br />

1<br />

1<br />

hal-00611917, versi<strong>on</strong> 1 - 27 Jul 2011<br />

(c)<br />

ωr/c s<br />

0<br />

0.05 0.1 0.15<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0.05 0.1 0.15<br />

5 x 10−3<br />

(d)<br />

ωr/c s<br />

(f)<br />

0<br />

0.05 0.1 0.15<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0.05 0.1 0.15<br />

5 x 10−3<br />

4<br />

5 x 10−3 kr<br />

ωr/c s<br />

3<br />

2<br />

1<br />

0<br />

0.05 0.1 0.15<br />

Figure 4: Dispersi<strong>on</strong> curves <str<strong>on</strong>g>of</str<strong>on</strong>g> un<str<strong>on</strong>g>load</str<strong>on</strong>g>ed (grey l<strong>in</strong>es) and <str<strong>on</strong>g>load</str<strong>on</strong>g>ed ǫ = 0.4 (black l<strong>in</strong>es) <strong>helical</strong> beam <strong>in</strong> <strong>the</strong> low-frequency range<br />

for : (a) δ 0 = 10, α 0 = 5 ◦ , (b) δ 0 = 15, α = 5 ◦ , (c) δ 0 = 10, α 0 = 10 ◦ , (d) δ 0 = 15, α 0 = 10 ◦ , (e) δ 0 = 10, α 0 = 15 ◦ , (f)<br />

δ 0 = 15, α 0 = 15 ◦ 9


5 x 10−3 kr<br />

5 x 10−3 kr<br />

(a)<br />

(b)<br />

4<br />

4<br />

ωr/c s<br />

3<br />

2<br />

ωr/c s<br />

3<br />

2<br />

1<br />

1<br />

hal-00611917, versi<strong>on</strong> 1 - 27 Jul 2011<br />

(c)<br />

ωr/c s<br />

0<br />

0.05 0.1 0.15<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0.05 0.1 0.15<br />

5 x 10−3<br />

(d)<br />

ωr/c s<br />

(f)<br />

0<br />

0.05 0.1 0.15<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0.05 0.1 0.15<br />

5 x 10−3<br />

4<br />

5 x 10−3 kr<br />

ωr/c s<br />

3<br />

2<br />

1<br />

0<br />

0.05 0.1 0.15<br />

Figure 5: Dispersi<strong>on</strong> curves <str<strong>on</strong>g>of</str<strong>on</strong>g> un<str<strong>on</strong>g>load</str<strong>on</strong>g>ed (grey l<strong>in</strong>es) and <str<strong>on</strong>g>load</str<strong>on</strong>g>ed ǫ = −0.4 (black l<strong>in</strong>es) <strong>helical</strong> beam <strong>in</strong> <strong>the</strong> low-frequency range<br />

for : (a) δ 0 = 10, α 0 = 5 ◦ , (b) δ 0 = 15, α = 5 ◦ , (c) δ 0 = 10, α 0 = 10 ◦ , (d) δ 0 = 15, α 0 = 10 ◦ , (e) δ 0 = 10, α 0 = 15 ◦ , (f)<br />

δ 0 = 15, α 0 = 15 ◦ 10


5 x 10−3 kr<br />

5 x 10−3 kr<br />

(a)<br />

(b)<br />

4<br />

4<br />

ωr/c s<br />

3<br />

2<br />

ωr/c s<br />

3<br />

2<br />

1<br />

1<br />

0<br />

0.05 0.1 0.15<br />

0<br />

0.05 0.1 0.15<br />

Figure 6: Dispersi<strong>on</strong> curves <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> deformed <strong>helical</strong> beam <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> stress (black) and without (gray) for ǫ=0.4,<br />

δ 0 =10 and: (a) α 0 = 15 ◦ , (b) α 0 = 25 ◦ .<br />

hal-00611917, versi<strong>on</strong> 1 - 27 Jul 2011<br />

<strong>the</strong> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> wave propagati<strong>on</strong>. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g> <strong>on</strong> wave propagati<strong>on</strong> has been highlighted for high,<br />

medium and low frequency ranges. A branch identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersi<strong>on</strong> curves has been performed for both<br />

propagat<strong>in</strong>g and n<strong>on</strong>-propagat<strong>in</strong>g modes. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>load</str<strong>on</strong>g><strong>in</strong>g is significant <strong>on</strong> <strong>the</strong> four propagat<strong>in</strong>g modes<br />

<strong>in</strong> a low frequency range. The dispersi<strong>on</strong> curve <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> flexural mode oscillat<strong>in</strong>g <strong>in</strong> <strong>the</strong> normal directi<strong>on</strong><br />

shifts to higher frequencies under tensile <str<strong>on</strong>g>load</str<strong>on</strong>g>s and vice-versa for compressive <str<strong>on</strong>g>load</str<strong>on</strong>g>s. The <str<strong>on</strong>g>load</str<strong>on</strong>g><strong>in</strong>g effect is<br />

less important for <strong>the</strong> three o<strong>the</strong>r propagat<strong>in</strong>g modes. The applied <str<strong>on</strong>g>load</str<strong>on</strong>g> has a greater effect as <strong>the</strong> helix<br />

<strong>in</strong>creases. Both <strong>the</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> stress and geometry deformati<strong>on</strong> are found to be n<strong>on</strong>-negligible and should be<br />

c<strong>on</strong>sidered <strong>in</strong> <strong>the</strong> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>elastic</strong> wave propagati<strong>on</strong> <strong>in</strong> <str<strong>on</strong>g>axial</str<strong>on</strong>g>ly <str<strong>on</strong>g>load</str<strong>on</strong>g>ed <strong>helical</strong> beams.<br />

References<br />

[1] W. H. Wittrick, On <strong>elastic</strong> wave propagati<strong>on</strong> <strong>in</strong> <strong>helical</strong> spr<strong>in</strong>gs, Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Mechanical Sciences, 8 (1966)<br />

25-47.<br />

[2] J. E. Mottershead, F<strong>in</strong>ite elements for dynamical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>helical</strong> rods, Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Mechanical Sciences,<br />

22 (1980) 267-283.<br />

[3] A. Ward, M.S. Towers, H.A. Barker Dynamic analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>helical</strong> spr<strong>in</strong>gs by <strong>the</strong> assumed mode method, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> sound<br />

and vibrati<strong>on</strong>, 112(2) (1987) 305-320.<br />

[4] V. Yildirim, Investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters affect<strong>in</strong>g free vibrati<strong>on</strong> frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>helical</strong> spr<strong>in</strong>gs, Internati<strong>on</strong>al Journal for<br />

Numerical Methods <strong>in</strong> Eng<strong>in</strong>eer<strong>in</strong>g, 39(1), (1996) 99-114.<br />

[5] V. Yildirim, N. Ince Natural frequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>helical</strong> spr<strong>in</strong>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> arbitrary shape, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Sound and Vibrati<strong>on</strong>, 204(2),<br />

(1997) 311-329.<br />

[6] V. Yildirim, An efficient numerical method for predict<strong>in</strong>g <strong>the</strong> natural frequecies <str<strong>on</strong>g>of</str<strong>on</strong>g> cyl<strong>in</strong>drical <strong>helical</strong> spr<strong>in</strong>gs, Internati<strong>on</strong>al<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Mechanical Sciences, 41 (1999) 919-939.<br />

[7] D. Pears<strong>on</strong>, W.H.Wittrick, An exact soluti<strong>on</strong> for <strong>the</strong> vibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>helical</strong> spr<strong>in</strong>gs us<strong>in</strong>g a Bernoulli-Euler model, Internati<strong>on</strong>al<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Mechanical Sciences, 28(2), (1986) 83-96.<br />

[8] J. Lee, D. J. Thomps<strong>on</strong>, Dynamic stiffness formulati<strong>on</strong>, free vibrati<strong>on</strong> and wave moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>helical</strong> spr<strong>in</strong>gs, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Sound and Vibrati<strong>on</strong>, 239 (2001) 297-320.<br />

[9] Y. Xi<strong>on</strong>g, B. Tabarrok, A f<strong>in</strong>ite element model for <strong>the</strong> vibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial rods under various applied <str<strong>on</strong>g>load</str<strong>on</strong>g>s, Internati<strong>on</strong>al<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Mechanical Sciences, 34 (1992) 41-51.<br />

[10] D. Pears<strong>on</strong>, Transfer matrix method for <strong>the</strong> vibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> compressed <strong>helical</strong> spr<strong>in</strong>gs, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Mechanical Eng<strong>in</strong>eer<strong>in</strong>g,<br />

24, (1982) 163-171.<br />

[11] L-E. Becker, G-G. Chassie, W.L. Cleghorn, On <strong>the</strong> natural frequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>helical</strong> compressi<strong>on</strong> spr<strong>in</strong>gs, Internati<strong>on</strong>al Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Mechanical Sciences, 44 (2002) 825-841.<br />

[12] L. E. Becker, W. L. Cleghorn, On <strong>the</strong> buckl<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>helical</strong> compressi<strong>on</strong> spr<strong>in</strong>gs, Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Mechanical Sciences,<br />

34 (1992) 275-282.<br />

[13] S. V. Sorok<strong>in</strong>, L<strong>in</strong>ear dynamic <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>elastic</strong> <strong>helical</strong> sprigs: asymptotic analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> wave propagati<strong>on</strong>, Proceed<strong>in</strong>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Royal<br />

Society A, 465 (2009), 1513-1537.<br />

[14] F. Treyssède, Numerical <strong>in</strong>vestigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>elastic</strong> modes <str<strong>on</strong>g>of</str<strong>on</strong>g> propagati<strong>on</strong> <strong>in</strong> <strong>helical</strong> waveguides, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Acoustical<br />

Society <str<strong>on</strong>g>of</str<strong>on</strong>g> America, 121 (2007) 3398-3408.<br />

[15] F. Treyssède, Elastic <strong>waves</strong> <strong>in</strong> <strong>helical</strong> waveguides, Wave Moti<strong>on</strong>, 45 (2008) 457-470.<br />

[16] F. Treyssède, L. Laguerre Investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>elastic</strong> modes propagat<strong>in</strong>g <strong>in</strong> multi-wire <strong>helical</strong> waveguides, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Sound<br />

and Vibrati<strong>on</strong>, 329 (2010) 1702-1716.<br />

11


[17] G. G. Chassie, L. E. Becker, W. L. Cleghorn, On <strong>the</strong> buckl<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>helical</strong> spr<strong>in</strong>gs under comb<strong>in</strong>ed compressi<strong>on</strong> and torsi<strong>on</strong>,<br />

Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Mechanical Sciences, 39 (1997) 697-704.<br />

[18] F. Tisseur, K. Meerbergen, The quadratic eigenvalue problem, SIAM Review, 43 (2001) 235-286.<br />

[19] A.M. Wahl Mechanical spr<strong>in</strong>gs, Sec<strong>on</strong>d Editi<strong>on</strong>, Mc Graw-Hill, Inc., New York, 1963.<br />

[20] J. A. Har<strong>in</strong>gx, On highly compressible <strong>helical</strong> spr<strong>in</strong>gs and rubber rods, and <strong>the</strong>ir applicati<strong>on</strong> for vibrati<strong>on</strong>-free mount<strong>in</strong>gs,<br />

Philips Res. Rep., 3 (1948) 401-449.<br />

[21] M. Farshad, Wave propagati<strong>on</strong> <strong>in</strong> prestressed curved rods, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Eng<strong>in</strong>eer<strong>in</strong>g Mechanics Divisi<strong>on</strong>, 106 (1980)<br />

395-408.<br />

hal-00611917, versi<strong>on</strong> 1 - 27 Jul 2011<br />

12

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!